1
|
Xia P, Li R, Chen M, Zeng F, Zhou W, Hou T. Proanthocyanidins and β-Glucan Synergistically Regulate Intestinal Inflammation in Dextran Sulfate Sodium-Induced Colitis Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19366-19377. [PMID: 39178327 DOI: 10.1021/acs.jafc.4c03544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Proanthocyanidins (PA) have been proven to have an anti-inflammation effect in multiple models by regulating oxidative stress. β-glucan (BG) could alleviate colitis from the perspectives of intestinal permeability and gut microbiota. In the present study, the synergistic anti-inflammatory function of PA and BG was explored from multiple aspects including immune response, intestinal barrier, gut microbiota, and differential metabolites. The results showed that the supplementation of PA and BG improved the colitis symptoms including atrophy of the colon, body weight loss, and organ index increase. Additionally, inflammatory cytokine levels and oxidative stress status were significantly regulated with the intake of PA and BG. Moreover, PA and BG intervention improved intestinal permeability and promoted the expression of barrier proteins. The microbiome and metabolic profile of cecal contents showed that PA and BG supplementation increased the abundance of anti-inflammatory bacteria and decreased the abundance of pro-inflammatory bacteria. Furthermore, some beneficial metabolites involved in amino acid metabolism, carbohydrate metabolism, and biosynthesis of other secondary metabolite pathways were increased. Overall, these findings have demonstrated the regulation of the inflammatory response and remodel of metabolite profiles by PA and BG complexes, indicating that it may serve as a new strategy for inflammatory bowel disease treatment in the future.
Collapse
Affiliation(s)
- Pengkui Xia
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Mianhong Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Djuris J, Cvijic S, Djekic L. Model-Informed Drug Development: In Silico Assessment of Drug Bioperformance following Oral and Percutaneous Administration. Pharmaceuticals (Basel) 2024; 17:177. [PMID: 38399392 PMCID: PMC10892858 DOI: 10.3390/ph17020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
The pharmaceutical industry has faced significant changes in recent years, primarily influenced by regulatory standards, market competition, and the need to accelerate drug development. Model-informed drug development (MIDD) leverages quantitative computational models to facilitate decision-making processes. This approach sheds light on the complex interplay between the influence of a drug's performance and the resulting clinical outcomes. This comprehensive review aims to explain the mechanisms that control the dissolution and/or release of drugs and their subsequent permeation through biological membranes. Furthermore, the importance of simulating these processes through a variety of in silico models is emphasized. Advanced compartmental absorption models provide an analytical framework to understand the kinetics of transit, dissolution, and absorption associated with orally administered drugs. In contrast, for topical and transdermal drug delivery systems, the prediction of drug permeation is predominantly based on quantitative structure-permeation relationships and molecular dynamics simulations. This review describes a variety of modeling strategies, ranging from mechanistic to empirical equations, and highlights the growing importance of state-of-the-art tools such as artificial intelligence, as well as advanced imaging and spectroscopic techniques.
Collapse
Affiliation(s)
- Jelena Djuris
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (S.C.); (L.D.)
| | | | | |
Collapse
|
3
|
Xia P, Zhao M, Jin H, Hou T, Deng Z, Zhang M, Zhou Q, Zhan F, Li B, Li J. Konjac glucomannan-assisted curcumin alleviated dextran sulfate sodium-induced mice colitis via regulating immune response and maintaining intestinal barrier integrity. Food Funct 2023; 14:8747-8760. [PMID: 37698392 DOI: 10.1039/d3fo01068f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Curcumin has been proven to be an effective strategy for reducing inflammatory responses. However, low bioavailability and instability at the physiological pH have limited its anti-inflammatory activity in ulcerative colitis patients. In the present study, a complex of curcumin and konjac glucomannan (KGM) effectively inhibited intestinal inflammation and this effect was associated with KGM degradation degrees. Results demonstrated that treatment with the complex markedly mitigated colitis symptoms and decreased inflammatory cytokines levels, especially in the complex treatment groups with K110 (KGM treated in 110 °C) and konjac oligosaccharides (KOSs). Furthermore, increasing the KOS content in KOC (the complex of curcumin and KOS) promoted the gene expressions of the intestinal barrier and inhibited the gene expressions of inflammatory cytokines, as well as improved gut microbiota dysregulation. Overall, our studies suggest that the complex of curcumin and KGM exerts effective anti-inflammatory effects by regulating the intestinal immune response and modulating microbiota diversity and composition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Mengge Zhao
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hong Jin
