1
|
Yang D, Wang R, Zhao L, Xu Y, Zhu Y, Zhang J, Zhou Z, Sun Y, Yang S, Yang H, Wang W. A cerium nanocluster for effective alleviation of inflammatory bowel disease by scavenging RONS and regulating gut microbiome. Mater Today Bio 2025; 32:101705. [PMID: 40230644 PMCID: PMC11995134 DOI: 10.1016/j.mtbio.2025.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/08/2025] [Accepted: 03/23/2025] [Indexed: 04/16/2025] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by excessive generation of reactive oxygen species and reactive nitrogen species (RONS) within the pro-inflammatory microenvironment. Conventional treatments often have serious side effects, making IBD management challenging. Here, a new cerium cluster, Ce12, with a formula of [Ce12(μ 3-O)8(μ 3-OH)8(μ 2-OH)6(ADA)18]∙3H2O∙3CH3CN (ADA- = 1-adamantanecarboxylate) was prepared and capped with β-cyclodextrin (β-CD) through self-assembly process involving the adamantane moiety of Ce12 and β-CD, resulting in Ce12@CD nanoparticles (NPs). Ce12@CD NPs, with good stability and biocompatibility, exhibit excellent reactive RONS scavenging activities due to the presence of a fraction of Ce3+ ions, offering potential for treating inflammatory diseases. Treatment significantly alleviated body weight loss, colon length reduction, and pathological injury of colon in mice with dextran sodium sulfate (DSS)-elicited colitis, thereby repairing the intestinal mucosal barrier and reducing inflammation. RNA sequence analysis revealed that the therapeutic effects of Ce12@CD NPs are highly correlated with IL-17 and TNF signaling pathways, thereby reducing inflammatory factors such as IL-1β and TNF-α, and alleviating intestinal inflammation. Additionally, Ce12@CD NPs successfully modulated DSS-induced gut microbiota imbalances. This work highlights the unique catalytic activity of Ce12@CD NPs in removing RONS and mimicking biological enzymes, showcasing their potential therapeutic applications for inflammatory disorders.
Collapse
Affiliation(s)
- Dan Yang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Rong Wang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Lei Zhao
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ye Xu
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yufeng Zhu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyan Zhang
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, 200032, China
| | - Zhiguo Zhou
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, 201321, China
| | - Shiping Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Hong Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Wu Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Gong B, Zhang C, Hu S, Zhang X, Zou H, Li J, Wang J, Kao Y, Liu F. Network pharmacology and experimental verification in vivo reveal the mechanism of Zhushao Granules against ulcerative colitis. Biol Proced Online 2025; 27:7. [PMID: 39953430 PMCID: PMC11827476 DOI: 10.1186/s12575-025-00268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Zhushao Granules (ZSG) had exhibited beneficial effects in the treatment of ulcerative colitis (UC) as an effective herbal prescription in Traditional Chinese Medicine. However, the underlying anti-inflammatory mechanism of ZSG remains unclear. This study aimed to decipher the mechanism of ZSG against UC combining network pharmacology and animal-based experiments. METHODS Network pharmacology was employed to identify active components and therapeutic targets of ZSG against UC. The protein-protein interaction (PPI) network was constructed among the therapeutic targets using the STRING database, and GO and pathway analyses were carried out using DAVID. Then, the "herb-component-target-pathway" network based on therapeutic targets was established and the topological parameters were subsequently calculated to identify hub active components, targets and pathways by Cytoscape. Finally, the therapeutic function and the special pathway of ZSG against UC were validated using a TNBS-induced UC model in BABL/c mice. RESULTS Ninety-four active components of ZSG and 460 potential targets were acquired from the Encyclopedia of Traditional Chinese Medicine and Tradition Chinese Medicine Systems Pharmacology Database and Analysis Platform. 884 potential targets of UC were obtained from OMIM and HINT. Sixty-two overlapping potential targets were identified as therapeutic targets of ZSG against UC. PPI network filtered out 61 therapeutic targets. GO and pathway analyses extracted 48, 25, and 98 terms corresponding to biological processes, molecular functions and Reactome pathways, respectively. Enrichment analysis suggested that the therapeutic targets were mainly involved in immune regulation, especially RIP-mediated NF-κB activation via ZBP1. Topological analysis of the "herb-component-target-pathway" network recognized 9 hub components, 20 hub targets and 18 hub pathways. The animal-based experiments revealed that ZSG ameliorated symptoms and histological changes in TNBS-induced colitis by significantly inhibiting the ZBP1/RIP/NF-κB pathway. CONCLUSIONS ZSG might alleviate the mucosal damage and ameliorate colitis via targeting ZBP1/RIP/NF-κB pathway, which laid the theoretical foundation for the clinical application and further study of ZSG and provided new insights into UC treatment.
