1
|
Wlodarczyk J, Musial-Kulik M, Jelonek K, Pastusiak M, Stojko M, Hercog A, Janeczek H, Chaber P, Sobota M, Kasperczyk J. Electrospun poly(ester-carbonate)/poly(carbonate-urethane) membranes with controlled drug release for potential use in abdominal surgery. Eur J Pharm Sci 2025; 210:107105. [PMID: 40254102 DOI: 10.1016/j.ejps.2025.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Surgical meshes and patches used in abdominal surgery, despite their effectiveness, have a number of disadvantages that may lead to complications. This is due to the properties of the materials used for their construction and the structure of the implant itself. This paper presents an attempt to obtain an implant material, that could be used in surgery, combining the advantages of biodegradable and non-degradable polymers, while eliminating their weaknesses, additionally providing the possibility of using local pharmacotherapy. For this purpose a poly(caprolactone-co-trimethylene carbonate) blend with a 10% addition of poly(ε-caprolactone) (PCLTMC:PCL) was utilized as a biodegradable drug carrier. Using a dual-jet electrospinning method, the blend was interlaced with non-degradable poly(carbonate-urethane) (PCU) nanofibers of varying hydrophilicity, forming semi-fibrous membranes. The primary aim of the research was to obtain control over drugs release kinetics simultaneously maintaining stable mechanical properties of membranes during incubation in vitro. These objectives were achieved through the use of a specific gradient structure design, enriched with a drug-releasing fraction at the surface and PCU in the core. It was observed that the hydrophilicity of membranes influenced the mechanisms and rate of the diffusion of water to the bulk and the drugs along with degradation by-products to the incubation medium. Additionally, the gradient structure enabled control over the permeation of low-molecular-weight model compound from one side of the membrane to the other. The results also demonstrated that the number of fibroblasts adsorbed on the membrane surface depended primarily on its morphology and hydrophilicity, suggesting the potential to achieve favourable integration with tissues. The developed material exhibits significant potential for applications in abdominal surgery.
Collapse
Affiliation(s)
- J Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland.
| | - M Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland.
| | - K Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - A Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - H Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - P Chaber
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - M Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - J Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200 Sosnowiec, Poland
| |
Collapse
|
2
|
Liang C, Guo Y, Xue Zhang R, Yan H. Microtubular and high porosity design of electrospun PEGylated poly (lactic-co-glycolic acid) fibrous implant for ocular multi-route administration and medication. Int J Pharm 2024; 665:124751. [PMID: 39326475 DOI: 10.1016/j.ijpharm.2024.124751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Electrospun fibers have been gaining popularity in ocular drug delivery and cellular therapies. However, most of electrospun fibers are planar-shape membrane with large dimension relative to intraocular space, making difficult to use as therapeutic implants. Herein, fibrous microtubes with a hollow center were fabricated by electrospinning using linear diblock mPEG2000-PLGA. Uniform microfibers with 0.809 μm diameter was tailored using Box-Behnken Design model for electrospinning process optimization. The microtubes were 1 mm long with a 0.386 mm diameter. Their suitability for intraocular administration was demonstrated by both injection via a 22-gauge needle and implant via integration of intraocular lens into the vitreous or anterior chamber of eyes, respectively. Electrospun mPEG2000-PLGA had higher porosity, smaller specific surface area, and smaller water contact angle, than that of PLGA. Macroscopically, mPEG2000-PLGA microfibers can maintain overall geometry upon exposure to aqueous buffer for 12 h while having high water uptake and exhibited good elasticity. Hydrolysis with 90 % polymeric degradation in 10.5 weeks underlied sustained slow release of anti-inflammatory drug dexamethasone. PEGylation of PLGA imparted preferential cell adhesion with markedly higher growth of human retinal epithelial cells than lens epithelial ones. This study highlights the potential utility of implantable electrospun PLGA-based microtubes for multiple intraocular delivery routes.
Collapse
Affiliation(s)
- Chen Liang
- Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi, China
| | - Yexuan Guo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China
| | - Rui Xue Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China.
