1
|
Vivesh V, Kumari P, Singh P. A rationale approach in developing proline based small peptide as U-shaped analogues of arachidonic acid: Dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for developing anti-inflammatory agents. Bioorg Chem 2025; 160:108452. [PMID: 40253762 DOI: 10.1016/j.bioorg.2025.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Guided by the molecular modelling studies, here, we report the development of small molecules containing Pro-Pro, Gly-Pro-Pro ester motifs as dual inhibitors of COX-2 and 5-LOX enzymes. The synthesized compounds exhibited potent inhibitory activities against COX-2 and 5-LOX, with IC50 values in nanomolar range. Lineweaver-Burk plot analysis revealed that these molecules act as competitive inhibitors of COX-2 and 5-LOX. In vivo studies using the HET-CAM assay indicated that the compounds exhibit moderate to good anti-inflammatory effects. Hence, taking into account the physicochemical properties, including aqueous solubility, binding affinity to HSA and stability in blood plasma and liver microsomes, anti-inflammatory agents targeting dual pathways of arachidonic acid metabolism are identified.
Collapse
Affiliation(s)
- Vivesh Vivesh
- Department of Chemistry, Guru Nanak Dev University Amritsar, 143005, India
| | - Priya Kumari
- Department of Chemistry, Guru Nanak Dev University Amritsar, 143005, India
| | - Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University Amritsar, 143005, India.
| |
Collapse
|
2
|
Turones LC, da Silva DPB, Florentino IF, Martins AN, Almeida DDS, Moreira LKDS, Silva MMO, Machado LS, Oliveira GDAR, Lião LM, Dos Santos FCA, Pavicic MF, Ehrenfeld P, Menegatti R, Costa EA, Fajemiroye JO. Anti-inflammatory and antinociceptive effects of LQFM275 - A new multi-target drug. Int Immunopharmacol 2025; 146:113901. [PMID: 39718057 DOI: 10.1016/j.intimp.2024.113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Compound (4-(3,5-di-tert-butyl-4-hydroxybenzylamine)benzenesulfonamide) (LQFM275) was designed and synthesized from darbufelone and sulfanilamide as a new multi-target for the treatment of inflammatory diseases. LQFM275 showed a great range of safe cytotoxicity profile (100-400 μM) evaluated by MTT assay, preventing damage induced by lipopolysaccharide (LPS) in EA.hy926 cell line. In mice, the acute oral treatment with LQFM275 (57, 114, and 228 mg/kg) reduced the number of writhing by 26, 37, and 49 %, respectively. LQFM275 (114 mg/kg) also presented an antinociceptive effect, reducing by 57 % the nociceptive response in the second phase of the formalin test and by 47 % the Carrageenan(Carra)-induced hyperalgesia. That effect was dependent on its anti-inflammatory activity. LQFM275 (114 mg/kg) also reduced 42 % and 31 % of the Carra and LPS-induced edema, respectively. The pleurisy test attenuated the leukocyte migration induced by Carra and LPS by reducing the number of polymorphonuclear cells (by 39 and 36 %, respectively). The production of reactive oxygen species in the pleural exudate was reduced, which is shown by a decrease in myeloperoxidase (MPO) activity (Carra = 35 % and LPS = 40 %) and in levels of pro-inflammatory cytokines TNF-α and IL-1β (Carra = 48 % and LPS = 47 e 36 %). On the other hand, it increased the levels of anti-inflammatory cytokines, IL-4, and IL-10 (Carra = 50 % and LPS = 21 and 53 %). Moreover, LQFM275 demonstrated to be a dual COX-2 and 5-LOX inhibitor (IC50 = 81 and 167 μM, respectively). Therefore, the promising anti-inflammatory and antinociceptive effects of LQFM275 provide an opportunity for a new multi-target drug development.
Collapse
Affiliation(s)
- Larissa Córdova Turones
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Daiany P B da Silva
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Iziara F Florentino
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Aline Nazareth Martins
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Dionys de Souza Almeida
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Lorrane Kelle da Silva Moreira
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Milena M Oliveira Silva
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Lucas S Machado
- Laboratory of Chromatography and Mass Spectrometry, Chemistry Institute, Federal University of Goiás, Campus Colemar Natal e Silva, Goiânia, Brazil
| | | | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiânia, Brazil
| | - Fernanda Cristina A Dos Santos
- Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| | - Maria Francisca Pavicic
- Laboratory of Cellular Pathology, Faculty of Medicine and Center for Interdisciplinary Studies on Nervous System (CISNe), Austral University of Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Faculty of Medicine and Center for Interdisciplinary Studies on Nervous System (CISNe), Austral University of Chile, Valdivia, Chile
| | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil.