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Hou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhichang Deng
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Mengting Zhang
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qiaoyun Zhou
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Fuchao Zhan
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bin Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Jing Li
- College of Food Science and technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
4
|
Jang DJ, Lee JH, Kim DH, Kim JW, Koo TS, Cho KH. The Development of Super-Saturated Rebamipide Eye Drops for Enhanced Solubility, Stability, Patient Compliance, and Bioavailability. Pharmaceutics 2023; 15:pharmaceutics15030950. [PMID: 36986811 PMCID: PMC10053044 DOI: 10.3390/pharmaceutics15030950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The present study aimed to develop clear aqueous rebamipide (REB) eye drops to enhance solubility, stability, patient compliance, and bioavailability. For the preparation of a super-saturated 1.5% REB solution, the pH-modification method using NaOH and a hydrophilic polymer was employed. Low-viscosity hydroxypropyl methylcellulose (HPMC 4.5cp) was selected and worked efficiently to suppress REB precipitation at 40 °C for 16 days. The additionally optimized eye drops formulation (F18 and F19) using aminocaproic acid and D-sorbitol as a buffering agent and an osmotic agent, respectively, demonstrated long-term physicochemical stability at 25 °C and 40 °C for 6 months. The hypotonicity (<230 mOsm) for F18 and F19 noticeably extended the stable period, since the pressure causing the REB precipitation was relieved compared to the isotonic. In the rat study, the optimized REB eye drops showed significantly long-lasting pharmacokinetic results, suggesting the possibility of reducing daily administration times and increasing patient compliance (0.50- and 0.83-times lower Cmax and 2.60- and 3.64-times higher exposure in the cornea and aqueous humor). In conclusion, the formulations suggested in the present study are promising candidates and offer enhanced solubility, stability, patient compliance, and bioavailability.
Collapse
Affiliation(s)
- Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jun Hak Lee
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Da Hun Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
| | - Jin-Woo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae-Sung Koo
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
- Correspondence: (T.-S.K.); (K.H.C.); Tel.: +82-42-821-8628 (T.-S.K.); +82-55-320-3883 (K.H.C.)
| | - Kwan Hyung Cho
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea
- Correspondence: (T.-S.K.); (K.H.C.); Tel.: +82-42-821-8628 (T.-S.K.); +82-55-320-3883 (K.H.C.)
| |
Collapse
|
5
|
Turkina SV, Statsenko ME, Tyshchenko IA. Syndrome of increased epithelial permeability: opportunities of current pharmacotherapy. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:123-132. [DOI: 10.31146/1682-8658-ecg-204-8-123-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Syndrome of increased epithelial permeability (SPEP) is considered as one of the universal mechanisms that determine the subsequent development of chronic systemic inflammation of varying severity. Studies carried out in the last 10 years have shown the important role of SPEP in the pathogenesis of many diseases of internal organs, and, first of all, of the gastrointestinal diseases. The article discusses possible ways of correcting impaired epithelial permeability from the point of view of the cytoprotective effects of drugs most often prescribed to patients with gastrontestinal diseases.
Collapse
|
6
|
Evaluation of Safety, Tolerability and Pharmacokinetic Characteristics of SA001 and Its Active Metabolite Rebamipide after Single and Multiple Oral Administration. Pharmaceuticals (Basel) 2023; 16:ph16010132. [PMID: 36678630 PMCID: PMC9862565 DOI: 10.3390/ph16010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Dry eye disease (DED) is one of the most common eye diseases caused by multiple factors. Rebamipide, which is currently used to treat peptic ulcer disease, was shown to enhance secretory function and modulate inflammation in animal disease models. Considering the pathophysiology of DED, SA001 was developed expecting enhanced systemic exposure of rebamipide. Clinical trials to evaluate the safety, tolerability and pharmacokinetic (PK) characteristics of SA001 and its active metabolite rebamipide were conducted. After oral administration of SA001, blood and urine samples were collected for PK analysis of SA001 and rebamipide. PK parameters were compared between SA001 and conventional rebamipide (Bamedin®) and also between fasted and fed. Safety and tolerability were evaluated throughout the study based on adverse events (AEs), physical examinations, vital signs, 12-lead electrocardiography and clinical laboratory tests. SA001 was rapidly absorbed and quickly converted to rebamipide. The systemic exposure of rebamipide was dose-proportional after single and multiple doses. The plasma concentration of rebamipide after administration of SA001 was higher with a dose adjusted AUClast and Cmax 2.20 and 5.45 times higher in the 240 mg dose group and 4.73 and 11.94 times higher in the 600 mg dose group compared to conventional rebamipide. The favorable PK and tolerability profiles support further clinical development.