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an 710004, Shaanxi, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710068, Shaanxi, China.
| |
Collapse
|
3
|
Chiu PH, Wu ZY, Hsu CC, Chang YC, Huang CM, Hu CT, Lin CM, Chang SC, Hsieh HJ, Dai CA. Enhancement of antibacterial activity in electrospun fibrous membranes based on quaternized chitosan with caffeic acid and berberine chloride for wound dressing applications. RSC Adv 2024; 14:34756-34768. [PMID: 39483382 PMCID: PMC11526035 DOI: 10.1039/d4ra05114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
Electrospun nanofibers made from chitosan are promising materials for surgical wound dressings due to their non-toxicity and biocompatibility. However, the antibacterial activity of chitosan is limited by its poor water solubility under physiological conditions. This study addresses this issue by producing electrospun nanofibers mainly from natural compounds, including chitosan and quaternized chitosan, which enhance both its solubility for electrospinning and the antibacterial activity of the resulting electrospun nanofibers. Additionally, antimicrobial agents like caffeic acid or berberine chloride were incorporated. The glutaraldehyde-treated nanofibers showed improved mechanical properties, with an average tensile strength exceeding 2.7 MPa, comparable to other chitosan-based wound dressings. They also demonstrated enhanced water stability, retaining over 50% of their original weight after one week in phosphate-buffered saline (PBS) at 37 °C. The morphology and performance of these nanofibers were thoroughly examined and discussed. Furthermore, these membranes displayed rapid drug release, indicating potential for inhibiting bacterial growth. Antibacterial assays revealed that S2-CX nanofibers containing caffeic acid were most effective against E. coli and S. aureus, reducing their survival rates to nearly 0%. Similarly, berberine chloride-containing S4-BX nanofibers reduced the survival rates of E. coli and S. aureus to 19.82% and 0%, respectively. These findings suggest that electrospun membranes incorporating chitosan and caffeic acid hold significant potential for use in antibacterial wound dressings and drug delivery applications.
Collapse
Affiliation(s)
- Po-Hsun Chiu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Zhao-Yi Wu
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Chih-Chin Hsu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Yung-Chi Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Chang-Ming Huang
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Cheng-Ti Hu
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Che-Min Lin
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Shin C Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University Taipei 10051 Taiwan
| | - Hsyue-Jen Hsieh
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| | - Chi-An Dai
- Department of Chemical Engineering, National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
4
|
Gu P, Mao Y, Lu W, Chen W. Silk fibroin incorporated electrospun aliphatic polyester nanofiber scaffolds with excellent dimensional stability and cytocompatibility. Eur Polym J 2024; 211:113039. [DOI: 10.1016/j.eurpolymj.2024.113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Doost AR, Shokrolahi F, Shokrollahi P, Barzin J, Hosseini S. Engineering antibacterial shrinkage‐free trinary PLGA‐based GBR membrane for bone regeneration. POLYM ADVAN TECHNOL 2024; 35. [DOI: 10.1002/pat.6263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/24/2023] [Indexed: 10/15/2024]
Abstract
AbstractThe purpose of this study was preparation of a multilayer electrospun poly (lactic‐co‐glycolic acid) (PLGA)‐based guided bone regeneration (GBR) membrane with controlled shrinkage behavior and alveolar bone regeneration property. First, PLGA copolymer, and zinc‐doped hydroxyapatite (Zn‐HAp) particles were prepared and characterized using fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), proton nuclear magnetic resonance, and X‐ray diffraction analysis. Since the electrospun PLGA scaffolds showed about 80% shrinkage at physiological conditions (phosphate‐buffered saline, 37°C), the effect of factors such as fiber‐alignment, and additives including natural polymers such as gelatin and chitosan, and Zn‐HAp particles; as well as solution preparation method was investigated on the shrinkage ratio. The results showed that it is possible to eliminate the shrinkage of the scaffold in the physiological environment through appropriate design of a tri‐layer PLGA‐CHI/PLGA‐Gel/PLGA‐Gel‐ZnHAp membrane. The designed tri‐layer membrane demonstrated a bubble point smaller than 7 μm, and improved mechanical properties compared with the individual sub‐layer scaffolds. Additionally, it exhibited enhanced antibacterial activity when compared with a similar three‐layer membrane in which HAp was used instead of Zn‐HAp. This observation suggests a synergistic antibacterial effect resulting from the presence of both zinc ions in Zn‐HAp and chitosan . Osteogenic differentiation of adipose‐derived mesenchymal stem cells cultured on the optimal multilayer composite scaffold, was investigated using alkaline phosphatase and Alizarin red staining assays, and the results suggested that the scaffold could support osteogenic differentiation of the stem cells. The designed membrane was implanted in critical size (1 cm) mandibular defects in dogs, and bone regeneration was monitored by computed tomography. Defects treated with the GBR membrane, and the control group showed 69.31% and 44.63%, newly mineralized tissue, respectively, after 8 weeks post implantation. Based on our results, the engineered 3‐layer scaffold is a promising candidate as a GBR membrane for periodontal applications.