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products, Institute of Biological Sciences, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
| |
Collapse
|
3
|
Shakira RM, Abd Wahab MK, Nordin N, Ariffin A. Antioxidant properties of butylated phenol with oxadiazole and hydrazone moiety at ortho position supported by DFT study. RSC Adv 2022; 12:17085-17095. [PMID: 35755585 PMCID: PMC9178441 DOI: 10.1039/d2ra02140d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/27/2022] [Indexed: 01/18/2023] Open
Abstract
Two series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-tert-butylphenol group were synthesized. The antioxidant properties were evaluated by DPPH and FRAP assays. Compound 3 showed significant antioxidant activity, while its alkyl derivatives exhibited decreased antioxidant activity in both assays. The preferential antioxidant mechanism of the reactive antioxidant molecules prepared from the further reaction of compound 3 to produce compounds 4 and 6 was investigated using density functional theory. Calculating their comprehensive reactivity descriptors was used to assess their antioxidant reactivity. According to the calculated descriptors, compounds 4c and 6d are the most reactive antioxidants within their own group compared to the other derivative moieties. The results are identical to ascorbic acid's, indicating that they have similar activity. The experimental data and the calculated descriptors are in good agreement. The nature of the substituents and their positions have a significant impact on the derivatives' antioxidant capabilities.
Collapse
Affiliation(s)
- Raied M Shakira
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia +60 7967 4193 +60 7967 7022 +60 7967 4080
- Department of Chemistry, Ibn Al-Haitham University of Baghdad Baghdad Iraq
| | - Muhammad Kumayl Abd Wahab
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia +60 7967 4193 +60 7967 7022 +60 7967 4080
| | - Nurdiana Nordin
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia +60 7967 4193 +60 7967 7022 +60 7967 4080
| | - Azhar Ariffin
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia +60 7967 4193 +60 7967 7022 +60 7967 4080
| |
Collapse
|
4
|
Mahboubi-Rabbani M, Zarghi A. Lipoxygenase Inhibitors as Cancer Chemopreventives: Discovery, Recent Developments and Future Perspectives. Curr Med Chem 2021; 28:1143-1175. [PMID: 31820690 DOI: 10.2174/0929867326666191210104820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Leukotrienes (LTs) constitute a bioactive group of Polyunsaturated Fatty Acid (PUFA) metabolites molded by the enzymatic activity of lipoxygenase (LO) and have a pivotal role in inflammation and allergy. Evidence is accumulating both by in vitro cell culture experiments and animal tumor model studies in support of the direct involvement of aberrant metabolism of arachidonic acid (ACD) in the development of several types of human cancers such as lung, prostate, pancreatic and colorectal malignancies. Several independent experimental data suggest a correlation between tumoral cells viability and LO gene expression, especially, 5-lipoxygenase (5-LO). Overexpressed 5-LO cells live longer, proliferate faster, invade more effectively through extracellular matrix destruction and activate the anti-apoptotic signaling mechanisms more intensively compared to the normal counterparts. Thus, some groups of lipoxygenase inhibitors may be effective as promising chemopreventive agents. METHODS A structured search of bibliographic databases for peer-reviewed research literature regarding the role of LO in the pathogenesis of cancer was performed. The characteristics of screened papers were summarized and the latest advances focused on the discovery of new LO inhibitors as anticancer agents were discussed. RESULTS More than 180 papers were included and summarized in this review; the majority was about the newly designed and synthesized 5-LO inhibitors as anti-inflammatory and anticancer agents. The enzyme's structure, 5-LO pathway, 5-LO inhibitors structure-activity relationships as well as the correlation between these drugs and a number of most prevalent human cancers were described. In most cases, it has been emphasized that dual cyclooxygenase-2/5-lipoxygenase (COX-2/5-LO) or dual 5-lipoxygenase/microsomal prostaglandin E synthase-1 (5-LO/mPGES-1) inhibitors possess considerable inhibitory activities against their target enzymes as well as potent antiproliferative effects. Several papers disclosing 5-lipoxygenase activating protein (FLAP) antagonists as a new group of 5-LO activity regulators are