Collapse
|
7
|
Simanenkov VI, Maev IV, Tkacheva ON, Alekseenko SA, Andreev D, Bakulina NV, Bakulin IG, Bordin DS, Vlasov TD, Vorobyeva NM, Grinevich VB, Gubonina IV, Drobizhev MY, Efremov NS, Karateev AE, Kotovskaya YV, Kravchuk I, Krivoborodov GG, Kulchavenya EV, Lila AM, Maevskaya MV, Nekrasova AS, Poluektova EA, Popkova TV, Sablin OA, Solovyeva OI, Suvorov AN, Tarasova GN, Trukhan DI, Fedotova AV. [Epithelial protective therapy in comorbid diseases. Practical Guidelines for Physicians]. TERAPEVT ARKH 2022; 94:940-956. [PMID: 36286974 DOI: 10.26442/00403660.2022.08.201523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
Abstract
This document was produced with the support of the National Medical Association for the Study of Comorbidities (NASС). In 2021 the first multidisciplinary National Consensus on the pathophysiological and clinical aspects of Increased Epithelial Permeability Syndrome was published. The proposed guidelines are developed on the basis of this Consensus, by the same team of experts. Twenty-eight Practical Guidelines for Physicians statements were adopted by the Expert Council using the "delphic" method. Such main groups of epithelial protective drugs as proton pump inhibitors, bismuth drugs and probiotics are discussed in these Guidelines from the positions of evidence-based medicine. The clinical and pharmacological characteristics of such a universal epithelial protector as rebamipide, acting at the preepithelial, epithelial and subepithelial levels, throughout gastrointestinal tract, are presented in detail.
Collapse
Affiliation(s)
| | - I V Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - O N Tkacheva
- Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University
| | | | - D Andreev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | - N V Bakulina
- Mechnikov North-Western State Medical University
| | - I G Bakulin
- Mechnikov North-Western State Medical University
| | - D S Bordin
- Yevdokimov Moscow State University of Medicine and Dentistry, , Russia
- Loginov Moscow Clinical Scientific Center
- Tver State Medical University
| | - T D Vlasov
- Pavlov First Saint Petersburg State Medical University
| | - N M Vorobyeva
- Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University
| | | | | | - M Y Drobizhev
- Semashko National Research Institute of Public Health
| | - N S Efremov
- Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University
- Pirogov Russian National Research Medical University
| | | | - Y V Kotovskaya
- Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University
| | | | - G G Krivoborodov
- Russian Clinical and Research Center of Gerontology of Pirogov Russian National Research Medical University
- Pirogov Russian National Research Medical University
| | - E V Kulchavenya
- Novosibirsk Research Institute of Tuberculosis
- Novosibirsk State Medical University
| | - A M Lila
- Nasonova Research Institute of Rheumatology
- Russian Medical Academy of Continuous Professional Education
| | - M V Maevskaya
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - E A Poluektova
- Sechenov First Moscow State Medical University (Sechenov University)
| | | | - O A Sablin
- Nikiforov All-Russian Center for Emergency and Radiation Medicine
| | | | | | | | | | - A V Fedotova
- Pirogov Russian National Research Medical University
| |
Collapse
|
8
|
Statsenko ME, Turkina SV, Tyshchenko IA, Shilina NN, Streltsova AM. Evaluation of the effi cacy of rebamipide in functional dyspepsia and irritable bowel syndrome treatment. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2022:74-81. [DOI: 10.31146/1682-8658-ecg-205-9-74-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Purpose: to evaluate the efficacy and safety of the use of rebamipide (Rebamipide-SZ, Severnaya Zvezda NAO) during 8-week therapy in patients with functional dyspepsia (FD) and/or irritable bowel syndrome (IBS). Materials and methods: 60 patients of both sexes aged 18 to 40 years with confirmed FD and/or IBS were examined. All patients received basic therapy for functional gastrointestinal disease. Patients of the main group were additionally prescribed rebamipide 100 mg 3 times a day. All patients were tested according to the 7x7 questionnaire to assess the severity of FD and IBS symptoms; the severity of anxiety and depression symptoms was assessed according to the Hospital Anxiety and Depression Scale (HADS); the level of zonulin in blood was determined by the ELISA method at baseline and after 8 weeks of therapy. Results: in the main group of patients, taking rebamipide led to a more pronounced decrease in the average score on the scales of the 7x7 questionnaire, such as feeling full (0 [0; 0] points vs 1 [1; 1] points, p=0.000), early satiety (0 [0; 0] points vs 0.5 [0; 1] points, p=0.005), bloating (0 [0; 2] points vs 2 [2; 2] points, p=0.001). Only patients of the main group showed a significant decrease in blood zonulin levels both in the FD subgroup (Δ%= -49%) and in the FD+IBS subgroup (Δ%= -20.85%). Conclusions: the use of rebamipide at the dose of 100 mg 3 times a day for 8 weeks as part of the basic therapy of patients with functional dyspepsia and/ord irritable bowel syndrome leads to a statistically significant improvement in the clinical condition of patients and a significant decrease in the level of zonulin in blood serum.
