1
|
Taheri M, Afzali Mehr M, Ghafouri H. The novel orthosteric agonist M1 muscarinic acetylcholine receptor reveals anti-Alzheimer's disease activity. Sci Rep 2024; 14:28824. [PMID: 39572774 PMCID: PMC11582822 DOI: 10.1038/s41598-024-80102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
Cholinergic treatments with an emphasis on M1 muscarinic acetylcholine receptor (mAChR) agonists as potential modulating agents are a new approach in Alzheimer's disease (AD) therapy. In previous research, we designed and characterized novel thiazolidine-2,4-dione (TZD)-derived compounds that possess anti-AD properties and enhance the expression of mAChRM1 in rats. This study evaluated a novel orthosteric agonist of mAChRM1 from related pathways that has shown promising anti-Alzheimer's disease activity. PC12 cells were exposed to various concentrations of TZ4M before they were exposed to scopolamine (3 µM). Immunocytochemistry and western blot analyses revealed that TZ4M increased the expression of mAChRM1 in differentiated cells induced by scopolamine-treated PC12 cells. The results showed that TZ4M (3 and 5 µM) markedly upregulated PKC and ChAT protein expression, and the cells were significantly protected against increased ROS levels followed by neuronal cell loss, as evidenced by the MTT assay. TUNEL staining indicated that TZ4M impeded the shaping of apoptotic bodies. Analysis of the amino acid sequences of the ligand-protein binding site indicated that TZ4M is bound to the orthosteric site (acetylcholine site). This study revealed that TZ4M, a derivative of TZD, effectively protects against scopolamine-induced damage. TZ4M, a novel mACRM1 orthosteric agonist, is promising for treating AD.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Maryam Afzali Mehr
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, 4193833697, Iran.
| |
Collapse
|
2
|
Taheri M, Ghafoori H, Sepehri H, Mohammadi A. Neuroprotective Effect of Thiazolidine-2,4-dione Derivatives on Memory Deficits and Neuropathological Symptoms of Dementia on a Scopolamine-Induced Alzheimer's Model in Adult Male Wistar Rats. ACS Chem Neurosci 2023; 14:3156-3172. [PMID: 37561907 DOI: 10.1021/acschemneuro.3c00294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder associated with a decline in memory deficits and neuropathological diagnosis with loss of cholinergic neurons in the brains of older adults. Based on these facts and an increasing number of involved people worldwide, this investigation aimed to study the improvement of memory and cognitive impairments via an anticholinergic approach of thiazolidine-2,4-diones (TZDs) in the scopolamine-induced model of Alzheimer type in adult male Wistar rats (n = 40). The results indicated data analysis obtained from in vivo and in vitro tests for (E)-5-(3-hydroxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ3O) (2 and 4 mg/kg) with the meta-hydroxy group and (E)-5-(4-methoxybenzylidene)-3-(2-oxo-2-phenylethyl)thiazolidine-2,4-dione (TZ4M) (2 and 3 mg/kg) with the para-methoxy group showed a neuroprotective effect. TZ3O and TZ4M alleviated the scopolamine-induced cognitive decline of the Alzheimer model in adult male Wistar rats. These initial and noteworthy results could be assumed as a starting point for the evolution of new anti-Alzheimer agents.
Collapse
Affiliation(s)
- Maryam Taheri
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hossein Ghafoori
- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| | - Hamid Sepehri
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan 4913815739, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Basic Sciences, University of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
3
|
Miralles E, Kamma-Lorger CS, Domènech Ò, Sosa L, Casals I, Calpena AC, Silva-Abreu M. Assessment of Efficacy and Safety Using PPAR-γ Agonist-Loaded Nanocarriers for Inflammatory Eye Diseases. Int J Mol Sci 2022; 23:ijms231911184. [PMID: 36232486 PMCID: PMC9570464 DOI: 10.3390/ijms231911184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-loaded nanocarriers (NCs) are new systems that can greatly improve the delivery and targeting of drugs to specific tissues and organs. In our work, a PPAR-γ agonist loaded into polymeric NCs was prepared, stabilized by spray-drying, and tested in vitro, ex vivo, and in vivo (animal models) to provide a safe formulation for optical anti-inflammatory treatments. The NCs were shown to be well tolerated, and no signs of irritancy or alterations of the eye properties were detected by the in vitro HET-CAM test and in vivo Draize test. Furthermore, no signs of cytotoxicity were found in the NC formulations on retinoblastoma cells (Y-79) analyzed using the alamarBlue assay, and the transmittance experiments evidenced good corneal transparency with the formulations tested. The ocular anti-inflammatory study confirmed the significant prevention efficacy using the NCs, and these systems did not affect the corneal tissue structure. Moreover, the animal corneal structure treated with the NCs was analyzed using X-ray diffraction using synchrotron light. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in corneal collagen interfibrillar spacing after the treatment with freshly prepared NCs or NCs after the drying process compared to the corresponding negative control when inflammation was induced. Considering these results, the PPAR-γ agonist NCs could be a safe and effective alternative for the treatment of inflammatory ocular processes.