Collapse
Affiliation(s)
- Benjiao Gong
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chenglin Zhang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shaofei Hu
- Department of Pharmacy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Xueying Zhang
- Life Science and Technology College, Shandong Second Medical University, Weifang, China
| | - Hui Zou
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Jiayao Li
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jiahui Wang
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Yanlei Kao
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, China.
| | - Fujun Liu
- Central Laboratory, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| |
Collapse
|
3
|
Vaezi Z, Baradaran Ghavami S, Farmani M, Mahdavian R, Asadzadeh Aghdaei H, Naderi-Manesh H. Oral Formulation of 5-Aminosalicylic Acid-Hemoglobin Bio-Adhesive Nanoparticles Enhance Therapeutic Efficiency in Ulcerative Colitis Mice: A Preclinical Evaluation. J Pharm Sci 2024; 113:2331-2341. [PMID: 38582281 DOI: 10.1016/j.xphs.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 μg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| | - Shaghayegh Baradaran Ghavami
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Maryam Farmani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hossein Naderi-Manesh
- Department of Bioactive compounds, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Postal codes: 14115-154, Tehran, Iran.
| |
Collapse
|
4
|
Zhang P, Xue Y, Cao Z, Guo Y, Pang X, Chen C, Zhang W. Raffinose Ameliorates DSS-Induced Colitis in Mice by Modulating Gut Microbiota and Targeting the Inflammatory TLR4-MyD88-NF-κB Signaling Pathway. Foods 2024; 13:1849. [PMID: 38928791 PMCID: PMC11203344 DOI: 10.3390/foods13121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to explore the protective effects of raffinose (Raf) against inflammatory bowel disease in mice with colitis. Mice were administered 100, 200, or 400 mg/kg Raf for 21 d, followed by drinking-water containing 3% dextran sulfate sodium salt (DSS) for 3 d. Thereafter, the phenotype, pathological lesions in the colon, cytokines levels, and gut microbiota were evaluated. Treatment with Raf reduced the severity of the pathological changes in the colon, mitigating the reduction in colon length. Following Raf intervention, serum levels of inflammatory cytokines (IL-2, IL-6, IL-1β, and TNF-α) tended to return to normal. These results suggest that the anti-inflammatory effects of Raf are associated with a reduction in TLR4-MyD88-NF-κB pathway expression in mouse colonic tissues. Analysis of gut microbiota abundance and its correlation with colitis parameters revealed that DSS-induced dysbiosis was partially mitigated by Raf. In conclusion, Raf exerts a protective effect in colitis by modulating the gut microbiota and TLR4-MyD88-NF-κB pathway.
Collapse
|
5
|
Wang Q, Liu Y, Gao L, Zhang L, Wang J. Study on the Protective Effect and Mechanism of Umbilicaria esculenta Polysaccharide in DSS-Induced Mice Colitis and Secondary Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10923-10935. [PMID: 38691832 DOI: 10.1021/acs.jafc.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This study aimed to explore the ameliorative effects and potential mechanisms of Huangshan Umbilicaria esculenta polysaccharide (UEP) in dextran sulfate sodium-induced acute ulcerative colitis (UC) and UC secondary liver injury (SLI). Results showed that UEP could ameliorate both colon and liver pathologic injuries, upregulate mouse intestinal tight junction proteins (TJs) and MUC2 expression, and reduce LPS exposure, thereby attenuating the effects of the gut-liver axis. Importantly, UEP significantly downregulated the secretion levels of TNF-α, IL-1β, and IL-6 through inhibition of the NF-κB pathway and activated the Nrf2 signaling pathway to increase the expression levels of SOD and GSH-Px. In vitro, UEP inhibited the LPS-induced phosphorylation of NF-κB P65 and promoted nuclear translocation of Nrf2 in RAW264.7 cells. These results revealed that UEP ameliorated UC and SLI through NF-κB and Nrf2-mediated inflammation and oxidative stress. The study first investigated the anticolitis effect of UEP, suggesting its potential for the treatment of colitis and colitis-associated liver disease.