Collapse
Affiliation(s)
- Ahad Rabbani Doost
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Parvin Shokrollahi
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Jalal Barzin
- Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology Tehran Iran
| |
Collapse
|
6
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
7
|
Liao S, Liu Y, Kong Y, Shi H, Xu B, Tang B, Li C, Chen Y, Chen J, Du J, Zhang Y. A bionic multichannel nanofiber conduit carrying Tubastatin A for repairing injured spinal cord. Mater Today Bio 2022; 17:100454. [PMID: 36310542 PMCID: PMC9615035 DOI: 10.1016/j.mtbio.2022.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord injury is a kind of nerve injury disease with high disability rate. The bioscaffold, which presents a biomimetic structure, can be used as “bridge” to fill the cavity formed by the liquefaction and necrosis of spinal nerve cells, and connects the two ends of the fracture to promote the effective recovery of nerve function. Tubasatin A (TUBA) is a potent selective histone deacetylase 6 (HDAC6) inhibitor, which can inhibit the overexpression of HDAC6 after spinal cord injury. However, TUBA is limited by high efflux ratios, low brain penetration and uptake in the treatment of spinal cord injury. Therefore, an effective carrier with efficient load rate, sustained drug release profile, and prominent repair effect is urgent to be developed. In this study, we have prepared a bionic multichannel Tubasatin A loaded nanofiber conduit (SC-TUBA(+)) through random electrospinning and post-triple network bond crosslinking for inhibiting HDAC6 as well as promoting axonal regeneration during spinal cord injury treatment. The Tubasatin A-loaded nanofibers were shown to be successfully contained in poly(glycolide-co-ε-caprolactone) (PGCL)/silk fibroin (SF) matrix, and the formed PGCL/SF-TUBA nanofibers exhibited an uniform and smooth morphology and appropriate surface wettability. Importantly, the TUBA loaded nanofibers showed a sustained-release profile, and still maintains activity and promoted the extension of axonal. In addition, the total transection large span model of rat back and immunofluorescent labeling, histological, and neurobehavioral analysis were performed for inducing spinal cord injury at T9-10, evaluating therapeutic efficiency of SC-TUBA(+), and elucidating the mechanism of TUBA release system in vivo. All the results demonstrated the significantly reduced glial scar formation, increased nerve fiber number, inhibited inflammation, reduced demyelination and protected bladder tissue of TUBA-loaded nanofibers for spinal cord injury compared to SC-TUBA, SC and Control groups, indicating their great potential for injured spinal cord healing clinically.
Collapse
Affiliation(s)
- Shiyang Liao
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yonghang Liu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China
| | - Yanlong Kong
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Haitao Shi
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bitong Xu
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Bo Tang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Congbin Li
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China
| | - Yitian Chen
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China
| | - Jing Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, PR China
| | - Juan Du
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China,Corresponding author. School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd, Shanghai, 201620, PR China.
| | - Yadong Zhang
- Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China,Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510515, PR China,Corresponding author. Fengxian Hospital, School of Medicine, Anhui University of Science and Technology, 6600 Nanfeng Hwy, Shanghai, 201499, PR China.
| |
Collapse
|
8
|
Muddineti OS, Omri A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert Opin Drug Deliv 2022; 19:559-576. [PMID: 35534912 DOI: 10.1080/17425247.2022.2075845] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Poly (lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations, which have been approved by the US Food and Drug Administration (FDA). PLGA has unique physicochemical properties, which results in complexities in the formulation, characterization, and evaluation of generic products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid product development and regulatory review. AREAS COVERED This review article intends to provide a comprehensive review on physicochemical properties of PLGA polymer, characterization, formulation, and analytical aspects, manufacturing conditions on product performance, in-vitro release testing, and bioequivalence. Current research on formulation development as per QbD in vitro release testing methods, regulatory research outcomes, and bioequivalence. EXPERT OPINION The development of PLGA based long-acting injectables is promising and challenging when considering the numerous interrelated delivery-related factors. Achieving a successful formulation requires a thorough understanding of the critical interactions between polymer/drug properties, release profiles over time, up-to-date knowledge on regulatory guidance, and elucidation of the impact of multiple in vivo conditions to methodically evaluate the eventual clinical efficacy.
