1
|
Rana D, Prajapati A, Karunakaran B, Vora L, Benival D, Jindal AB, Patel R, Joshi V, Jamloki A, Shah U. Recent Advances in Antiviral Drug Delivery Strategies. AAPS PharmSciTech 2025; 26:73. [PMID: 40038154 DOI: 10.1208/s12249-025-03053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Viral infectious diseases have long posed significant challenges to public health, leading to substantial morbidity and mortality worldwide. Recent outbreaks, including those caused by coronaviruses, have highlighted the urgent need for more effective antiviral treatments. Existing therapies, while numerous, face limitations such as drug resistance, toxicity, poor bioavailability, and non-specific targeting, which hinder their effectiveness against new and emerging viruses. This review focuses on the latest advances in nanoplatform technologies designed to enhance drug solubility, provide sustained or targeted delivery, and improve the efficacy of antiviral therapies. Additionally, we explore how these technologies can be integrated with novel strategies like genetic modulation to combat viral infections more effectively. The review also discusses the potential of these innovations in addressing the challenges posed by current antiviral therapies and their implications for future clinical applications.
Collapse
Affiliation(s)
- Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Arvee Prajapati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Bharathi Karunakaran
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad (NIPER-A), 382355, Palaj, India
| | - Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS PILANI), Pilani Campus, Pilani, Rajasthan, 333031, India.
| | - Rikin Patel
- Intas Pharmaceuticals Ltd., Matoda, Gujarat, 382210, India
| | - Vishvesh Joshi
- Chartwell Pharmaceuticals LLC, 77 Brenner Dr, Congers, New York, 10920, USA
| | - Ashutosh Jamloki
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Ujashkumar Shah
- Faculty of Pharmacy, Nootan Pharmacy College, Sankalchand Patel University, Visnagar, Gujarat, India
| |
Collapse
|
2
|
Huanbutta K, Puri V, Sharma A, Singh I, Sriamornsak P, Sangnim T. Rise of implantable drugs: A chronicle of breakthroughs in drug delivery systems. Saudi Pharm J 2024; 32:102193. [PMID: 39564378 PMCID: PMC11570717 DOI: 10.1016/j.jsps.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, implantable drug delivery systems (IDDSs) have undergone significant advancements because they offer many advantages to patients and health care professionals. Miniaturization has reduced the size of these devices, making them less invasive and easier to implant. Remote control provides more precise medication delivery and dosage. Biodegradable implants are an additional advancement in implantable drug delivery systems that eliminate the need for surgical removal. Smart implants can monitor a patient's condition and adjust their drug doses. Long-acting implants also provide sustained drug delivery for months or even years, eliminating the need for regular medication dosing, and wireless power and data transmission technology enables the use of devices that are more comfortable and less invasive. These innovations have enhanced patient outcomes by enabling more precise administration, sustained drug delivery, and improved health care monitoring. With continued research and development, it is anticipated that IDDSs will become more effective and provide patients with improved health outcomes. This review categorizes and discusses the benefits and limitations of recent novel IDDSs for their potential therapeutic use.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
3
|
Wei T, Zhou BY, Wu XH, Liu XA, Huo MW, Huang XX, Shi LZ, Shi LL, Cao QR. Development of Polyvinyl Alcohol/Polyethylene Glycol Copolymer-based Orodispersible Films Loaded with Entecavir: Formulation and In vitro Characterization. Curr Drug Deliv 2024; 21:1362-1374. [PMID: 37929732 DOI: 10.2174/0115672018261294231024093926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE The aim of the study is to prepare entecavir (ETV)-loaded orodispersible films (ODFs) using polyvinyl alcohol (PVA)/polyethylene glycol (PEG) graft copolymer (Kollicoat® IR) as a film-forming agent, and further to evaluate the dissolution rate, mechanical and physicochemical properties of films. METHODS ETV-ODFs were prepared by a solvent casting method. The amount of film-forming agent, plasticizer, and disintegrating agent was optimized in terms of the appearance, thickness, disintegration time and mechanical properties of ODFs. The compatibility between the drug and each excipient was conducted under high temperature (60 °C), high humidity (RH 92.5%), and strong light (4500 Lx) for 10 days. The dissolution study of optimal ODFs compared with the original commercial tablet (Baraclude®) was performed using a paddle method in pH 1.0, pH 4.5, pH 6.8, and pH 7.4 media at 37 °C. The morphology of ODFs was observed via scanning electron microscopy (SEM). The mechanical properties such as tensile strength (TS), elastic modulus (EM), and percentage elongation (E%) of ODFs were evaluated using the universal testing machine. The physicochemical properties of ODFs were investigated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FT-IR). RESULTS The related substances were less than 0.5% under high temperature, high humidity, and strong light for 10 days when ETV was mixed with excipients. The optimal formulation of ODFs was set as the quality ratio of Kollicoat® IR, glycerol, sodium alginate (ALG-Na): TiO2: MCC+CMC-Na: ETV was 60:9:12:1:1:1. The drug-loaded ODFs were white and translucent with excellent stripping property. The thickness, disintegration time, EM, TS, and E% were 103.33±7.02 μm, 25.31±1.95 s, 25.34±8.69 Mpa, 2.14±0.26 Mpa, and 65.45±19.41 %, respectively. The cumulative drug release from ODFs was more than 90% in four different media at 10 min. The SEM showed that the drug was highly dispersible in ODFs, and the XRD, DSC, and FT-IR results showed that there occurred some interactions between the drug and excipients. CONCLUSION In conclusion, the developed ETV-loaded ODFs showed relatively short disintegration time, rapid drug dissolution, and excellent mechanical properties. This might be an alternative to conventional ETV Tablets for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Teng Wei
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Bing-Yu Zhou
- Dongliao People's Hospital, Liaoyuan, People's Republic of China
| | - Xin-Hong Wu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xue-Ai Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ming-Wei Huo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Xiang-Xiang Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Ling-Zhi Shi
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| | - Li-Li Shi
- College of Medicine, Jiaxing University, Jiaxing, People's Republic of China
| | - Qin-Ri Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Ogunnaike M, Das S, Raut SS, Sultana A, Nayan MU, Ganesan M, Edagwa BJ, Osna NA, Poluektova LY. Chronic Hepatitis B Infection: New Approaches towards Cure. Biomolecules 2023; 13:1208. [PMID: 37627273 PMCID: PMC10452112 DOI: 10.3390/biom13081208] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection leads to the development of cirrhosis and hepatocellular carcinoma. Lifelong treatment with nucleotides/nucleoside antiviral agents is effective at suppressing HBV replication, however, adherence to daily therapy can be challenging. This review discusses recent advances in the development of long-acting formulations for HBV treatment and prevention, which could potentially improve adherence. Promising new compounds that target distinct steps of the virus life cycle are summarized. In addition to treatments that suppress viral replication, curative strategies are focused on the elimination of covalently closed circular DNA and the inactivation of the integrated viral DNA from infected hepatocytes. We highlight promising long-acting antivirals and genome editing strategies for the elimination or deactivation of persistent viral DNA products in development.
Collapse
Affiliation(s)
- Mojisola Ogunnaike
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samiksha S. Raut
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Ashrafi Sultana
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Mohammad Ullah Nayan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Murali Ganesan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.O.); (S.D.); (S.S.R.); (A.S.); (M.U.N.); (M.G.)
| |
Collapse
|
5
|
Das S, Wang W, Ganesan M, Fonseca-Lanza F, Cobb DA, Bybee G, Sun Y, Guo L, Hanson B, Cohen SM, Gendelman HE, Osna NA, Edagwa BJ, Poluektova LY. An ultralong-acting tenofovir ProTide nanoformulation achieves monthslong HBV suppression. SCIENCE ADVANCES 2022; 8:eade9582. [PMID: 36563152 PMCID: PMC9788773 DOI: 10.1126/sciadv.ade9582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/21/2023]
Abstract
Treatment of chronic hepatitis B virus (HBV) requires lifelong daily therapy. However, suboptimal adherence to the existing daily therapy has led to the need for ultralong-acting antivirals. A lipophilic and hydrophobic ProTide was made by replacing the alanyl isopropyl ester present in tenofovir alafenamide (TAF) with a docosyl phenyl alanyl ester, now referred to as M1TFV. NM1TFV and nanoformulated TAF (NTAF) nanocrystals were formulated by high-pressure homogenization. A single intramuscular injection of NM1TFV, but not NTAF, delivered at a dose of TFV equivalents (168 milligrams per kilogram) demonstrated monthslong antiviral activities in both HBV-transgenic and human hepatocyte transplanted TK-NOG mice. The suppression of HBV DNA in blood was maintained for 3 months. Laboratory experiments on HBV-transfected HepG2.2.15 cells affirmed the animal results and the critical role of docosanol in the sustained NM1TFV antiviral responses. These results provide clear "proof of concept" toward an emerging therapeutic paradigm for the treatment and prevention of HBV infection.
