1
|
El Azab EF, Saleh AM, Yousif SO, Mazhari BBZ, Abu Alrub H, Elfaki EM, Hamza A, Abdulmalek S. New insights into geraniol's antihemolytic, anti-inflammatory, antioxidant, and anticoagulant potentials using a combined biological and in silico screening strategy. Inflammopharmacology 2022; 30:1811-1833. [PMID: 35932440 DOI: 10.1007/s10787-022-01039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/15/2022] [Indexed: 11/05/2022]
Abstract
The study aims to assess the antihemolytic and antioxidant activities of geraniol versus 2, 2'-azobis, 2-amidinopropane dihydro-chloride- (AAPH-) induced oxidative damage and hemolysis to erythrocytes and its anti-inflammatory potential against lipopolysaccharide- (LPS-) induced inflammation in white blood cells (WBCs) with a focus on its integrated computational strategies against different targeted receptors participating in inflammation and coagulation. The rats' erythrocyte suspension was incubated with different geraniol concentrations. Molecular docking and simulation were used to explore the possible interaction patterns of geraniol against the potential targeted proteins for therapeutic screening. The results displayed that geraniol had a prolonged noteworthy effect on activated partial thromboplastin time and thromboplastin time. Geraniol displayed strong antioxidant effects via reduced malondialdehyde (MDA) formation and increased GSH level and SOD activity. We observed dose-dependent prevention of K+ ion leakage along with a remarkable decline of hemolysis in erythrocytes pretreated with geraniol. Geraniol 100 µg/mL and diclofenac 100 µM were nontoxic to WBCs. Geraniol significantly reduces the expression and release of cellular pro-inflammatory factors TNF-α, IL-1β, IL-8, and nitric oxide, accompanied by a significant upregulation of gene expression of anti-inflammatory cytokine IL-10 in LPS-induced WBCs compared to nontreated cells. It demonstrates a much stronger inhibition potential than diclofenac in terms of inflammation inhibition. When comparing molecular docking and simulation data, current work showed that geraniol has a good affinity toward apoptosis signal-regulating kinase 1 (ASK1) and human P2Y12 receptors and could be developed as an antioxidant, anti-inflammatory, and anticoagulant medication in the future. Consequently, geraniol is recommended to have a defensive influence against oxidative stress, and hemolysis also could be developed as a promising anti-inflammatory, antioxidant, and anticoagulant medication.
Collapse
Affiliation(s)
- Eman Fawzy El Azab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia. .,Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Sara Osman Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia.,Department of Clinical Chemistry, Faculty of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| | - Bi Bi Zainab Mazhari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Heba Abu Alrub
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Alneil Hamza
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences at Al-Qurayyat, Jouf University, Al-Qurayyat, 77454, Saudi Arabia
| | - Shaymaa Abdulmalek
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| |
Collapse
|
2
|
Fan B, Li Q, Jiang Y, Shen W, Xing Y, Liang G, Wu Q, Ban S, Zhang R. Development of carrier-free nanodrugs based on low molecular weight heparin–doxorubicin conjugate assembly with smart pH-triggered drug release characteristics for combinatorial antitumor therapy. NEW J CHEM 2022. [DOI: 10.1039/d1nj04224f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A LMWH–DOX nanodrug effectively released bioactive agents, providing a combination therapy of low molecular weight heparin and doxorubicin for angiogenesis suppression and carcinoma inhibition.