Collapse
Affiliation(s)
- Qilong Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Li Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Lei Zhang
- Sericultural Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230061, China
| | - Junhui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
6
|
Yang X, Sun M, He M, Wang Z, Tang Q, Li T. Acupuncture for inflammatory bowel disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e32236. [PMID: 36626462 PMCID: PMC9750616 DOI: 10.1097/md.0000000000032236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease is a prevalent condition that has a major impact on the patient's life. The conventional drugs for IBD have limits, such as unpleasant events and a difficult recovery. External treatment such as acupuncture, is a traditional Chinese medicine-based therapy in which needles are used to restore the body's internal balance, and is gaining more and more popularity as a therapeutic option for IBD. However, there is a lack of evidence to support its efficacy and safety in IBD patients. The goal of this systematic review is to assess the evidence of acupuncture's efficacy and safety for IBD. METHODS MEDLINE, the Cochrane library, EMBASE, Web of Science, China National Knowledge Infrastructure, the Chongqing VIP Chinese Science, Technology Periodical Database, the Wanfang database, Japanese medical database, Korean Robotics Institute Summer Scholars, and Thailand Thai-Journal Citation Index Centre will be searched from their inception to 9 November, 2022. Randomized controlled trials evaluating the efficacy of manual acupuncture for patients with IBD, whether or not the blind technique is utilized, will be considered. Language and publication time are both unrestricted. Review Manager (V.5.3.5) will be used by 2 separate researchers to perform article retrieval, duplicate removal, screening, quality evaluation, and data analysis. Efficacy and safety of acupuncture for IBD will be assessed using outcomes including as total effective rate or cure rate, clinical symptom integral (abdominal pain, diarrhea, purulent stool), recurrence rate, inflammatory cytokines, and the Baron and Mayo scores. RESULTS The protocol of this study systematically will assess the effectiveness and safety of acupuncture for IBD. CONCLUSION This study investigates the efficacy and safety of acupuncture for IBD, providing clinicians and patients with additional options for the treatment of this disease.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhihong Wang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
- * Correspondence: Tie Li, Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China (e-mail: )
| |
Collapse
|
7
|
Polysaccharides from Garlic Protect against Liver Injury in DSS-Induced Inflammatory Bowel Disease of Mice via Suppressing Pyroptosis and Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2042163. [PMID: 36017235 PMCID: PMC9398839 DOI: 10.1155/2022/2042163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD), a widespread intestinal disease threatening human health, is commonly accompanied by secondary liver injury (SLI). Pyroptosis and oxidative stress act as an important role underlying the pathophysiology of SLI, during which a large number of proinflammatory cytokines and oxidative intermediates can be produced, thereby causing the liver severely damaged. Suppression of pyroptosis and oxidative damage can be considered one of the critical strategies for SLI therapy. Garlic, a natural food with eatable and medicinal functions, is widely used in people's daily life. There is no study about the alleviation of garlic against IBD accompanied with SLI. This study is aimed at investigating the efficacy of the polysaccharides from garlic (PSG) in treating IBD and SLI, as well as its pharmacological mechanism. The results showed that PSG significantly alleviated dextran sulfate sodium-induced IBD determined by evaluating the bodyweight loss, disease activity index, colon length, and colonic pathological examination of mice. PSG significantly reduced the colonic inflammation by reversing the levels of myeloperoxidase, diamine oxidase activity, iNOS, and COX2 and strengthened the intestinal barrier by increasing the expressions of ZO1, occludin, and MUC2 of IBD mice. Furthermore, PSG strongly alleviated SLI determined by assessing the liver morphological change, liver index, levels of ALT and AST, and liver pathological change of mice. Mechanically, PSG reduced the high levels of LPS, IL-1β, IL18, NLRP3, gasdermin D, caspase 1, ASC, TLR4, MyD88, NF-κB, phospho-NF-κB, while it increased IL-10 in the livers of mice, indicating that PSG alleviated SLI by suppressing inflammation and pyroptosis. Additionally, PSG significantly inhibited the oxidative damage in the liver tissues of SLI mice by reducing the levels of ROS, MDA, Keap-1, 8-OHDG, and phospho-H2AX and increasing the levels of GPX4, SOD2, HO1, NQO1, and Nrf2. These findings suggested that the garlic polysaccharides could be used to treat IBD accompanied with SLI in humans.
