1
|
Domenech-Monsell IM, Alambiaga-Caravaca AM, Bernat-Just L, Merino V, Rodilla V, Balaguer-Fernández C, López-Castellano A. Innovative Famciclovir Eye Drop Formulations for Herpes Zoster Infections. Curr Eye Res 2025; 50:590-599. [PMID: 40025627 DOI: 10.1080/02713683.2025.2472363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
PURPOSE Herpes zoster ophthalmicus, a manifestation of the varicella-zoster virus in the eye, presents significant clinical challenges. As there is no direct ocular treatment for this infection, new therapeutic options should be studied. Famciclovir, a widely used antiviral drug for herpes zoster, offers higher bioavailability than acyclovir (a common herpes zoster treatment). However, this drug is currently limited to oral dosage forms, which are associated with inherent limitations such as variable absorption or gastrointestinal side effects. This study aimed to formulate new famciclovir eye drops for controlled drug release and targeted delivery to the cornea and sclera. METHOD Eye drop formulations containing various polymers (polyvinyl alcohol, hydroxypropyl methyl cellulose and chitosan) were developed and evaluated for physicochemical properties, irritation index and stability. The best performing formulation was used in ex-vivo diffusion and retention studies with rabbit cornea and sclera. The results were analyzed with a new HPLC validation method. RESULTS The formulation with polyvinyl alcohol exhibited superior properties regarding transparency, turbidity and absence of bubbles. It maintained a physiological pH over time and had an appropriate viscosity of 19.97 ± 0.25 mPa.s. Non-irritancy was confirmed by the HET-CAM test, and the formulation was stable at room temperature (25 °C), fridge (4 °C) and freezer (-80 °C). Ex- vivo diffusion studies revealed higher diffusion through the sclera compared to the cornea, with greater drug accumulation in sclera. CONCLUSIONS These findings suggest that famciclovir eye drops may offer a viable treatment for ocular herpes zoster infections. Famciclovir also diffuses and retains in targeted membranes, possibly enhancing its therapeutic effects.
Collapse
Affiliation(s)
- Iris M Domenech-Monsell
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Adrián M Alambiaga-Caravaca
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Lucía Bernat-Just
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Virginia Merino
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy. Institute of Molecular Recognition and Technological Development, Polytechnic University of Valencia, University of València, Valencia, Spain
| | - Vicent Rodilla
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Cristina Balaguer-Fernández
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| | - Alicia López-Castellano
- Department of Pharmacy, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
2
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
3
|
Liu Y, Xu H, Yan N, Tang Z, Wang Q. Research progress of ophthalmic preparations of immunosuppressants. Drug Deliv 2023; 30:2175925. [PMID: 36762580 DOI: 10.1080/10717544.2023.2175925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Immune ophthalmopathy is a collection of autoimmune eye diseases. Immunosuppressants are drugs that can inhibit the body's immune response. Considering drug side effects such as hepatorenal toxicity and the unique structure of the eye, incorporating immunosuppressants into ophthalmic nanodrug delivery systems, such as microparticles, nanoparticles, liposomes, micelles, implants, and in situ gels, has the advantages of improving solubility, increasing bioavailability, high eye-target specificity, and reducing side effects. This study reviews recent research and applications of this aspect to provide a reference for the development of an ophthalmic drug delivery system.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Haonan Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Na Yan
- Department of Pharmacy, Jin Hua Municipal Maternal and Child Health Care Hospital, Jinhua, Zhejiang, 321000, China
| | - Zhan Tang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| | - Qiao Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China.,Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, 310013, China
| |
Collapse
|
4
|
Feinberg K, Tajdaran K, Mirmoeini K, Daeschler SC, Henriquez MA, Stevens KE, Mulenga CM, Hussain A, Hamrah P, Ali A, Gordon T, Borschel GH. The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal. Int J Mol Sci 2023; 24:12615. [PMID: 37628793 PMCID: PMC10454376 DOI: 10.3390/ijms241612615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kiana Tajdaran
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaveh Mirmoeini
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simeon C. Daeschler
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Hospital, Department of Plastic and Hand Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Mario A. Henriquez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katelyn E. Stevens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arif Hussain
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Tessa Gordon