Collapse
Affiliation(s)
- Bo Fan
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
- The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China
| | - Qian Li
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yanping Jiang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Weiguang Shen
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yang Xing
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Guixian Liang
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Qian Wu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Shurong Ban
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ruiping Zhang
- The Radiology Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, 030032, China
| |
Collapse
|
3
|
Kayyal M, Bolhassani A, Noormohammadi Z, Sadeghizadeh M. Immunological responses and anti-tumor effects of HPV16/18 L1-L2-E7 multiepitope fusion construct along with curcumin and nanocurcumin in C57BL/6 mouse model. Life Sci 2021; 285:119945. [PMID: 34516991 DOI: 10.1016/j.lfs.2021.119945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/27/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
AIMS Human papillomavirus (HPV) L1, L2 and E7 proteins were used as target antigens for development of preventive and therapeutic vaccines. Moreover, linkage of antigens to heat shock proteins (HSPs) could enhance the potency of vaccines. Curcumin and nanocurcumin compounds were suggested as the chemopreventive and chemotherapeutic agents against cancer. In this study, two multiepitope DNA and peptide-based vaccine constructs (L1-L2-E7 and HSP70-L1-L2-E7) were used along with curcumin and nanocurcumin to evaluate immune responses, and protective/therapeutic effects in tumor mouse model. MAIN METHODS At first, the multiepitope L1-L2-E7 and HSP70-L1-L2-E7 fusion genes were subcloned in eukaryotic and prokaryotic expression vectors. The recombinant multiepitope peptides were generated in E. coli strain. Then, the cytotoxic effects of curcumin and nanocurcumin were evaluated on HEK-293 T non-cancerous and C3 cancerous cells. Finally, mice vaccination was performed using different regimens. Curcumin and nanocurcumin compounds were administered alone or along with different vaccine constructs. KEY FINDINGS Our data indicated that the use of nanocurcumin along with the multiepitope HSP70-L1-L2-E7 vaccine construct could completely protect mice against HPV-related C3 tumor cells, and eradicate tumors in a therapeutic test. Furthermore, nanocurcumin showed higher protection than curcumin alone. Generally, curcumin and nanocurcumin compounds could reduce tumor growth synergistically with the multiepitope vaccine constructs, but they did not influence the immune responses in different regimens. SIGNIFICANCE These data demonstrated that the designed multiepitope vaccine constructs along with curcumin and nanocurcumin can be used as a promising method for HPV vaccine development.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/pharmacology
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Capsid Proteins/administration & dosage
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Cloning, Molecular
- Curcumin/administration & dosage
- Curcumin/pharmacology
- Cytokines/metabolism
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Escherichia coli
- Female
- Genetic Vectors
- HEK293 Cells
- HSP70 Heat-Shock Proteins/administration & dosage
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/immunology
- Humans
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Oncogene Proteins, Viral/administration & dosage
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomavirus E7 Proteins/administration & dosage
- Papillomavirus E7 Proteins/genetics
- Papillomavirus E7 Proteins/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/genetics
- Papillomavirus Vaccines/immunology
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/therapy
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Mice
Collapse
Affiliation(s)
- Matin Kayyal
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Reinforcing vascular normalization therapy with a bi-directional nano-system to achieve therapeutic-friendly tumor microenvironment. J Control Release 2021; 340:87-101. [PMID: 34662587 DOI: 10.1016/j.jconrel.2021.10.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Detrimental tumor microenvironment (TME) relies on distorted tumor vasculature for further tumor expansion. Vascular normalization therapy partly improves TME through vessel repairing, while these therapies enter an unbreakable Möbius ring due to each attempt hindered by pro-angiogenic factors from TME, leading to limited duration and extent of vascular normalization. Here, we developed a nanosystem including FLG and MAR/MPA nanodrugs to regulate both tumor vasculature and TME. FLG nanodrugs were constructed by connecting VEGF/VEGFR2 inhibitory low molecular weight heparin and gambogic acid with F3 peptide decoration for directly regulating on vascular endothelial cells and inducing vascular normalization. Meanwhile, MAR/MPA nanodrugs encapsulating CCL5/CCR5 blocker maraviroc were designed to restrict cytokine functions of angiogenesis and TME deterioration, contributing to vasculature repairing and TME reconstruction. Our results demonstrated this combined nanosystem synergistically induced vascular normalization window lasting 9 days and restored vascular permeability and oxygen supply in Panc-1 tumor. Furthermore, in melanoma, our nanosystem achieved immune improvements with increased infiltration of CD4+ and CD8+T cells in a remodeled TME. The two nanodrugs assisting each other in terms of both vascular repairing and TME improvements successfully reversed the vicious crosstalk to a positive one, achieving overall TME remodeling and promoting therapeutic efficiency.
Collapse
|
5
|
Araya-Sibaja AM, Salazar-López NJ, Wilhelm Romero K, Vega-Baudrit JR, Domínguez-Avila JA, Velázquez Contreras CA, Robles-Zepeda RE, Navarro-Hoyos M, González-Aguilar GA. Use of nanosystems to improve the anticancer effects of curcumin. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:1047-1062. [PMID: 34621615 PMCID: PMC8450944 DOI: 10.3762/bjnano.12.78] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/23/2021] [Indexed: 05/08/2023]
Abstract
Curcumin (CUR) is a phenolic compound that is safe for human consumption. It exhibits chemopreventive, antiproliferative, antiangiogenic, and antimetastatic effects. However, these benefits can be hampered due to the lipophilic nature, rapid metabolism, low bioavailability, and fast elimination of the molecule. Considering this, the present work reviews the use of CUR-based nanosystems as anticancer agents, including conventional nanosystems (i.e., liposomes, nanoemulsions, nanocrystals, nanosuspensions, polymeric nanoparticles) and nanosystems that respond to external stimuli (i.e., magnetic nanoparticles and photodynamic therapy). Previous studies showed that the effects of CUR were improved when loaded into nanosystems as compared to the free compound, as well as synergist effects when it is co-administrated alongside with other molecules. In order to maximize the beneficial health effects of CUR, critical factors need to be strictly controlled, such as particle size, morphology, and interaction between the encapsulating material and CUR. In addition, there is an area of study to be explored in the development of CUR-based smart materials for nanomedical applications. Imaging-guided drug delivery of CUR-based nanosystems may also directly target specific cells, thereby increasing the therapeutic and chemopreventive efficacy of this versatile compound.