also subject to this review. Also, the potential of 12-lipoxygenase (12- LO) and 15-lipoxygenase (15-LO) inhibitors as chemopreventive agents was outlined to expand the scope of new anticancer agents discovery. Some peptides and peptidomimetics with anti-LT activities were described as well. In addition, the cytotoxic effects of lipoxygenase inhibitors and their adverse effects were discussed and some novel series of natural-product-derived inhibitors of LO was also discussed in this review. CONCLUSION This review gives insights into the novel lipoxygenase inhibitors with anticancer activity as well as the different molecular pharmacological strategies to inhibit the enzyme effectively. The findings confirm that certain groups of LO inhibitors could act as promising chemopreventive agents.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Radan M, Bošković J, Dobričić V, Čudina O, Nikolić K. Current computer-aided drug design methodologies in discovery of novel drug candidates for neuropsychiatric and inflammatory diseases. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-32523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Drug discovery and development is a very challenging, expensive and time-consuming process. Impressive technological advances in computer sciences and molecular biology have made it possible to use computer-aided drug design (CADD) methods in various stages of the drug discovery and development pipeline. Nowadays, CADD presents an efficacious and indispensable tool, widely used in medicinal chemistry, to lead rational drug design and synthesis of novel compounds. In this article, an overview of commonly used CADD approaches from hit identification to lead optimization was presented. Moreover, different aspects of design of multitarget ligands for neuropsychiatric and anti-inflammatory diseases were summarized. Apparently, designing multi-target directed ligands for treatment of various complex diseases may offer better efficacy, and fewer side effects. Antipsychotics that act through aminergic G protein-coupled receptors (GPCRs), especially Dopamine D2 and serotonin 5-HT2A receptors, are the best option for treatment of various symptoms associated with neuropsychiatric disorders. Furthermore, multi-target directed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) inhibitors are also a successful approach to aid the discovery of new anti-inflammatory drugs with fewer side effects. Overall, employing CADD approaches in the process of rational drug design provides a great opportunity for future development, allowing rapid identification of compounds with the optimal polypharmacological profile.
Collapse
|
6
|
Almeida DDS, da Silva DPB, Moreira LKDS, Menegatti R, Lião LM, Sanz G, Vaz BG, Ghedini PC, Costa EA, Florentino IF. Investigation of anti-inflammatory potential of 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione compound. Eur J Pharmacol 2020; 886:173388. [PMID: 32768504 DOI: 10.1016/j.ejphar.2020.173388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
The aim of this study was to synthesise the novel di-tert-butylphenol compound, 5-(3,5-di-tert-butyl-4-hydroxybenzylidene)-2-thioxo-dihydropyrimidine-4,6(1H, 5H)-dione (LQFM218), and evaluate the potential anti-nociceptive and anti-inflammatory activities in acute (mice) models in vivo. The compound was tested on acute models of pain such as acetic acid-induced abdominal writhing, formalin-induced nociception and carrageenan-induced mechanical hyperalgesia. The anti-inflammatory activity was observed in paw oedema, carrageenan-induced pleurisy tests and inflammatory mediator quantification. Key findings: oral treatment with the LQFM218 (50, 100 or 200 mg/kg) reduced abdominal writhing (18.8%, 31.6% and 48.3%). The dose intermediate (100 mg/kg) reduced the nociception in the second phase of the formalin test (61.4%), and also showed anti-hyperalgic activity in carrageenan-induced mechanical hyperalgesia (until 42.3%). In acute inflammation models, the treatment of mice LQFM218 (100 mg/kg) reduced the paw oedema all the time (33.8%, 42.6%, 37.4% and 36%) and in pleurisy test reduced: polymorphonuclear cell migration (35.4%), myeloperoxidase activity (52.2%) and the levels of inflammatory mediators such as PGE2 (23.0%), TNF-α (67.6%) and IL-1β (53.4%). The present study showed that LQFM218 effectively reduced the nociception and inflammation in different models, and its mechanism might be related to the reduction of PGE2 and pro-inflammatory cytokines. These findings show LQFM218 as a potential anti-inflammatory drug.