Collapse
|
9
|
The Role of Paracellular Transport in the Intestinal Absorption and Biopharmaceutical Characterization of Minoxidil. Pharmaceutics 2022; 14:pharmaceutics14071360. [PMID: 35890257 PMCID: PMC9320695 DOI: 10.3390/pharmaceutics14071360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to evaluate mechanisms behind the intestinal permeability of minoxidil, with special emphasis on paracellular transport, and elucidate the suitability of minoxidil to be a reference drug for Biopharmaceutics Classification System (BCS). The permeability of minoxidil (vs. metoprolol) was evaluated in-silico, in-vitro using both the PAMPA assay and across Caco-2 cell monolayers, as well as in-vivo in rats throughout the entire intestine. The permeability was studied in conditions that represent the different segments of the small intestine: upper jejunum (pH 6.5), mid small intestine (pH 7.0), distal ileum (pH 7.5), and colon (pH 6.5). Since we aimed to investigate the paracellular transport of minoxidil, we have also examined its permeability in the presence of quercetin (250 µM), which closes the tight junctions, and sodium decanoate (10 mM), which opens the tight junctions. While metoprolol demonstrated segmental-dependent rat and PAMPA permeability, with higher permeability in higher pH regions, the permeability of minoxidil was pH-independent. Minoxidil PAMPA permeability was significantly lower than its rat permeability, indicating a potential significant role of the paracellular route. In rat intestinal perfusion studies, and across Caco-2 monolayers, tight junction modifiers significantly affected minoxidil permeability; while the presence of quercetin caused decreased permeability, the presence of sodium decanoate caused an increase in minoxidil permeability. In accordance with these in-vitro and in-vivo results, in-silico simulations indicated that approximatelly 15% of minoxidil dose is absorbed paracellularly, mainly in the proximal parts of the intestine. The results of this study indicate that paracellular transport plays a significant role in the intestinal permeability of minoxidil following oral administration. Since this permeation route may lead to higher variability in comparison to transcellular, these findings diminish the suitability of minoxidil to serve as the low/high BSC permeability class benchmark.
Collapse
|
10
|
Markovic M, Ben-Shabat S, Nagendra Manda J, Abramov-Harpaz K, Regev C, Miller Y, Aponick A, Zimmermann EM, Dahan A. PLA 2-Triggered Activation of Cyclosporine-Phospholipid Prodrug as a Drug Targeting Approach in Inflammatory Bowel Disease Therapy. Pharmaceutics 2022; 14:pharmaceutics14030675. [PMID: 35336048 PMCID: PMC8950246 DOI: 10.3390/pharmaceutics14030675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Oral medication with activity specifically at the inflamed sites throughout the gastrointestinal tract and limited systemic exposure would be a major advance in our therapeutic approach to inflammatory bowel disease (IBD). For this purpose, we have designed a prodrug by linking active drug moiety to phospholipid (PL), the substrate of phospholipase A2 (PLA2). PLA2 expression and activity is significantly elevated in the inflamed intestinal tissues of IBD patients. Since PLA2 enzyme specifically hydrolyses the sn-2 bond within PLs, in our PL-based prodrug approach, the sn-2 positioned FA is replaced with cyclosporine, so that PLA2 may be exploited as the prodrug-activating enzyme, releasing the free drug from the PL-complex. Owing to the enzyme overexpression, this may effectively target free cyclosporine to the sites of inflammation. Four PL-cyclosporine prodrugs were synthesized, differing by their linker length between the PL and the drug moiety. To study the prodrug activation, a novel enzymatically enriched model was developed, the colonic brush border membrane vesicles (cBBMVs); in this model, tissue vesicles were produced from colitis-induced (vs. healthy) rat colons. PLA2 overexpression (3.4-fold) was demonstrated in diseased vs. healthy cBBMVs. Indeed, while healthy cBBMVs induced only marginal activation, substantial prodrug activation was evident by colitis-derived cBBMVs. Together with the PLA2 overexpression, these data validate our drug targeting strategy. In the diseased cBBMVs, quick and complete activation of the entire dose was obtained for the 12-carbon linker prodrug, while slow and marginal activation was obtained for the 6/8-carbon linkers. The potential to target the actual sites of inflammation and treat any localizations throughout the GIT, together with the extended therapeutic index, makes this orally delivered prodrug approach an exciting new therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | | | - Karina Abramov-Harpaz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Clil Regev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yifat Miller
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.A.-H.); (C.R.); (Y.M.)