Collapse
Affiliation(s)
- Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Murali Ganesan
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Franchesca Fonseca-Lanza
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Denise A. Cobb
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Grace Bybee
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Yimin Sun
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lili Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Brandon Hanson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Benson J. Edagwa
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Abstract
There are an estimated 257 million persons living with chronic hepatitis B for whom there are multiple potential applications of long-acting antiviral compounds. Current efforts include both injection and implant approaches to formulating derivates of existing anti-HBV compounds such as tenofovir or entecavir. Substantial progress has already occurred especially as aligned with the development of long-acting tenofovir-based medications with dual activity against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). Nonetheless, substantial challenges will need to be overcome before these agents are available.
Collapse
Affiliation(s)
- David L Thomas
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer J Kiser
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, Monrovia, California, USA
| |
Collapse
|
7
|
Amblard F, Patel D, Michailidis E, Coats SJ, Kasthuri M, Biteau N, Tber Z, Ehteshami M, Schinazi RF. HIV nucleoside reverse transcriptase inhibitors. Eur J Med Chem 2022; 240:114554. [PMID: 35792384 DOI: 10.1016/j.ejmech.2022.114554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
Abstract
More than 40 years into the pandemic, HIV remains a global burden and as of now, there is no cure in sight. Fortunately, highly active antiretroviral therapy (HAART) has been developed to manage and suppress HIV infection. Combinations of two to three drugs targeting key viral proteins, including compounds inhibiting HIV reverse transcriptase (RT), have become the cornerstone of HIV treatment. This review discusses nucleoside reverse transcriptase inhibitors (NRTIs), including chain terminators, delayed chain terminators, nucleoside reverse transcriptase translocation inhibitors (NRTTIs), and nucleotide competing RT inhibitors (NcRTIs); focusing on their history, mechanism of action, resistance, and current clinical application, including long-acting regimens.
Collapse
Affiliation(s)
- Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Dharmeshkumar Patel
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Eleftherios Michailidis
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Steven J Coats
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Mahesh Kasthuri
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Nicolas Biteau
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Maryam Ehteshami
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Subcutaneous implants are a promising technology to enable long-acting parenteral delivery of antiretroviral drugs (ARV) because they may be able to provide protective drugs concentrations for a year or longer following a single implant. The present review covers the current status of preclinical and clinical development of antiretroviral implants. RECENT FINDINGS Over the past three decades, subcutaneous implants have been widely used for long-acting hormonal contraception and the treatment of hormonally-driven malignancies. They are economical and scalable to manufacture, but require special procedures for insertion and removal. They are generally well tolerated, and can remain in place for up to five years. As long-acting delivery of ARV would confer significant advantages, a few investigational implants are under development for the delivery of ARV; most remain at preclinical stages of development. Islatravir, a potent nucleoside analog reverse transcriptase translocation inhibitor that shows particular promise, has entered clinical testing in implant form. Investigational implants containing tenofovir alafenamide and nevirapine, and entecavir (for hepatitis B virus) have been developed and tested in animal models, with varying degrees of success. There is also burgeoning interest in bioerodable implant formulations of established ARVs. SUMMARY LARV implants are a promising new technology, but are in early stages of clinical development. Their potential advantages include more consistent and predictable drug release than that provided by intramuscular injections, the possibility of combining several partner drugs into one implant, and the fact that implants can be removed in the case of a desire to stop treatment or the development of adverse events.