Collapse
Affiliation(s)
- Esther Miralles
- CCiTUB (Scientific and Technological Centers), University of Barcelona, 08028 Barcelona, Spain
| | | | - Òscar Domènech
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Isidre Casals
- CCiTUB (Scientific and Technological Centers), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-4578
| |
Collapse
|
4
|
Kurt-Celep I, Zheleva-Dimitrova D, Gevrenova R, Uba AI, Zengin G, Yıldıztugay E, Picot-Allain CMN, Lorenzo JM, Mahomoodally MF, Montesano D. An In-Depth Study on the Metabolite Profile and Biological Properties of Primula auriculata Extracts: A Fascinating Sparkle on the Way from Nature to Functional Applications. Antioxidants (Basel) 2022; 11:1377. [PMID: 35883868 PMCID: PMC9312287 DOI: 10.3390/antiox11071377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/26/2022] Open
Abstract
The biological activity of the aerial part and rhizomes of Primula auriculata were assessed for the first time. The biological activities (antioxidant properties, enzyme inhibition, and AGE inhibition) as well as the phenolic and flavonoid contents of the ethyl acetate, ethanol, hydro-ethanol and water extracts of P. auriculata aerial parts and rhizomes were determined. Cell viability assays and gelatin zymography were also performed for MMP-2/-9 to determine the molecular mechanisms of action. The gene expression for MMPs was described with RT-PCR. The levels of various proteins, including phospho-Nf-κB, BCL-2, BAX, p-53, and cyclin D1 as well as RAGE were measured using Western blot analysis. The hydro-ethanol extract of the aerial part possessed the highest phenolic (56.81 mg GAE/g) and flavonoid (63.92 mg RE/g) contents. In-depth profiling of the specialized metabolites by ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) allowed for the identification and annotation of 65 compounds, including phenolic acids and glycosides, flavones, flavonols, chalcones, dihydrochalcones, and saponins. The hydro-ethanol extract of the aerial parts (132.65, 180.87, 172.46, and 108.37 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) and the ethanol extract of the rhizomes (415.06, 638.30, 477.77, and 301.02 mg TE/g, for the DPPH, ABTS, CUPRAC, and FRAP assays, respectively) exhibited the highest free radical scavenging and reducing activities. The ethanol and hydro-ethanol extracts of both the P. auriculata aerial part and rhizomes exhibited higher inhibitory activity against acetylcholinesterase, while the hydro-ethanol extracts (1.16 mmol ACAE/g, for both the aerial part and rhizomes extracts) were more active in the inhibition of α-glucosidase. After the treatment of an HT-29 colorectal cancer cell line with the extracts, the apoptosis mechanism was initiated, the integrity of the ECM was remodeled, and cell proliferation was also taken under control. In this way, Primula extracts were shown to be potential drug sources in the treatment of colorectal cancer. They were also detected as natural MMP inhibitors. The findings presented in the present study appraise the bioactivity of P. auriculata, an understudied species. Additional assessment is required to evaluate the cytotoxicity of P. auriculata as well as its activity in ex vivo systems.
Collapse
Affiliation(s)
- Inci Kurt-Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria; (D.Z.-D.); (R.G.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, 34083 Istanbul, Turkey;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Evren Yıldıztugay
- Department of Biotechnology, Science Faculty, Selcuk University, 42079 Konya, Turkey;
| | - Carene Marie Nancy Picot-Allain
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 80837 Réduit, Mauritius; (C.M.N.P.-A.); (M.F.M.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
5
|
Silva-Abreu M, Miralles E, Kamma-Lorger CS, Espina M, García ML, Calpena AC. Stabilization by Nano Spray Dryer of Pioglitazone Polymeric Nanosystems: Development, In Vivo, Ex Vivo and Synchrotron Analysis. Pharmaceutics 2021; 13:pharmaceutics13111751. [PMID: 34834165 PMCID: PMC8617923 DOI: 10.3390/pharmaceutics13111751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone-loaded PLGA-PEG nanoparticles (NPs) were stabilized by the spray drying technique as an alternative to the treatment of ocular inflammatory disorders. Pioglitazone-NPs were developed and characterized physiochemically. Interaction studies, biopharmaceutical behavior, ex vivo corneal and scleral permeation, and in vivo bioavailability evaluations were conducted. Fibrillar diameter and interfibrillar corneal spacing of collagen was analyzed by synchrotron X-ray scattering techniques and stability studies at 4 °C and was carried out before and after the spray drying process. NPs showed physicochemical characteristics suitable for ocular administration. The release was sustained up to 46 h after drying; ex vivo corneal and scleral permeation profiles of pioglitazone-NPs before and after drying demonstrated higher retention and permeation through cornea than sclera. These results were correlated with an in vivo bioavailability study. Small-angle X-ray scattering (SAXS) analysis did not show a significant difference in the organization of the corneal collagen after the treatment with pioglitazone-NPs before and after the drying process, regarding the negative control. The stabilization process by Nano Spray Dryer B-90 was shown to be useful in preserving the activity of pioglitazone inside the NPs, maintaining their physicochemical characteristics, in vivo bioavailability, and non-damage to corneal collagen function after SAXS analysis was observed.