Collapse
Affiliation(s)
- Dionys de S Almeida
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Daiany P B da Silva
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Lorrane K da S Moreira
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Ricardo Menegatti
- Faculty of Pharmacy, Laboratory of Medicinal Pharmaceutical Chemistry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Luciano M Lião
- Chemistry Institute, Federal University of Goias, Campus Samambaia, Goiânia, GO, Brazil
| | - Germán Sanz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Boniek G Vaz
- Chemistry Institute, Laboratory of Chromatography and Mass Spectrometry, Federal University of Goiás, Goiânia, GO, Brazil
| | - Paulo C Ghedini
- Institute of Biological Sciences, Department of Pharmacology, Laboratory of Molecular and Biochemistry Pharmacology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Elson A Costa
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil
| | - Iziara F Florentino
- Institute of Biological Sciences, Department of Pharmacology, Federal University of Goiás, Campus Samambaia, Goiânia, GO, Brazil.
| |
Collapse
|
7
|
Anti-inflammatory and antinociceptive activity profile of a new lead compound - LQFM219. Int Immunopharmacol 2020; 88:106893. [PMID: 32892073 DOI: 10.1016/j.intimp.2020.106893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022]
Abstract
LQFM219 is a molecule designed from celecoxibe (COX-2 inhibitor) and darbufelone (inhibitor of COX-2 and 5-LOX) lead compounds through a molecular hybridisation strategy. Therefore, this work aimed to investigate the antinociceptive and anti-inflammatory activities of this new hybrid compound. The acute oral systemic toxicity of LQFM219 was evaluated via the neutral red uptake assay. Acetic acid-induced abdominal writhing and CFA-induced mechanical hyperalgesia were performed to evaluate the antinociceptive activity, and the anti-oedematogenic activity was studied by CFA-induced paw oedema and croton oil-induced ear oedema. Moreover, the acute anti-inflammatory activity was determined by carrageenan-induced pleurisy. In addition, cell migration, myeloperoxidase enzyme activity, and TNF-α and IL-1β levels were determined in pleural exudate. Moreover, a redox assay was conducted using electroanalytical and DPPH methods. The results demonstrated that LQFM219 was classified as GHS category 4, and it showed better free radical scavenger activity compared to BHT. Besides, LQFM219 decreased the number of writhings induced by acetic acid and the response to the mechanical stimulus in the CFA-induced mechanical hyperalgesia test. Furthermore, LQFM219 reduced oedema formation, cell migration, and IL-1β and TNF-α levels in the pleural cavity and inhibited myeloperoxidase enzyme activity. Thus, our study provides that the new pyrazole derivative, LQFM219, demonstrated low toxicity, antinociceptive and anti-inflammatory potential in vitro and in vivo.
Collapse
|
8
|
Cruz LA, Díaz MA, Gupta MP, López-Pérez JL, Mondolis E, Morán-Pinzón J, Guerrero E. Assessment of the antinociceptive and anti-inflammatory activities of the stem methanol extract of Diplotropis purpurea. PHARMACEUTICAL BIOLOGY 2019; 57:432-436. [PMID: 31242794 PMCID: PMC6598500 DOI: 10.1080/13880209.2019.1628074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Context: Since there is still a great need to search for plant species with antinociceptive and anti-inflammatory activities, Diploptropis purpurea (Rich.) Amshoff (Fabaceae) is studied for the first time. Objective: This evaluates the analgesic and anti-inflammatory activities of the stem methanol extract of Diplotropis purpurea (MEDP). Material and methods: The anti-inflammatory and analgesic effects of MEDP of D. purpurea were evaluated in vivo. The antinociceptive activity was assessed in CD1 male mice were treated by oral gavage with 500 mg/kg of MEDP 30 min before submitting to acetic acid-induced abdominal writhing, hot-plate, and formalin tests. Paws oedema induced by carrageenan, histamine or serotonin were performed in male Sprague-Dawley rats to determinate the anti-inflammatory activity. Results: Oral administration of MEDP produced significant antinociceptive effects on the inflammatory phase in the formalin test [12.0 s versus 72.5 s in carboxymethyl cellulose (CMC) control group]. MEDP produced an analgesic effect in the hot-plate model, although the effect was modest compared to tramadol (40 and 60%, respectively). The oral administration of MEDP in a dose of 500 mg/kg showed maximum inhibition (75.1%) after 0.5 h in carrageenan-induced oedema, but it did not modify histamine or serotonin-induced oedemas. Discussion and conclusion: In the peripheral nociception model, acetic acid-induced abdominal writhing, the MEDP did not show a protective effect, but its analgesic effects were evident in the inflammatory phase of the formalin test and in the hot-plate model. These results show that the anti-inflammatory effect was accompanied by a reduction in the perception of painful stimuli.