Collapse
|
9
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
10
|
Johnson AR, Forster SP, White D, Terife G, Lowinger M, Teller RS, Barrett SE. Drug eluting implants in pharmaceutical development and clinical practice. Expert Opin Drug Deliv 2021; 18:577-593. [PMID: 33275066 DOI: 10.1080/17425247.2021.1856072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Drug eluting implants offer patient convenience and improved compliance through less frequent dosing, eliminating repeated, painful injections and providing localized, site specific delivery with applications in contraception, ophthalmology, and oncology.Areas covered: This review provides an overview of available implant products, design approaches, biodegradable and non-biodegradable polymeric materials, and fabrication techniques with a focus on commercial applications and industrial drug product development. Developing trends in the field, including expanded availability of suitable excipients, development of novel materials, scaled down manufacturing process, and a wider understanding of the implant development process are discussed and point to opportunities for differentiated drug eluting implant products.Expert opinion: In the future, long-acting implants will be important clinical tools for prophylaxis and treatment of global health challenges, especially for infectious diseases, to reduce the cost and difficulty of treating chronic indications, and to prolong local delivery in difficult to administer parts of the body. These products will help improve patient safety, adherence, and comfort.
Collapse
Affiliation(s)
- Ashley R Johnson
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Seth P Forster
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Graciela Terife
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | - Michael Lowinger
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| | | | - Stephanie E Barrett
- Pharmaceutical Sciences, Merck & Co., Inc., Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
11
|
A Subcutaneous Implant of Tenofovir Alafenamide Fumarate Causes Local Inflammation and Tissue Necrosis in Rabbits and Macaques. Antimicrob Agents Chemother 2020; 64:AAC.01893-19. [PMID: 31871073 PMCID: PMC7038301 DOI: 10.1128/aac.01893-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022] Open
Abstract
We describe the in vitro and in vivo evaluation of a subcutaneous reservoir implant delivering tenofovir alafenamide hemifumarate (TAF) for the prevention of HIV infection. These long-acting reservoir implants were able to deliver antiretroviral drug for over 90 days in vitro and in vivo. We evaluated the implants for implantation site histopathology and pharmacokinetics in plasma and tissues for up to 12 weeks in New Zealand White rabbit and rhesus macaque models. We describe the in vitro and in vivo evaluation of a subcutaneous reservoir implant delivering tenofovir alafenamide hemifumarate (TAF) for the prevention of HIV infection. These long-acting reservoir implants were able to deliver antiretroviral drug for over 90 days in vitro and in vivo. We evaluated the implants for implantation site histopathology and pharmacokinetics in plasma and tissues for up to 12 weeks in New Zealand White rabbit and rhesus macaque models. A dose-ranging study in rabbits demonstrated dose-dependent pharmacokinetics and local inflammation up to severe necrosis around the active implants. The matched placebos showed normal wound healing and fibrous tissue encapsulation of the implant. We designed a second implant with a lower release rate and flux of TAF and achieved a median cellular level of tenofovir diphosphate of 42 fmol per 106 rhesus macaque peripheral blood mononuclear cells at a TAF dose of 10 μg/kg/day. This dose and flux of TAF also resulted in adverse local inflammation and necrosis near the implant in rhesus macaques. The level of inflammation in the primates was markedly lower in the placebo group than in the active-implant group. The histological inflammatory response to the TAF implant at 4 and 12 weeks in primates was graded as a severe reaction. Thus, while we were able to achieve a sustained target dose, we observed an unacceptable inflammatory response locally at the implant tissue interface.
Collapse
|
12
|
Abel AK, Dreger NZ, Nettleton K, Gustafson TP, Forster SP, Becker ML. Amino Acid-Based Poly(ester urea)s as a Matrix for Extended Release of Entecavir. Biomacromolecules 2020; 21:946-954. [DOI: 10.1021/acs.biomac.9b01586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra K. Abel
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan Z. Dreger
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Karissa Nettleton
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Tiffany P. Gustafson
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Seth P. Forster
- Department of Pharmaceutical Sciences, Merck & Co., Inc., 90 E. Scott Ave., Rahway, New Jersey 07065, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Duke University, Durham, North Carolina 27708, United States
- Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|