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA; (J.N.M.); (A.A.)
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
11
|
Optimized In Silico Modeling of Drug Absorption after Gastric Bypass: The Case of Metformin. Pharmaceutics 2021; 13:pharmaceutics13111873. [PMID: 34834288 PMCID: PMC8624529 DOI: 10.3390/pharmaceutics13111873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Bariatric surgery is an effective treatment for severe obesity and related comorbidities, such as type II diabetes. Gastric bypass surgery shortens the length of the intestine, possibly leading to altered drug absorption. Metformin, a first-line treatment for type II diabetes, has permeability-dependent drug absorption, which may be sensitive to intestinal anatomic changes during bypass surgery, including Roux-en-Y gastric bypass (RYGB). Previous computer simulation data indicate increased metformin absorption after RYGB. In this study, we experimentally determined the region-dependent permeability of metformin, using the rat single-pass intestinal perfusion method (SPIP), which we then implemented into GastroPlusTM to assess the contribution of our SPIP data to post-RYGB metformin absorption modeling. Previous simulations allowed a good fit with in vivo literature data on healthy and obese control subjects. However, it was revealed that for post-RYGB drug absorption predictions, simply excluding the duodenum/jejunum is insufficient, as the software underestimates the observed plasma concentrations post-RYGB. By implementing experimentally determined segmental-dependent permeabilities for metformin in the remaining segments post-surgery, GastroPlusTM proved to fit the observed plasma concentration profile, making it a useful tool for predicting drug absorption after gastric bypass. Reliable evaluation of the parameters dictating drug absorption is required for the accurate prediction of overall absorption after bariatric surgery.
Collapse
|
12
|
Effect of gastric residence time on the oral absorption of rebamipide sustained-release tablets in beagle dogs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00545-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Porat D, Vaynshtein J, Gibori R, Avramoff O, Shaked G, Dukhno O, Czeiger D, Sebbag G, Dahan A. Stomach pH before vs. after different bariatric surgery procedures: Clinical implications for drug delivery. Eur J Pharm Biopharm 2021; 160:152-157. [PMID: 33524534 DOI: 10.1016/j.ejpb.2021.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
|
14
|
Dahan A, González-Álvarez I. Regional Intestinal Drug Absorption: Biopharmaceutics and Drug Formulation. Pharmaceutics 2021; 13:pharmaceutics13020272. [PMID: 33671434 PMCID: PMC7922912 DOI: 10.3390/pharmaceutics13020272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/15/2021] [Indexed: 12/27/2022] Open
Abstract
The gastrointestinal tract (GIT) can be broadly divided into several regions: the stomach, the small intestine (which is subdivided to duodenum, jejunum, and ileum), and the colon. The conditions and environment in each of these segments, and even within the segment, are dependent on many factors, e.g., the surrounding pH, fluid composition, transporters expression, metabolic enzymes activity, tight junction resistance, different morphology along the GIT, variable intestinal mucosal cell differentiation, changes in drug concentration (in cases of carrier-mediated transport), thickness and types of mucus, and resident microflora. Each of these variables, alone or in combination with others, can fundamentally alter the solubility/dissolution, the intestinal permeability, and the overall absorption of various drugs. This is the underlying mechanistic basis of regional-dependent intestinal drug absorption, which has led to many attempts to deliver drugs to specific regions throughout the GIT, aiming to optimize drug absorption, bioavailability, pharmacokinetics, and/or pharmacodynamics. In this Editorial we provide an overview of the Special Issue "Regional Intestinal Drug Absorption: Biopharmaceutics and Drug Formulation". The objective of this Special Issue is to highlight the current progress and to provide an overview of the latest developments in the field of regional-dependent intestinal drug absorption and delivery, as well as pointing out the unmet needs of the field.