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gregory H. Borschel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Recent advances in novel formulation approaches for tacrolimus delivery in treatment of various ocular diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Daeschler SC, Mirmoeini K, Gordon T, Chan K, Zhang J, Ali A, Feinberg K, Borschel GH. Sustained Release of Tacrolimus From a Topical Drug Delivery System Promotes Corneal Reinnervation. Transl Vis Sci Technol 2022; 11:20. [PMID: 35984668 PMCID: PMC9419461 DOI: 10.1167/tvst.11.8.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Corneal nerve fibers provide sensation and maintain the epithelial renewal process. Insufficient corneal innervation can cause neurotrophic keratopathy. Here, topically delivered tacrolimus is evaluated for its therapeutic potential to promote corneal reinnervation in rats. Methods A compartmentalized neuronal cell culture was used to determine the effect of locally delivered tacrolimus on sensory axon regeneration in vitro. The regenerating axons but not the cell bodies were exposed to tacrolimus (50 ng/mL), nerve growth factor (50 ng/mL), or a vehicle control. Axon area and length were measured after 48 hours. Then, a biodegradable nanofiber drug delivery system was fabricated via electrospinning of a tacrolimus-loaded polycarbonate–urethane polymer. Biocompatibility, degradation, drug biodistribution, and therapeutic effectiveness were tested in a rat model of neurotrophic keratopathy induced by stereotactic trigeminal nerve ablation. Results Sensory neurons whose axons were exposed to tacrolimus regenerated significantly more and longer axons compared to vehicle-treated cultures. Trigeminal nerve ablation in rats reliably induced corneal denervation. Four weeks after denervation, rats that had received tacrolimus topically showed similar limbal innervation but a significantly higher nerve fiber density in the center of the cornea compared to the non-treated control. Topically applied tacrolimus was detectable in the ipsilateral vitreal body, the plasma, and the ipsilateral trigeminal ganglion but not in their contralateral counterparts and vital organs after 4 weeks of topical release. Conclusions Locally delivered tacrolimus promotes axonal regeneration in vitro and corneal reinnervation in vivo with minimal systemic drug exposure. Translational Relevance Topically applied tacrolimus may provide a readily translatable approach to promote corneal reinnervation.
Collapse
Affiliation(s)
- Simeon C Daeschler
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Kaveh Mirmoeini
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Tessa Gordon
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Katelyn Chan
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Zhang
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Asim Ali
- Department of Ophthalmology and Vision Science, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Konstantin Feinberg
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gregory H Borschel
- Neurosciences & Mental Health Program, SickKids Research Institute, Toronto, Ontario, Canada.,Division of Plastic and Reconstructive Surgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Science, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
7
|
Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, Isabel Lema M, Otero-Espinar FJ. Mucoadhesive PLGA Nanospheres and Nanocapsules for Lactoferrin Controlled Ocular Delivery. Pharmaceutics 2022; 14:pharmaceutics14040799. [PMID: 35456633 PMCID: PMC9029159 DOI: 10.3390/pharmaceutics14040799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/13/2022] Open
Abstract
Background: the present work describes the preparation, characterization and optimization of eight types of PLGA-based nanosystems (nanospheres and nanocapsules) as innovative mucoadhesive drug delivery systems of lactoferrin, in order to achieve a preclinical consistent base as an alternative pharmacological treatment to different ocular syndromes and diseases. Methods: All different nanoparticles were prepared via two modified nanoprecipitation techniques, using a three-component mixture of drug/polymer/surfactant (Lf/PLGA/Poloxamer), as a way to overcome the inherent limitations of conventional PLGA NPs. These modified polymeric nanocarriers, intended for topical ophthalmic administration, were subjected to in vitro characterization, surface modification and in vitro and in vivo assessments. Results: An appropriate size range, uniform size distribution and negative ζ potential values were obtained for all types of formulations. Lactoferrin could be effectively included into all types of nanoparticles with appropriate encapsulation efficiency and loading capacity values. A greater, extended, and controlled delivery of Lf from the polymeric matrix was observed through the in vitro release studies. No instability or cytotoxicity was proved for all the formulations by means of organotypic models. Additionally, mucoadhesive in vitro and in vivo experiments show a significant increase in the residence time of the nanoparticles in the eye surface. Conclusions: all types of prepared PLGA nanoparticles might be a potential alternative for the topical ophthalmic administration of lactoferrin.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
| | - Uxía Regueiro
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Maite López-López
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (U.R.); (M.L.-L.)