Collapse
Affiliation(s)
- Omkara Swami Muddineti
- Formulation Research & Development, Vimta Labs Limited, Plot No.5, M N Park, Genome Valley, Shameerpet, Hyderabad, Telangana, 500101, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
9
|
Joy N, Venugopal D, Samavedi S. Robust strategies to reduce burst and achieve tunable control over extended drug release from uniaxially electrospun composites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Costa SM, Fangueiro R, Ferreira DP. Drug Delivery Systems for Photodynamic Therapy: The Potentiality and Versatility of Electrospun Nanofibers. Macromol Biosci 2022; 22:e2100512. [PMID: 35247227 DOI: 10.1002/mabi.202100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Indexed: 11/07/2022]
Abstract
Recently, photodynamic therapy (PDT) has become a promising approach for the treatment of a broad range of diseases, including oncological and infectious diseases. This minimally invasive and localized therapy is based on the production of reactive oxygen species (ROS) able to destroy cancer cells and inactivate pathogens by combining the use of photosensitizers (PSs), light and molecular oxygen. To overcome the drawbacks of drug systemic administration, drug delivery systems (DDS) can be used to carrier the PSs, allowing higher therapeutic efficacy and minimal toxicological effects. Polymeric nanofibers produced by electrospinning emerged as powerful platforms for drug delivery applications. Electrospun nanofibers exhibit outstanding characteristics, such as large surface area to volume ratio associated with high drug loading, high porosity, flexibility, ability to incorporate and release a wide variety of therapeutic agents, biocompatibility and biodegradability. Due to the versatility of this technique, fibers with different morphologies and functionalities, including drug release profile can be produced. The possibility of scalability makes electrospinning even more attractive for the development of DDS. This review aims to explore and show an up to date of the huge potential of electrospun nanofibers as DDS for different PDT applications and discuss the opportunities and challenges in this field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sofia M Costa
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal.,Department of Mechanical Engineering, University of Minho, Guimarães, 4800-058, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, Guimarães, 4800-058, Portugal
| |
Collapse
|
11
|
Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers (Basel) 2022; 14:polym14030469. [PMID: 35160459 PMCID: PMC8839822 DOI: 10.3390/polym14030469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
In a drug delivery system, the physicochemical properties of the polymeric matrix have a positive impact on the bioavailability of poorly water-soluble drugs. In this work, monolithic F1 fibers and coaxial F2 fibers were successfully prepared using polyvinylpyrrolidone as the main polymer matrix for drug loading and the poorly water-soluble curcumin (Cur) as a model drug. The hydrophobic poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) was designed as a blank layer to change the hydrophilicity of the fiber and restrain the drug dissolution rate. The curved linear morphology without beads of F1 fibers and the straight linear morphology with few spindles of F2 fibers were characterized using field-emission environmental scanning electron microscopy. The amorphous forms of the drug and its good compatibility with polymeric matrix were verified by X-ray diffraction and attenuated total reflectance Fourier transformed infrared spectroscopy. Surface wettability and drug dissolution data showed that the weaker hydrophilicity F2 fibers (31.42° ± 3.07°) had 24 h for Cur dissolution, which was much longer than the better hydrophilic F1 fibers (15.31° ± 2.79°) that dissolved the drug in 4 h.
