1
|
V A S, Nayak UY, Sathyanarayana MB, Chaudhari BB, Bhat K. Formulation Strategy of BCS-II Drugs by Coupling Mechanistic In-Vitro and Nonclinical In-Vivo Data with PBPK: Fundamentals of Absorption-Dissolution to Parameterization of Modelling and Simulation. AAPS PharmSciTech 2025; 26:106. [PMID: 40244539 DOI: 10.1208/s12249-025-03093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
BCS class II candidates pose challenges in drug development due to their low solubility and permeability. Researchers have explored various techniques; co-amorphous and solid dispersion are major approaches to enhance in-vitro drug solubility and dissolution. However, in-vivo oral bioavailability remains challenging. Physiologically based pharmacokinetic (PBPK) modeling with a detailed understanding of drug absorption, distribution, metabolism, and excretion (ADME) using a mechanistic approach is emerging. This review summarizes the fundamentals of the PBPK, dissolution-absorption models, parameterization of oral absorption for BCS class II drugs, and provides information about newly emerging artificial intelligence/machine learning (AI/ML) linked PBPK approaches with their advantages, disadvantages, challenges and areas of further exploration. Additionally, the fully integrated workflow for formulation design for investigational new drugs (INDs) and virtual bioequivalence for generic molecules falling under BCS-II are discussed.
Collapse
Affiliation(s)
- Shriya V A
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Muddukrishna Badamane Sathyanarayana
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Avdeef A, Kansy M. Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years; Predicting Solubility of Drugs Approved in 2021. J SOLUTION CHEM 2022. [DOI: 10.1007/s10953-022-01199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Wu C, Li B, Meng S, Qie L, Zhang J, Wang G, Ren CC. Prediction for optimal dosage of pazopanib under various clinical situations using physiologically based pharmacokinetic modeling. Front Pharmacol 2022; 13:963311. [PMID: 36172188 PMCID: PMC9510668 DOI: 10.3389/fphar.2022.963311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to apply a physiologically based pharmacokinetic (PBPK) model to predict optimal dosing regimens of pazopanib (PAZ) for safe and effective administration when co-administered with CYP3A4 inhibitors, acid-reducing agents, food, and administered in patients with hepatic impairment. Here, we have successfully developed the population PBPK model and the predicted PK variables by this model matched well with the clinically observed data. Most ratios of prediction to observation were between 0.5 and 2.0. Suitable dosage modifications of PAZ have been identified using the PBPK simulations in various situations, i.e., 200 mg once daily (OD) or 100 mg twice daily (BID) when co-administered with the two CYP3A4 inhibitors, 200 mg BID when simultaneously administered with food or 800 mg OD when avoiding food uptake simultaneously. Additionally, the PBPK model also suggested that dosing does not need to be adjusted when co-administered with esomeprazole and administration in patients with wild hepatic impairment. Furthermore, the PBPK model also suggested that PAZ is not recommended to be administered in patients with severe hepatic impairment. In summary, the present PBPK model can determine the optimal dosing adjustment recommendations in multiple clinical uses, which cannot be achieved by only focusing on AUC linear change of PK.
Collapse
Affiliation(s)
- Chunnuan Wu
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Bole Li
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Shuai Meng
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Linghui Qie
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jie Zhang
- Department of pharmacy, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| | - Guopeng Wang
- Zhongcai Health Biological Technology Development Co., Ltd., Beijing, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| | - Cong Cong Ren
- Department of pharmacy, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Jie Zhang, ; Guopeng Wang, ; Cong Cong Ren,
| |
Collapse
|
4
|
Wang G, Xie Y, Qian X, Zhang X, Shan Y, Zhang M, Li J, Zhang Z, Li Y. Poly (maleic anhydride-alt-1-octadecene)-based bioadhesive nanovehicles improve oral bioavailability of poor water-soluble gefitinib. Drug Dev Ind Pharm 2022; 48:109-116. [PMID: 35786162 DOI: 10.1080/03639045.2022.2098316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The poor water solubility and inadequate oral bioavailability of gefitinib (Gef) remains a critical issue to achieve the therapeutic outcomes. Herein, we designed a poly (maleic anhydride-alt-1-octadecene) (PMA/C18) based lipid nanovehicle (PLN) to improve the intestinal absorption and oral bioavailability of poorly water-soluble Gef. PLN was nanometer-sized particles, and Gef was dispersed in the PLN formulation as amorphous or molecular state. At 4 h of oral administration, the tissue concentration of Gef in duodenum, jejunum and ileum was profoundly enhanced 3.37-, 8.94- and 8.09-fold by PLN when comparing to the counterpart lipid nanovehicle. Moreover, the oral bioavailability of Gef was significantly enhanced 2.48-fold by the PLN formulation when comparing to the free drug suspension. Therefore, this study provides an encouraging bioadhesive delivery platform to improve the oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Guanru Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaru Xie