Collapse
Affiliation(s)
- Andrea M Araya-Sibaja
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Universidad Técnica Nacional, 1902-4050, Alajuela, Costa Rica
| | - Norma J Salazar-López
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
- Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Lic. en Nutrición, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California 21000, México
| | - Krissia Wilhelm Romero
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - José R Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, Pavas, San José, Costa Rica
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Hermosillo, Sonora 83304, México
| | - Carlos A Velázquez Contreras
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Ramón E Robles-Zepeda
- Unidad Regional Centro, Departamento de Ciencias Químico-Biológicas y de la Salud, Universidad de Sonora, Hermosillo, Sonora 83000, México
| | - Mirtha Navarro-Hoyos
- Laboratorio BioDESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca 2060, San José, Costa Rica
| | - Gustavo A González-Aguilar
- Laboratorio de Antioxidantes y Alimentos Funcionales, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora 83304, México
| |
Collapse
|
6
|
Su WB, Zhu CY, Zhou HP, Gao J, Zhang YW. A single site mutation significantly improves the thermostability and activity of heparinase I from Bacteroides eggerthii. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1976757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wen-Bin Su
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Chen-Yuan Zhu
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Jian Gao
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, People’s Republic of China
- College of Petroleum and Chemical Engineering, Beibu Gulf University, People’s Republic of China
| |
Collapse
|
7
|
Xu C, Pu K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem Soc Rev 2021; 50:1111-1137. [DOI: 10.1039/d0cs00664e] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes the recent development of second near-infrared photothermal combinational nanotheranostics for cancer, infectious diseases and regenerative medicine.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
| |
Collapse
|
8
|
Pakizehkar S, Ranji N, Naderi Sohi A, Sadeghizadeh M. Curcumin loaded PEG
400
‐OA nanoparticles: A suitable system to increase apoptosis, decrease migration, and deregulate miR‐125b/miR182 in MDA‐MB‐231 human breast cancer cells. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Safura Pakizehkar
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht BranchIslamic Azad University Rasht Iran
| | - Alireza Naderi Sohi
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research Center Tehran Iran
| | - Majid Sadeghizadeh
- Department of GeneticsSchool of Biological Sciences, Tarbiat Modares University Tehran Iran
| |
Collapse
|
9
|
Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, Ashrafizadeh M, Mohammadinejad R, Tavakol S, Sethi G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020; 25:E689. [PMID: 32041140 PMCID: PMC7037405 DOI: 10.3390/molecules25030689] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Todays, nano-pharmaceutics is emerging as an important field of science to develop and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the prevention and treatment of various chronic diseases such as cancers, a number of them have displayed issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor solubility and bioavailability that may compromise its clinical application to a great extent. Therefore, the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver curcumin effectively to the different target sites will be discussed.
Collapse
Affiliation(s)
- Mahshid Moballegh Nasery
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 7616911319, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Banafshe Abadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran 1916893813, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Peyman Keyhanvar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran;
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
10
|
Bio-inspired drug-dominated supramolecular nanocomplex based on low molecular weight heparin for progressive tumor therapy. Carbohydr Polym 2019; 220:30-42. [DOI: 10.1016/j.carbpol.2019.05.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 01/25/2023]
|
11
|
LMWH and its derivatives represent new rational for cancer therapy: construction strategies and combination therapy. Drug Discov Today 2019; 24:2096-2104. [PMID: 31228613 DOI: 10.1016/j.drudis.2019.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/08/2023]
Abstract
Low-molecular-weight heparin (LMWH) has attracted increasing attention as a tumor treatment because of its board range of physiological functions. Over the past decade, diverse LMWH derivatives have increased the variety of antitumor strategies available, serving not only as anti-tumor agents, but also as drug delivery platforms. In this review, we introduce the basic strategy for structural modification of LMWH to attenuate its antitumor activity while reducing its risk of bleeding and immune responses, as well as highlighting current applications of LMWH and its derivatives in cancer therapy. We select representative drug delivery systems involving LMWH derivatives and discuss the construction principles and therapeutic effects associated with their use. We also analyze progress made in the development of antitumor combination therapies, in which LMWH has shown synergistic or combined effects with other treatment strategies.
Collapse
|