Collapse
|
12
|
Wang G, Ren H, Chen Q, Zhou M, Xie F, Yan M, Wang Q, Bi H. Eco‐friendly
PCL
@
CDs
biomaterials via phytic acid,
CDs
‐cocatalyzed polymerization for rifapentin delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.51984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoyu Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Huifang Ren
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiuyang Chen
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Mingchen Zhou
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Fei Xie
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Manqing Yan
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Qiyang Wang
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| | - Hong Bi
- College of Chemistry and Chemical Engineering Anhui University Hefei China
| |
Collapse
|
13
|
Sequential Release of Paclitaxel and Imatinib from Core-Shell Microparticles Prepared by Coaxial Electrospray for Vaginal Therapy of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168760. [PMID: 34445466 PMCID: PMC8395827 DOI: 10.3390/ijms22168760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
To optimize the anti-tumor efficacy of combination therapy with paclitaxel (PTX) and imatinib (IMN), we used coaxial electrospray to prepare sequential-release core–shell microparticles composed of a PTX-loaded sodium hyaluronate outer layer and an IMN-loaded PLGA core. The morphology, size distribution, drug loading, differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), in vitro release, PLGA degradation, cellular growth inhibition, in vivo vaginal retention, anti-tumor efficacy, and local irritation in a murine orthotopic cervicovaginal tumor model after vaginal administration were characterized. The results show that such core–shell microparticles were of spherical appearance, with an average size of 14.65 μm and a significant drug-loading ratio (2.36% for PTX, 19.5% for IMN, w/w), which might benefit cytotoxicity against cervical-cancer-related TC-1 cells. The DSC curves indicate changes in the phase state of PTX and IMN after encapsulation in microparticles. The FTIR spectra show that drug and excipients are compatible with each other. The release profiles show sequential characteristics in that PTX was almost completely released in 1 h and IMN was continuously released for 7 days. These core–shell microparticles showed synergistic inhibition in the growth of TC-1 cells. Such microparticles exhibited prolonged intravaginal residence, a >90% tumor inhibitory rate, and minimal mucosal irritation after intravaginal administration. All results suggest that such microparticles potentially provide a non-invasive local chemotherapeutic delivery system for the treatment of cervical cancer by the sequential release of PTX and IMN.
Collapse
|
14
|
Stimulus-Responsive Shrinkage in Electrospun Membranes: Fundamentals and Control. MICROMACHINES 2021; 12:mi12080920. [PMID: 34442542 PMCID: PMC8401720 DOI: 10.3390/mi12080920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Shrinkage is observed in many electrospun membranes. The stretched conformation of the macromolecular chains has been proposed as the possible cause. However, so far, our understanding of the fundamentals is still qualitative and cannot provide much help in the shrinkage control. In this paper, based on the crimped fibers after stimulus-induced shrinkage, a clear evidence of buckling, the gradient pre-strain field in the cross-section of the electrospun fibers, which is the result of a gradient solidification field and a tensile force in the fibers during electrospinning, is identified as the underlying mechanism for the stimulus-induced shrinkage. Subsequently, two buckling conditions are derived. Subsequently, a series of experiments are carried out to reveal the influence of four typical processing parameters (namely, the applied voltage, solution concentration, distance between electrodes, and rotation speed of collector), which are highly relevant to the formation of the gradient pre-strain field. It is concluded that there are some different ways to achieve the required shrinkage ratios in two in-plane directions (i.e., the rotational and transverse directions of the roller collector). Some of the combinations of these parameters are more effective at achieving high uniformity than others. Hence, it is possible to optimize the processing parameters to produce high-quality membranes with well-controlled shrinkage in both in-plane directions.
Collapse
|
15
|
Facile fabrication of phospholipid-functionalized nanofiber-based barriers with enhanced anti-adhesion efficiency. Colloids Surf B Biointerfaces 2021; 203:111728. [PMID: 33819819 DOI: 10.1016/j.colsurfb.2021.111728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Electrospun nanofibrous membranes (NFMs) have attracted considerable attention as a potential physical barrier for reducing postoperative adhesion. However, no anti-adhesion barrier can completely prevent adhesion formation. In this study, phospholipid-functionalized NFMs were readily fabricated by one-step electrospinning to obtain nanofiber-based barriers with enhanced wettability and anti-adhesion efficiency. The optimized phospholipid NFMs were shown to have a fiber diameter of 831 nm ± 135 nm that is drastically decreasing, high porosity of 87.6 % ± 1.1 %, and superior hydrophilicity. Moreover, the phospholipid NFMs with excellent cytocompatibility exhibited fibroblasts being significantly reduced (≈ 51 %) after incubation of 3 days compared to that of the NFMs (≈ 96 %), confirming long-lasting anti-adhesion capability against fibroblasts. Meanwhile, less cell adhesion and proliferation of Raw 264.7 macrophages on NFM-10Lec indicated its superior anti-inflammatory effects. Thus, the facile phospholipid-functionalized nanofibers provided a promising strategy for anti-adhesion applications.