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - María Isabel Lema
- Department of Surgery and Medical-Surgical Specialties, Ophthalmology Area, University of Santiago de Compostela (USC), Campus Vida, 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (X.G.-O.); (V.D.-T.)
- Institute of Materials Imatus, University of Santiago de Compostela (USC), Campus Vida, 15782 Santiago de Compostela, Spain
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (M.I.L.); (F.J.O.-E.)
| |
Collapse
|
8
|
Anti-Inflammatory Effect of Tacrolimus/Hydroxypropyl-β-Cyclodextrin Eye Drops in an Endotoxin-Induced Uveitis Model. Pharmaceutics 2021; 13:pharmaceutics13101737. [PMID: 34684030 PMCID: PMC8540547 DOI: 10.3390/pharmaceutics13101737] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Uveitis is an infrequent disease which constitutes a major cause of ocular morbidity. Correct management is essential, being corticosteroids its cornerstone. In case of contraindication to corticosteroids or treatment failure, the use of topical tacrolimus (TAC) could be an alternative which has already demonstrated safety and effectiveness in other ocular pathologies. However, TAC eye drops are not marketed, thus their elaboration must be carried out in Hospital Pharmacy Departments (HPDs). Methods: 32 Sprague-Dawley rats were divided into 4 groups of 8 rats each: (a) untreated healthy rats (Healthy); (b) untreated Endotoxin-Induced Uveitis model-rats (EIU); (c) EIU-rats treated with standard treatment of dexamethasone ophthalmic drops (DXM) and (d) EIU-rats treated with TAC-hydroxypropyl-β-cyclodextrin eye drops previously developed by our group (TAC-HPβCD). The mRNA expression levels of IL-6, IL-8, MIP-1α and TNF-α, quantitative analysis of leucocytes in aqueous humor and histological evaluation were performed. Results: TAC-HPβCD eye drops demonstrated to reduce ocular inflammation, expression of IL-6, TNF-α, MIP-1α and leukocyte infiltration in aqueous humor. Conclusions: TAC-HPβCD eye drops showed beneficial effect in EIU model in rats, positioning as an alternative for uveitis treatment in case of corticosteroids resistance or intolerance.
Collapse
|
9
|
Badr MY, Abdulrahman NS, Schatzlein AG, Uchegbu IF. A polymeric aqueous tacrolimus formulation for topical ocular delivery. Int J Pharm 2021; 599:120364. [DOI: 10.1016/j.ijpharm.2021.120364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/02/2023]
|
10
|
García-Otero X, Díaz-Tomé V, Varela-Fernández R, Martín-Pastor M, González-Barcia M, Blanco-Méndez J, Mondelo-García C, Bermudez MA, Gonzalez F, Aguiar P, Fernández-Ferreiro A, Otero-Espinar FJ. Development and Characterization of a Tacrolimus/Hydroxypropyl-β-Cyclodextrin Eye Drop. Pharmaceutics 2021; 13:pharmaceutics13020149. [PMID: 33498753 PMCID: PMC7911614 DOI: 10.3390/pharmaceutics13020149] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Uveitis is a vision inflammatory disorder with a high prevalence in developing countries. Currently, marketed treatments remain limited and reformulation is usually performed to obtain a tacrolimus eye drop as a therapeutic alternative in corticosteroid-refractory eye disease. The aim of this work was to develop a mucoadhesive, non-toxic and stable topical ophthalmic formulation that can be safely prepared in hospital pharmacy departments. Four different ophthalmic formulations were prepared based on the tacrolimus/hydroxypropyl-β-cyclodextrin (HPβCD) inclusion complexes’ formation. Phase solubility diagrams, Nuclear Magnetic Resonance (NMR) and molecular modeling studies showed the formation of 1:1 and 1:2 tacrolimus/HPβCD inclusion complexes, being possible to obtain a 0.02% (w/v) tacrolimus concentration by using 40% (w/v) HPβCD aqueous solutions. Formulations also showed good ophthalmic properties in terms of pH, osmolality and safety. Stability studies proved these formulations to be stable for at least 3 months in refrigeration. Ex vivo bioadhesion and in vivo ocular permanence showed good mucoadhesive properties with higher ocular permanence compared to the reference pharmacy compounding used in clinical settings (t1/2 of 86.2 min for the eyedrop elaborated with 40% (w/v) HPβCD and Liquifilm® versus 46.3 min for the reference formulation). Thus, these novel eye drops present high potential as a safe alternative for uveitis treatment, as well as a versatile composition to include new drugs intended for topical ophthalmic administration.