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, Yantai University, Shandong, 264005, China
| | - Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyue Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanqiang Shan
- Qilu Pharmaceutical (Hainan) Co. Ltd., Hainan, 570314, China
| | - Minghui Zhang
- Qilu Pharmaceutical Co. Ltd., Shandong, 250100, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Xiong W, Papasouliotis O, Jonsson EN, Strotmann R, Girard P. Population pharmacokinetic analysis of tepotinib, an oral MET kinase inhibitor, including data from the VISION study. Cancer Chemother Pharmacol 2022; 89:655-669. [PMID: 35385993 PMCID: PMC9054876 DOI: 10.1007/s00280-022-04423-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/14/2022] [Indexed: 01/18/2023]
Abstract
Purpose Tepotinib is a highly selective, potent, mesenchymal–epithelial transition factor (MET) inhibitor, approved for the treatment of non-small cell lung cancer (NSCLC) harboring MET exon 14 skipping. Objectives of this population pharmacokinetic (PK) analysis were to evaluate the dose–exposure relationship of tepotinib and its major circulating metabolite, MSC2571109A, and to identify the intrinsic/extrinsic factors that are predictive of PK variability. Methods Data were included from 12 studies in patients with cancer and in healthy participants. A sequential modeling approach was used to analyze the parent and metabolite data, including covariate analyses. Potential associations between observed covariates and PK parameters were illustrated using bootstrap analysis-based forest plots. Results A two-compartment model with sequential zero- and first-order absorption, and a first-order elimination from the central compartment, best described the plasma PK of tepotinib in humans across the dose range of 30–1400 mg. The bioavailability of tepotinib was shown to be dose dependent, although bioavailability decreased primarily at doses above the therapeutic dose of 500 mg. The intrinsic factors of race, age, sex, body weight, mild/moderate hepatic impairment and mild/moderate renal impairment, along with the extrinsic factors of opioid analgesic and gefitinib intake, had no relevant effect on tepotinib PK. Tepotinib has a long effective half-life of ~ 32 h. Conclusions Tepotinib shows dose proportionality up to at least the therapeutic dose, and time-independent clearance with a profile appropriate for once-daily dosing. None of the covariates identified had a clinically meaningful effect on tepotinib exposure or required dose adjustments. Supplementary Information The online version contains supplementary material available at 10.1007/s00280-022-04423-5.
Collapse
Affiliation(s)
- Wenyuan Xiong
- Merck Institute of Pharmacometrics, Merck KGaA, Lausanne, Switzerland.,UCB, Bulle, Switzerland
| | | | | | - Rainer Strotmann
- Quantitative Pharmacology, Merck Healthcare KGaA, Darmstadt, Germany
| | - Pascal Girard
- Merck Institute of Pharmacometrics, Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
6
|
Brain penetration and efficacy of tepotinib in orthotopic patient-derived xenograft models of MET-driven non-small cell lung cancer brain metastases. Lung Cancer 2021; 163:77-86. [PMID: 34942492 DOI: 10.1016/j.lungcan.2021.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022]
Abstract
Central nervous system-penetrant therapies with intracranial efficacy against non-small cell lung cancer (NSCLC) brain metastases are urgently needed. We report preclinical studies investigating brain penetration and intracranial activity of the MET inhibitor tepotinib. After intravenous infusion of tepotinib in Wistar rats (n = 3), mean (±standard deviation) total tepotinib concentration was 2.87-fold higher in brain (505 ± 22 ng/g) than plasma (177 ± 20 ng/mL). In equilibrium dialysis experiments performed in triplicate, mean tepotinib unbound fraction was 0.35% at 0.3 and 3.0 µM tepotinib in rat brain tissue, and 4.0% at 0.3 and 1.0 µM tepotinib in rat plasma. The calculated unbound brain-to-plasma ratio was 0.25, indicating brain penetration sufficient for intracranial target inhibition. Of 20 screened subcutaneous patient-derived xenograft (PDX) models from lung cancer brain metastases (n = 1), two NSCLC brain metastases models (LU5349 and LU5406) were sensitive to the suboptimal dose of tepotinib of 30 mg/kg/qd (tumor volume change [%TV]: -12% and -88%, respectively). Molecular profiling (nCounter®; NanoString) revealed high-level MET amplification in both tumors (mean MET gene copy number: 11.2 and 24.2, respectively). Tepotinib sensitivity was confirmed for both subcutaneous models at a clinically relevant dose (125 mg/kg/qd; n = 5). LU5349 and LU5406 were orthotopically implanted into brains of mice and monitored by magnetic resonance imaging (MRI). Tepotinib 125 mg/kg/qd induced pronounced tumor regression, including complete or near-complete regressions, compared with vehicle in both orthotopic models (n = 10; median %TV: LU5349, -84%; LU5406, -63%). Intracranial antitumor activity of tepotinib did not appear to correlate with blood-brain barrier leakiness assessed in T1-weighted gadolinium contrast-enhanced MRI.
Collapse
|