Collapse
|
16
|
Wei G, Zhang K, Gu Y, Guang S, Feng J, Xu H. Novel multifunctional nano-hybrid polyhedral oligomeric silsesquioxane-based molecules with high cell permeability: molecular design and application for diagnosis and treatment of tumors. NANOSCALE 2021; 13:2982-2994. [PMID: 33508044 DOI: 10.1039/d0nr07641d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Chemotherapy mostly functions as a carrier for direct drug delivery to the tumor, which may induce secondary damage to healthy tissue cells around the tumor. To avoid this side effect, using multifunctional drugs with high cell permeability during chemotherapy is crucial to achieve significant antitumor efficacy. In this study, polyhedral oligomeric silsesquioxane-based multifunctional organic-inorganic hybrid molecules with potential for recognition, imaging, and treatment were designed and successfully synthesized through a facile and efficient one-pot reaction process. The structure and properties of the synthesized multifunctional molecules were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry, fluorescence spectroscopy, cytotoxicity assay, surface tension testing, cell compatibility testing, hematoxylin and eosin staining, as well as in vivo and in vitro studies. The results demonstrated that these multifunctional molecules can be effectively used for delivering precisely-targeted imaging and therapeutic agents and exhibited considerable cell permeability. The excellent synergy between high permeability and precise targeting results in multifunctional molecules with superior diagnostic performance.
Collapse
Affiliation(s)
- Gang Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | |
Collapse
|
17
|
Celebioglu A, Uyar T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111514. [DOI: 10.1016/j.msec.2020.111514] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023]
|
18
|
Gonçalves IMF, Rocha ÍM, Pires EG, Muniz IDAF, Maciel PP, de Lima JM, Dos Santos IMG, Batista RBD, de Medeiros ELG, de Medeiros ES, de Oliveira JE, Goulart LR, Bonan PRF, Castellano LRC. Effectiveness of Core-Shell Nanofibers Incorporating Amphotericin B by Solution Blow Spinning Against Leishmania and Candida Species. Front Bioeng Biotechnol 2020; 8:571821. [PMID: 33195132 PMCID: PMC7662013 DOI: 10.3389/fbioe.2020.571821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against Leishmania and Candida species. The core-shell nanofibers incorporated with AmpB were synthesized by Solution Blow Spinning (SBS) and characterized by scanning electron microscopy (SEM), differential scanning calorimetry, X-Ray diffraction, and drug release assay. In vitro leishmanicidal and antifungal activity were also evaluated. Fibrous membranes with uniform morphology and smooth surfaces were produced. The intensity of the diffraction peaks becomes slightly more pronounced, assuming the increased crystallization in PLA/PEG at high AmpB loadings. Drug release occurred and the solutions with nanofibers to encourage greater incorporation of AmpB showed a higher concentration. In the results of the experiment with promastigotes, the wells treated with nanofibers containing concentrations of AmpB at 0.25, 0.5, and 1%, did not have any viable cells, similar to the positive control. Various concentrations of AmpB improved the inhibition of fungal growth. The delivery system based on PLA/PEG nanofibers was properly developed for AmpB, presenting a controlled release and a successful encapsulation, as well as antifungal and antileishmanial activity.