Collapse
Affiliation(s)
- Xurxo García-Otero
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (R.V.-F.); (J.B.-M.)
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (R.V.-F.); (J.B.-M.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.G.-B.); (C.M.-G.)
| | - Rubén Varela-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (R.V.-F.); (J.B.-M.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Nuclear Magnetic Resonance Unit, Research Infrastructures Area, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.G.-B.); (C.M.-G.)
| | - José Blanco-Méndez
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (R.V.-F.); (J.B.-M.)
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.G.-B.); (C.M.-G.)
| | - Maria A. Bermudez
- Physiology Department–CIMUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Francisco Gonzalez
- Ophthalmology Department, Clinical University Hospital Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
- Department of Surgery and Medical-Surgical Specialties and CIMUS, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (P.A.); (A.F.-F.); (F.J.O.-E.); Tel.: +34-881814878 (F.J.O.-E.)
| | - Anxo Fernández-Ferreiro
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (M.G.-B.); (C.M.-G.)
- Correspondence: (P.A.); (A.F.-F.); (F.J.O.-E.); Tel.: +34-881814878 (F.J.O.-E.)
| | - Francisco J. Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (R.V.-F.); (J.B.-M.)
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (P.A.); (A.F.-F.); (F.J.O.-E.); Tel.: +34-881814878 (F.J.O.-E.)
| |
Collapse
|
11
|
Mazet R, García-Otero X, Choisnard L, Wouessidjewe D, Verdoot V, Bossard F, Díaz-Tomé V, Blanc-Marquis V, Otero-Espinar FJ, Fernandez-Ferreiro A, Gèze A. Biopharmaceutical Assessment of Dexamethasone Acetate-Based Hydrogels Combining Hydroxypropyl Cyclodextrins and Polysaccharides for Ocular Delivery. Pharmaceutics 2020; 12:pharmaceutics12080717. [PMID: 32751583 PMCID: PMC7464375 DOI: 10.3390/pharmaceutics12080717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
We previously developed two optimized formulations of dexamethasone acetate (DXMa) hydrogels by means of special cubic mixture designs for topical ocular administration. These gels were elaborated with hydroxypropyl-β-CD (HPβCD) and hydroxypropyl-γ-CD (HPγCD) and commercial hydrogels in order to enhance DXMa water solubility and finally DXMa's ocular bioavailability and transcorneal penetration. The main objective of this study was to characterize them and to evaluate in vitro, ex vivo, and in vivo their safety, biopermanence, and transcorneal permeation. Gels A and B are Newtonian fluids and display a viscosity of 13.2 mPa.s and 18.6 mPa.s, respectively, which increases their ocular retention, according to the in vivo biopermanence study by PET/CT. These hydrogels could act as corneal absorption promoters as they allow a higher transcorneal permeation of DXMa through porcine excised cornea, compared to DEXAFREE® and MAXIDEX®. Cytotoxicity assays showed no cytotoxic effects on human primary corneal epithelial cells (HCE). Furthermore, Gel B is clearly safe for the eye, but the effect of Gel A on the human eye cannot be predicted. Both gels were also stable 12 months at 25 °C after sterilization by filtration. These results demonstrate that the developed formulations present a high potential for the topical ocular administration of dexamethasone acetate.
Collapse
Affiliation(s)
- Roseline Mazet
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France; (R.M.); (L.C.); (D.W.); (V.B.-M.)
- Pharmacy Unit, Grenoble University Hospital, 38000 Grenoble, France
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy, Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (F.-J.O.-E.)
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Luc Choisnard
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France; (R.M.); (L.C.); (D.W.); (V.B.-M.)
| | - Denis Wouessidjewe
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France; (R.M.); (L.C.); (D.W.); (V.B.-M.)
| | - Vincent Verdoot
- University Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France; (V.V.); (F.B.)
| | - Frédéric Bossard
- University Grenoble Alpes, CNRS, Grenoble INP, LRP, 38000 Grenoble, France; (V.V.); (F.B.)