Collapse
Affiliation(s)
- Lorena A. Cruz
- Dirección Nacional de Farmacia y Drogas, Ministerio de salud, Panama, Panama
| | - Miguel A. Díaz
- Dirección Nacional de Farmacia y Drogas, Ministerio de salud, Panama, Panama
| | - Mahabir P. Gupta
- Centro de Estudios Farmacognósticos de la Flora Panameña, Facultad de Farmacia, Universidad de Panamá, Panama, Panama
| | - José Luis López-Pérez
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
- Departmento de Ciencias Farmacéuticas, IBSAL-CIETUS, Universidad de Salamanca, Salamanca, Spain
| | - Eily Mondolis
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| | - Juan Morán-Pinzón
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| | - Estela Guerrero
- Departamento de Farmacología, Escuela de Medicina, Universidad de Panamá, Panama, Panama
| |
Collapse
|
9
|
Mayank, Singh A, Kaur N, Garg N, Singh N. Anticancer SAR establishment and novel accruing signal transduction model of drug action using biscoumarin scaffold. Comput Biol Chem 2019; 83:107104. [PMID: 31546212 DOI: 10.1016/j.compbiolchem.2019.107104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/20/2023]
Abstract
In this paper, we have established methylenebis (4-hydroxy-2H-chromen-2-one) as a promising anticancer scaffold with kinesin spindle protein (KSP) inhibitory activity under malignant condition. A series of biscoumarin derivatives (MN1 to MN30) with different substituent were synthesized, and their anticancer activity was explored. Six biscoumarin derivatives that were found active were further selected to formulate organic nanoparticles (ONPs). Anticancer activity of both the forms (viz conventional and ONPs) was compared. MN30 was found most potent whereby MN10 showed good anticancer activity in both, i.e., conventional and ONP form; the structural activity relationship (SAR) study has been established. Computational investigation revealed biscoumarin scaffold as a suitable pharmacophore to bind against KSP protein. Molecular dynamics simulation studies revealed protein-ligand stability and dynamic behavior of biscoumarin-KSP complex. Finally, accruing signal transduction model was formulated to explain the observed MTT trend of conventional and ONP form. The model seems useful towards solving population specific varied results of chemotherapeutic agents. According to the model, MN10 and MN30 derivatives have good pharmacodynamics inertia and therefore, both the molecules were able to provide dose-dependent cytotoxic results.
Collapse
Affiliation(s)
- Mayank
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India
| | - Navneet Kaur
- Department of Chemistry, Punjab University, Chandigarh, 160014, India.
| | - Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh, 175005, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India.
| |
Collapse
|
10
|
Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci 2018; 121:356-381. [PMID: 29883727 DOI: 10.1016/j.ejps.2018.06.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammatory mediators of the arachidonic acid cascade from cyclooxygenase (COX) and lipoxygenase (LOX) pathways are primarily responsible for many diseases in human beings. Chronic inflammation is associated with the pathogenesis and progression of cancer, arthritis, autoimmune, cardiovascular and neurological diseases. Traditional non-steroidal anti-inflammatory agents (tNSAIDs) inhibit cyclooxygenase pathway non-selectively and produce gastric mucosal damage due to COX-1 inhibition and allergic reactions and bronchospasm resulting from increased leukotriene levels. 'Coxibs' which are selective COX-2 inhibitors cause adverse cardiovascular events. Inhibition of any of these biosynthetic pathways could switch the metabolism to the other, which can lead to fatal side effects. Hence, there is undoubtedly an urgent need for new anti-inflammatory agents having dual mechanism that prevent release of both prostaglandins and leukotrienes. Though several molecules have been synthesized with this objective, their unfavourable toxicity profile prevented them from being used in clinics. Here, this integrative review attempts to identify the promising pharmacophore that serves as dual inhibitors of COX-2/5-LOX enzymes with improved safety profile. A better acquaintance of structural features that balance safety and efficacy of dual inhibitors would be a different approach to the process of understanding and interpreting the designing of novel anti-inflammatory agents.
Collapse
|
11
|
de Macêdo IYL, Garcia LF, Menegatti R, Guimarães FF, Lião LM, de Carvalho FS, Torres Pio dos Santos W, Verly RM, Arotiba OA, de Souza Gil E. Electrochemical characterizations of darbufelone, a di-tert-butylphenol derivative, by voltammetric techniques and density functional theory calculations. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|