Collapse
Affiliation(s)
- Ingrid Morgana Fernandes Gonçalves
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Ítalo Martins Rocha
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Emanuene Galdino Pires
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Isis de Araújo Ferreira Muniz
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Panmella Pereira Maciel
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Jefferson Muniz de Lima
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry, Federal University of Pernambuco, Recife, Brazil
| | | | - Roberta Bonan Dantas Batista
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry, Federal University of Pernambuco, Recife, Brazil
| | | | - Eliton Souto de Medeiros
- Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Materials Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Luiz Ricardo Goulart
- Postgraduate Program in Health Sciences, School of Medicine, Federal University of Uberlândia, Uberlândia, Brazil.,Institute of Biochemistry and Genetics, Federal University of Uberlândia, Uberlândia, Brazil.,Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States
| | - Paulo Rogério Ferreti Bonan
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group (GEPIH), Escola Técnica de Saúde da UFPB, Federal University of Paraíba, João Pessoa, Brazil.,Postgraduate Program in Dentistry (PPGO), Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
19
|
Mao Y, Zhao Y, Guan J, Guan J, Ye T, Chen Y, Zhu Y, Zhou P, Cui W. Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Expert Opin Drug Deliv 2020; 17:993-1005. [PMID: 32394737 DOI: 10.1080/17425247.2020.1767583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The treatment performances of current surgical therapeutic materials for injuries caused by high-energy trauma, such as prolonged bone defects, nerve-fiber disruptions, and repeated spasms or adhesions of vascular tendons after repair, are poor. Drug-loaded electrospun fibers have become a novel polymeric material for treating orthopedic diseases owing to their three-dimensional structures, thus providing excellent controlled drug-release responses and high affinity with local tissues. Herein, we reviewed the morphology of electrospun nanofibers, methods for loading drugs on the fibers, and modification methods to improve drug permeability and bioavailability. We highlight innovative applications of drug-loaded electrospun fibers in different treatments, including bone and cartilage defects, tendon and soft-tissue adhesion, vascular remodeling, skin grafting, and nervous-system injuries. AREAS COVERED With the rapid development of electrospinning technologies and advancement of tissue engineering, drug-loaded electrospun fibers are becoming increasingly important in controlled drug release, wound closure, and tissue regeneration and repair. EXPERT OPINION Drug-loaded electrospun fibers exhibit a broad range of application prospects and great potential in treating orthopedic diseases. Accordingly, a plethora of novel treatments utilizing the different morphological features of electrospun fibers, the distinctive pharmacokinetics, pharmacodynamics characteristics of different drugs, and the diverse onset characteristics of different diseases, is proposed.
Collapse
Affiliation(s)
- Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China.,School of Life Science, Bengbu Medical College , Bengbu, P. R. China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College , Bengbu, P. R. China
| | - Yupeng Zhao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College , Bengbu, P. R. China
| | - Jingjing Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China
| | - Jianzhong Guan
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China
| | - Tingjun Ye
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, P. R. China
| | - Yu Chen
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China.,School of Life Science, Bengbu Medical College , Bengbu, P. R. China
| | - Yansong Zhu
- School of Life Science, Bengbu Medical College , Bengbu, P. R. China
| | - Pinghui Zhou
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College , Bengbu, P.R. China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College , Bengbu, P. R. China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, P. R. China
| |
Collapse
|
20
|
Kim M, Nam DG, Im P, Choe JS, Choi AJ. Optimal conditions for the encapsulation of Weissella cibaria JW15 using alginate and chicory root and evaluation of capsule stability in a simulated gastrointestinal system. J Food Sci 2020; 85:394-403. [PMID: 31976556 DOI: 10.1111/1750-3841.15013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 11/26/2022]
Abstract
The delivery of active probiotic cells in capsules can reduce probiotic cell loss induced by detrimental external factors during digestion. In this study, we determined the optimal conditions for the encapsulation of Weissella cibaria JW15 (JW15) within calcium and polyethylene glycol (PEG)-alginate with chicory root extract powder (CREP). JW15 was encapsulated as the core material (109 cells/mL, 2 mL/min), and a solution containing a mixture of 1.5% sodium alginate and 1% CREP was extruded into a receiving bath with 0.1 M calcium chloride (CaCl2 ) and 0.05% PEG. Capsule morphology and size were measured using optical microscopy. The optimal air pressure and frequency vibration for capsules containing alginate only (Al) were 200 mbar and 200 Hz, respectively and 100 mbar and 350 Hz for capsules containing alginate with CREP (Ch), respectively. The voltage for both capsules types was fixed at 1.35 kV. Then, the capsules were incubated in a simulated gastrointestinal (GI) system for 6 hr at 37 °C. The addition of PEG in a CaCl2 hardening solution led to degradation of the Ch capsule (Ch-PEG) and the release of cells into the small intestine vessel in the simulated GI system. By contrast, the cells were trapped within the Al capsules. Based on these data, effective encapsulation using alginate with CREP and PEG can enable JW15 to be released at a targeted anatomical site of activity within the GI system, thereby, enhancing the efficacy of probiotic cells. These protective effects can be leveraged during the development of probiotic products. PRACTICAL APPLICATION: Weissella cibaria JW15 (109 cells/mL) was encapsulated in biodegradable and biocompatible capsules, prepared by mixing 1.5% alginate with 1% chicory root extract powder (CREP) in 0.1 M CaCl2 and 0.05% PEG using an encapsulator. The optimal processing parameters were as follows: pressure, 100 mbar; vibration frequency, 350 Hz; voltage, 1.35 kV; and core flow rate, 2 mL/min. When the resulting capsules were subjected to a simulated gastrointestinal system for 6 hr, the cells were released into the small intestine, and up to 95% cell viability was preserved. These results suggest that capsules made from alginate with CREP and formulated using calcium and PEG are a promising delivery system for probiotic cells.