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy, Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (F.-J.O.-E.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Véronique Blanc-Marquis
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France; (R.M.); (L.C.); (D.W.); (V.B.-M.)
| | - Francisco-Javier Otero-Espinar
- Department of Pharmacology, Pharmacy, Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (X.G.-O.); (V.D.-T.); (F.-J.O.-E.)
| | - Anxo Fernandez-Ferreiro
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacy Department, Clinical University Hospital Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Correspondence: (A.F.-F.); (A.G.); Tel.: +33-476-63-53-01 (A.G.)
| | - Annabelle Gèze
- University Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France; (R.M.); (L.C.); (D.W.); (V.B.-M.)
- Correspondence: (A.F.-F.); (A.G.); Tel.: +33-476-63-53-01 (A.G.)
| |
Collapse
|
12
|
Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent Advances in the Design of Topical Ophthalmic Delivery Systems in the Treatment of Ocular Surface Inflammation and Their Biopharmaceutical Evaluation. Pharmaceutics 2020; 12:pharmaceutics12060570. [PMID: 32575411 PMCID: PMC7356360 DOI: 10.3390/pharmaceutics12060570] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
Collapse
Affiliation(s)
- Roseline Mazet
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Grenoble University Hospital, 38043 Grenoble, France
| | | | - Denis Wouessidjewe
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Luc Choisnard
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
| | - Annabelle Gèze
- DPM, UMR CNRS 5063, ICMG FR 2607, Faculty of Pharmacy, University of Grenoble Alpes, 38400 St Martin d’Hères, France; (R.M.); (D.W.); (L.C.)
- Correspondence: ; Tel.: +33-476-63-53-01
| |
Collapse
|
13
|
Mahmoudi A, Malaekeh-Nikouei B, Hanafi-Bojd MY, Toloei M, Hosseini M, Nikandish M. Preliminary I n V ivo Safety Evaluation of a Tacrolimus Eye Drop Formulation Using Hydroxypropyl Beta Cyclodextrin After Ocular Administration in NZW Rabbits. Clin Ophthalmol 2020; 14:947-953. [PMID: 32273679 PMCID: PMC7108877 DOI: 10.2147/opth.s229405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 11/23/2022] Open
Abstract
Aim Tacrolimus is an immunosuppressive drug with higher potency compared to cyclosporine A (as a useful immunosuppressant). We prepared an ophthalmic solution formulation of Tacrolimus using hydroxypropyl beta cyclodextrin (HP-ßCD). In the present study, safety of this formulation was investigated in rabbits. Materials and Methods Formulation containing HP-ßCD, Tacrolimus, Polyvinyl alcohol (PVA) and Benzalkonium Chloride in PBS 7.4 was prepared. Tacrolimus concentration in ophthalmic preparation was 0.05% w/v. Ten male New Zealand white rabbits were housed in clean separated cages. One drop of Tacrolimus prepared formulation and a placebo formulation were applied every 12 hrs in the right and left eyes respectively, for 28 days. Results This new aqueous formulation of Tacrolimus could improve Tacrolimus solubility about 42 times. Clinical examinations on the 1st, 3rd, 7th, 14th and 28th days of study showed transient redness and conjunctivitis in some cases of both control and intervention groups that was not persistent. At the end of the study, there were no statistical differences between the two groups in corneal epithelial defect, redness or pathological evaluations. Conclusion The results of this study suggest that eye drop formulation of CD-Tacrolimus is safe in preliminary evaluations and can be useful for further studies.