Collapse
Affiliation(s)
- Marcelle Silva-Abreu
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-402-4578
| | - Esther Miralles
- CCiTUB (Scientific and Technological Centers), University of Barcelona, 08028 Barcelona, Spain;
| | | | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (M.E.); (M.L.G.); (A.C.C.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
6
|
A diffusion cell adapted to nuclear imaging instruments for the measurement of molecular release and pharmacokinetics across membranes. J Control Release 2021; 337:661-675. [PMID: 34271034 DOI: 10.1016/j.jconrel.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 01/21/2023]
Abstract
Diffusion cells are routinely used in pharmacology to measure the permeation of pharmaceutical compounds and contaminants across membranes (biological or synthetic). They can also be used to study drug release from excipients. The device is made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, permeation of molecules across membranes is measured by sampling from the AC at different time points. However, this process disturbs the equilibrium of the cell. Furthermore, analytical techniques used in association with diffusion cells sometimes lack either accuracy, sensitivity, or both. This work reports on the development of nuclear imaging - compatible diffusion cells. The cell is made of a polymer transparent to high-energy photons typically detected in positron emission tomography (PET). It was tested in a finite-dose set-up experiment with a pre-clinical PET system. Porous cellulose membranes (3.5, 25 and 300 kDa), a common excipient in pharmacology, as well as for dialysis membranes, were used as test membranes. The radioisotope 89Zr chelated with deferoxamine B (DFO; 0.65 kDa), was used as an imaging probe (7-10 MBq; 0.2-0.3 nMol 89Zr-DFO). In medicine, DFO is also commonly used for iron removal treatments and pharmacological formulations often require the association of this molecule with cellulose. Permeation profiles were obtained by measuring the radioactivity in the DC and AC for up to 2 weeks. The kinetic profiles were used to extract lag time, influx, and diffusion coefficients of DFO across porous cellulose membranes. A sensitivity threshold of 0.005 MBq, or 3.4 fmol of 89Zr-DFO, was revealed. The lag time to permeation (τ) measured in the AC compartment, was found to be 1.33, 0.5, and 0.19 h with 3.5, 25, and 300 kDa membranes, respectively. Diffusion coefficients of 3.65 × 10-6, 8.33 × 10-6, and 4.74 × 10-5 cm2 h-1 where revealed, with maximal pseudo steady-state influx values (Jpss) of 6.55 × 10-6, 1.76 × 10-5, and 1.29 × 10-5 nmol cm-2 h-1. This study confirms the potential of the technology for monitoring molecular diffusion and release processes at low concentrations, high sensitivities, in real time and in a visual manner.
Collapse
|
7
|
Development and Validation of an HPLC-MS/MS Method for Pioglitazone from Nanocarriers Quantitation in Ex Vivo and In Vivo Ocular Tissues. Pharmaceutics 2021; 13:pharmaceutics13050650. [PMID: 34063615 PMCID: PMC8147631 DOI: 10.3390/pharmaceutics13050650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Pioglitazone (PGZ) is an oral anti-hyperglycemic agent, belongs to the class of thiazolidinediones, and is used for the treatment of diabetes mellitus type 2. In recent years, its anti-inflammatory activity has also been demonstrated in the literature for different diseases, including ocular inflammatory processes. Additionally, this drug belongs to Class II of the Biopharmaceutical Classification System, i.e., slightly soluble and highly permeable. The main objective of this study was to validate a new analytical HPLC-MS/MS method to quantify free-PGZ and PGZ from polymeric NPs to conduct nanoparticle application studies loaded with this active ingredient to transport it within ocular tissues. An accurate, sensitive, selective, reproducible and high throughput HPLC-MS/MS method was validated to quantify PGZ in cornea, sclera, lens, aqueous humor, and vitreous humor. The chromatographic separation was achieved in 10 min on a Kinetex C18 column. Linear response of PGZ was observed over the range of 5-100 ng/mL. The recovery of free-PGZ or PGZ from NPs was in the range of 85-110% in all tissues and levels tested. The intra-day and inter-day precision were <5% and <10%, respectively. The extracts were shown to be stable in various experimental conditions in all matrices studied. The range of concentrations covered by this validation is 80-1600 µg/kg of PGZ in ocular tissues. It is concluded that this method can be applied to quantify PGZ for in vivo and ex vivo biodistribution studies related to the ocular administration of free-PGZ and PGZ from nanoparticles.