Collapse
Affiliation(s)
- Mina Kim
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Dong-Geon Nam
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Pureum Im
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jeong-Sook Choe
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Ae-Jin Choi
- Div. of Functional Food & Nutrition, Dept. of Agrofood Resources, Natl. Inst. of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
21
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
22
|
Damera DP, Kaja S, Janardhanam LSL, Alim S, Venuganti VVK, Nag A. Synthesis, Detailed Characterization, and Dual Drug Delivery Application of BSA Loaded Aquasomes. ACS APPLIED BIO MATERIALS 2019; 2:4471-4484. [DOI: 10.1021/acsabm.9b00635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Sk Alim
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
23
|
Memic A, Abudula T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest Progress in Electrospun Nanofibers for Wound Healing Applications. ACS APPLIED BIO MATERIALS 2019; 2:952-969. [DOI: 10.1021/acsabm.8b00637] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tuerdimaimaiti Abudula
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Halimatu S. Mohammed
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kasturi Joshi Navare
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne University, UTC CNTS UMR 7338, Biomechanics and Bioengineering, University of Technology of Compiegne, 60203 Compiegne, Cedex, France
| |
Collapse
|
24
|
Kong W, Qi Z, Xia P, Chang Y, Li H, Qu Y, Pan S, Yang X. Local delivery of FTY720 and NSCs on electrospun PLGA scaffolds improves functional recovery after spinal cord injury. RSC Adv 2019; 9:17801-17811. [PMID: 35520542 PMCID: PMC9064641 DOI: 10.1039/c9ra01717h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level. FTY720, also known as fingolimod, has recently been reported to exert a positive effect on the recovery from a spinal cord injury. Through local delivery to the lesion site, FTY720 effectively integrates with biomaterials, and the systemic adverse effects are alleviated. However, the effects of the proper mass ratio of FTY720 in biomaterials on neural stem cell (NSC) proliferation and differentiation, as well as functional recovery after SCI, have not been thoroughly investigated. In our study, we fabricated electrospun poly (lactide-co-glycolide) (PLGA)/FTY720 scaffolds at different mass ratios (0.1%, 1%, and 10%) and characterized these scaffolds. The effects of electrospun PLGA/FTY720 scaffolds on NSC proliferation and differentiation were measured. Then, a rat model of spinal transection was established to investigate the effects of PLGA/FTY720 scaffolds loaded with NSCs. Notably, 1% PLGA/FTY720 scaffolds exerted the best effects on the proliferation and differentiation of NSCs and 10% PLGA/FTY720 was cytotoxic to NSCs. Based on the Basso, Beattie, and Bresnahan (BBB) score, HE staining and immunofluorescence staining, the PLGA/FTY720 scaffold loaded with NSCs effectively promoted the recovery of spinal cord function. Thus, FTY720 properly integrated with electrospun PLGA scaffolds, and electrospun PLGA/FTY720 scaffolds loaded with NSCs may have potential applications for SCI as a nerve implant. Spinal cord injury (SCI) is a common issue in the clinic that causes severe motor and sensory dysfunction below the lesion level.![]()
Collapse
Affiliation(s)
- Weijian Kong
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Peng Xia
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yuxin Chang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Hongru Li
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Yunpeng Qu
- Department of Cardiovascular Medicine
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- PR China
| |
Collapse
|