Collapse
Affiliation(s)
- Asma Mahmoudi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Nanomedicine, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mojtaba Toloei
- Cellular and Molecular Research Center, Department of Anatomy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Cellular and Molecular Research Center, Department of Anatomy, Birjand University of Medical Sciences, Birjand, Iran
| | - Malihe Nikandish
- Ophthalmology Department, Valiasr Hospital, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
14
|
Castro-Balado A, Mondelo-García C, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Ruibal-Morell Á, Aguiar-Fernández P, Fernández-Ferreiro A. Ocular Biodistribution Studies using Molecular Imaging. Pharmaceutics 2019; 11:pharmaceutics11050237. [PMID: 31100961 PMCID: PMC6572242 DOI: 10.3390/pharmaceutics11050237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Classical methodologies used in ocular pharmacokinetics studies have difficulties to obtain information about topical and intraocular distribution and clearance of drugs and formulations. This is associated with multiple factors related to ophthalmic physiology, as well as the complexity and invasiveness intrinsic to the sampling. Molecular imaging is a new diagnostic discipline for in vivo imaging, which is emerging and spreading rapidly. Recent developments in molecular imaging techniques, such as positron emission tomography (PET), single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI), allow obtaining reliable pharmacokinetic data, which can be translated into improving the permanence of the ophthalmic drugs in its action site, leading to dosage optimisation. They can be used to study either topical or intraocular administration. With these techniques it is possible to obtain real-time visualisation, localisation, characterisation and quantification of the compounds after their administration, all in a reliable, safe and non-invasive way. None of these novel techniques presents simultaneously high sensitivity and specificity, but it is possible to study biological procedures with the information provided when the techniques are combined. With the results obtained, it is possible to assume that molecular imaging techniques are postulated as a resource with great potential for the research and development of new drugs and ophthalmic delivery systems.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Cristina Mondelo-García
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Miguel González-Barcia
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Irene Zarra-Ferro
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain.
| | - Álvaro Ruibal-Morell
- Nuclear Medicine Department, University Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- Molecular Imaging Group. Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Pablo Aguiar-Fernández
- Nuclear Medicine Department, University Hospital of Santiago de Compostela (SERGAS), University of Santiago de Compostela, 15706 Santiago de Compostela, Spain.
- Molecular Imaging Group. Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain.
- Pharmacology Group, Health Research Institute Santiago Compostela (IDIS), 15706 Santiago de Compostela, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Campaña-Seoane M, Pérez-Gago A, Vázquez G, Conde N, González P, Martinez A, Martínez X, García Varela L, Herranz M, Aguiar P, Fernández-Ferreiro A, Laguna R, Otero-Espinar FJ. Vaginal residence and pharmacokinetic preclinical study of topical vaginal mucoadhesive W/S emulsions containing ciprofloxacin. Int J Pharm 2018; 554:276-283. [PMID: 30423417 DOI: 10.1016/j.ijpharm.2018.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023]
Abstract
The aim of this work is to test the in vivo behavior of a mucoadhesive vaginal emulsion resistant to the clearance of vaginal fluids using ciprofloxacin (CPX) as an anti-infective model of drug. CPX is a broad-spectrum antibiotic used in the treatment of sexual tissues infections, as intravenous injection in a dose of 20 mg every 12 h. In this study, CPX was incorporated in water in silicone (W/S) mucoadhesive emulsions and the in vivo residence time and the CPX in vivo absorption and distribution to the sexual organs was studied using the rat as animal model. W/S emulsion shows excellent in vitro bioadhesion having high resistance to the vaginal fluids clearance. The drug release profiles show a constant release of CPX during at least 6 h according to a zero-order kinetics. In vivo computerized PET/CT Image Analysis after intravaginal administration to rats indicates that W/S emulsions remain in the vaginal area for a long time and shows a good absorption of the radiotracers used as markers through the vaginal mucosa. Ciprofloxacin pharmacokinetic studies developed after the single intravaginal administration of W/S emulsion shows a good absorption and distribution of CPX on the uterus and ovarian tissue. A significant concentration of CPX in the sexual tissues was observed after 24 h of administration of W/S emulsion. Therefore, W/S emulsions have a good in vivo residence and drug release in the vaginal mucosae showing a great potential for the treatment of sexual tissues infections, as vaginal bioadhesive delivery systems of antinfectious drugs.
Collapse
Affiliation(s)
- Maria Campaña-Seoane
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ana Pérez-Gago
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Gonzalo Vázquez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Nerea Conde
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Paula González
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Ariana Martinez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Xurxo Martínez
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| | - Lara García Varela
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Michel Herranz
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Pablo Aguiar
- Nuclear Medicine Department, University Clinical Hospital Santiago de Compostela (SERGAS), Spain
| | - Anxo Fernández-Ferreiro
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital Santiago de Compostela (SERGAS), Santiago de Compostela, Spain
| | - Reyes Laguna
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Departament of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain; Institute of Industrial Pharmacy, University of Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain.
| |
Collapse
|