Collapse
|
8
|
Lee H, Kim E. Repositioning medication for cardiovascular and cerebrovascular disease to delay the onset and prevent progression of Alzheimer's disease. Arch Pharm Res 2020; 43:932-960. [PMID: 32909178 DOI: 10.1007/s12272-020-01268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a complex, progressive, neurodegenerative disorder. As with other common chronic diseases, multiple risk factors contribute to the onset and progression of AD. Many researchers have evaluated the epidemiologic and pathophysiological association between AD, cardiovascular diseases (CVDs), and cerebrovascular diseases (CBVDs), including commonly reported risk factors such as diabetes, hypertension, and dyslipidemia. Relevant therapies of CVDs/CBVDs for the attenuation of AD have also been empirically investigated. Considering the challenges of new drug development, in terms of cost and time, multifactorial approaches such as therapeutic repositioning of CVD/CBVD medication should be explored to delay the onset and progression of AD. Thus, in this review, we discuss our current understanding of the association between cardiovascular risk factors and AD, as revealed by clinical and non-clinical studies, as well as the therapeutic implications of CVD/CBVD medication that may attenuate AD. Furthermore, we discuss future directions by evaluating ongoing trials in the field.
Collapse
Affiliation(s)
- Heeyoung Lee
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea
| | - EunYoung Kim
- Evidence-Based Research Laboratory, Division of Clinical Pharmacotherapy, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
9
|
Kim JY, Barua S, Jeong YJ, Lee JE. Adiponectin: The Potential Regulator and Therapeutic Target of Obesity and Alzheimer's Disease. Int J Mol Sci 2020; 21:6419. [PMID: 32899357 PMCID: PMC7504582 DOI: 10.3390/ijms21176419] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 02/08/2023] Open
Abstract
Animal and human mechanistic studies have consistently shown an association between obesity and Alzheimer's disease (AD). AD, a degenerative brain disease, is the most common cause of dementia and is characterized by the presence of extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles disposition. Some studies have recently demonstrated that Aβ and tau cannot fully explain the pathophysiological development of AD and that metabolic disease factors, such as insulin, adiponectin, and antioxidants, are important for the sporadic onset of nongenetic AD. Obesity prevention and treatment can be an efficacious and safe approach to AD prevention. Adiponectin is a benign adipokine that sensitizes the insulin receptor signaling pathway and suppresses inflammation. It has been shown to be inversely correlated with adipose tissue dysfunction and may enhance the risk of AD because a range of neuroprotection adiponectin mechanisms is related to AD pathology alleviation. In this study, we summarize the recent progress that addresses the beneficial effects and potential mechanisms of adiponectin in AD. Furthermore, we review recent studies on the diverse medications of adiponectin that could possibly be related to AD treatment, with a focus on their association with adiponectin. A better understanding of the neuroprotection roles of adiponectin will help clarify the precise underlying mechanism of AD development and progression.
Collapse
Affiliation(s)
- Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Ye Jun Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-752, Korea; (J.Y.K.); (S.B.); (Y.J.J.)
- BK21 Plus Project for Medical Sciences, and Brain Research Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
10
|
Abstract
Dermal and transdermal drug therapy is increasing in importance nowadays in drug development. To completely utilize the potential of this administration route, it is necessary to optimize the drug release and skin penetration measurements. This review covers the most well-known and up-to-date methods for evaluating the cutaneous penetration of drugs in vitro as a supporting tool for pharmaceutical research scientists in the early stage of drug development. The aim of this article is to present various experimental models used in dermal/transdermal research and summarize the novel knowledge about the main in vitro methods available to study skin penetration. These techniques are: Diffusion cell, skin-PAMPA, tape stripping, two-photon microscopy, confocal laser scanning microscopy, and confocal Raman microscopic method.
Collapse
|