Collapse
Affiliation(s)
- Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence: (A.D.); (I.G.-A.)
| | - Isabel González-Álvarez
- Engineering, Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain
- Correspondence: (A.D.); (I.G.-A.)
| |
Collapse
|
15
|
Fine-Shamir N, Beig A, Dahan A. Adequate formulation approach for oral chemotherapy: Etoposide solubility, permeability, and overall bioavailability from cosolvent- vs. vitamin E TPGS-based delivery systems. Int J Pharm 2021; 597:120295. [PMID: 33497706 DOI: 10.1016/j.ijpharm.2021.120295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable-to-oral conversions for anticancer drugs represent an important trend. The goal of this research was to investigate the suitability of formulation approaches for anticancer oral drug delivery, aiming to reveal mechanistic insights that may guide oral chemotherapy development. TPGS vs. PEG-400 were studied as oral formulations for the anticancer drug etoposide, accounting for drug solubility, biorelevant dissolution, permeability, solubility-permeability interplay, and overall bioavailability. Increased etoposide solubility was demonstrated with both excipients. Biorelevant dissolution revealed that TPGS or PEG-400, but not aqueous suspension, allowed complete dissolution of the entire drug dose. Both TPGS and PEG-400 resulted in decreased in-vitro etoposide permeability across artificial membrane, i.e. solubility-permeability tradeoff. While PEG-400 resulted in the same solubility-permeability tradeoff also in-vivo, TPGS showed the opposite trend: the in-vivo permeability of etoposide was markedly increased in the presence of TPGS. This increased permeability was similar to the drug permeability under P-gp inhibition. Rat PK study demonstrated significantly higher etoposide bioavailability from TPGS vs. PEG-400 or suspension (AUC of 72, 41, and 26 µg·min/mL, respectively). All in all, TPGS-based delivery system allows overcoming the solubility-permeability tradeoff, increasing systemic etoposide exposure. Since poor solubility and strong efflux are common to many anticancer agents, this work can aid in the development of better oral delivery approach for chemotherapeutic drugs.
Collapse
Affiliation(s)
- Noa Fine-Shamir
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Avital Beig
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
16
|
BCS Class IV Oral Drugs and Absorption Windows: Regional-Dependent Intestinal Permeability of Furosemide. Pharmaceutics 2020; 12:pharmaceutics12121175. [PMID: 33276565 PMCID: PMC7761534 DOI: 10.3390/pharmaceutics12121175] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Biopharmaceutical classification system (BCS) class IV drugs (low-solubility low-permeability) are generally poor drug candidates, yet, ~5% of oral drugs on the market belong to this class. While solubility is often predictable, intestinal permeability is rather complicated and highly dependent on many biochemical/physiological parameters. In this work, we investigated the solubility/permeability of BCS class IV drug, furosemide, considering the complexity of the entire small intestine (SI). Furosemide solubility, physicochemical properties, and intestinal permeability were thoroughly investigated in-vitro and in-vivo throughout the SI. In addition, advanced in-silico simulations (GastroPlus®) were used to elucidate furosemide regional-dependent absorption pattern. Metoprolol was used as the low/high permeability class boundary. Furosemide was found to be a low-solubility compound. Log D of furosemide at the three pH values 6.5, 7.0, and 7.5 (representing the conditions throughout the SI) showed a downward trend. Similarly, segmental-dependent in-vivo intestinal permeability was revealed; as the intestinal region becomes progressively distal, and the pH gradually increases, the permeability of furosemide significantly decreased. The opposite trend was evident for metoprolol. Theoretical physicochemical analysis based on ionization, pKa, and partitioning predicted the same trend and confirmed the experimental results. Computational simulations clearly showed the effect of furosemide’s regional-dependent permeability on its absorption, as well as the critical role of the drug’s absorption window on the overall bioavailability. The data reveals the absorption window of furosemide in the proximal SI, allowing adequate absorption and consequent effect, despite its class IV characteristics. Nevertheless, this absorption window so early on in the SI rules out the suitability of controlled-release furosemide formulations, as confirmed by the in-silico results. The potential link between segmental-dependent intestinal permeability and adequate oral absorption of BCS Class IV drugs may aid to develop challenging drugs as successful oral products.
Collapse
|