Collapse
|
8
|
Zhou BC, Tian YG, Sun YN, Liu YL, Zhao D. A validated LC-MS/MS method for the determination of hederasaponin C: Application to Pharmacokinetic-pharmacodynamic studies in the therapeutic area of acetic acid-induced ulcerative colitis in rats. Biomed Chromatogr 2022; 36:e5450. [PMID: 35831969 DOI: 10.1002/bmc.5450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Hederasaponin C (HSC), one of the main components of pulsatilla chinensis, is considered as a potential drug for the treatment of inflammatory bowel disease. In the present research, we developed a PK-PD model to describe the concentration-effect course of drug action following intraperitoneal injection of HSC in colitis rats. A sensitive UPLC-MS/MS method was firstly established for the the determination of HSC in rat plasma to explore the pharmacokinetics properties. The separation was performed on an Accucore C18 column (2.1mm×100mm, 2.6μm) with the flow phase consisted of acetonitrile and 0.1% formic acid water. The assay method was validated and demonstrated good adaptability for application in the pharmacokinetic study. Then the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in colon tissues were measured by ELISA assay. The levels of TNF-α, IL-1β and IL-6 was decreased after HSC administration, suggesting that HSC can significantly improve the level of inflammatory syndrome factor. The pharmacokinetics study showed that the Tmax of HSC was 1 h. The concentration-effect curves showed hysteresis loop. And there has a hysteresis between the peaked concentration and the maximum effect of HSC. The present study established in vivo PK/PD models and the result showed a great potential of HSC for treating ulcerative colitis.
Collapse
Affiliation(s)
- Bo Cheng Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ge Tian
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Na Sun
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan Li Liu
- College of Pharmaceutical Science, Soochow University, Suzhou, China
| | - Di Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Mazur M, Włodarczyk J, Świerczyński M, Kordek R, Grzybowski MM, Olczak J, Fichna J. The Anti-Inflammatory Effect of Acidic Mammalian Chitinase Inhibitor OAT-177 in DSS-Induced Mouse Model of Colitis. Int J Mol Sci 2022; 23:ijms23042159. [PMID: 35216274 PMCID: PMC8875595 DOI: 10.3390/ijms23042159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic and relapsing gastrointestinal disorders, where a significant proportion of patients are unresponsive or lose response to traditional and currently used therapies. In the current study, we propose a new concept for anti-inflammatory treatment based on a selective acidic mammalian chitinase (AMCase) inhibitor. The functions of chitinases remain unclear, but they have been shown to be implicated in the pathology of various inflammatory disorders regarding the lung (asthma, idiopathic pulmonary fibrosis) and gastrointestinal tract (IBD and colon cancer). The aim of the study is to investigate the impact of AMCase inhibitor (OAT-177) on the dextran sulfate sodium (DSS)-induced models of colitis. In the short-term therapeutic protocol, OAT-177 given intragastrically in a 30 mg/kg dose, twice daily, produced a significant (p < 0.001) anti-inflammatory effect, as shown by the macroscopic score. Additionally, OAT-177 significantly decreased TNF-α mRNA levels and MPO activity compared to DSS-only treated mice. Intraperitoneal administration of OAT-177 at a dose of 50 mg/kg caused statistically relevant reduction of the colon length. In the long-term therapeutic protocol, OAT-177 given intragastrically in a dose of 30 mg/kg, twice daily, significantly improved colon length and body weight compared to DSS-induced colitis. This is the first study proving that AMCase inhibitors may have therapeutic potential in the treatment of IBD.
Collapse
Affiliation(s)
- Marzena Mazur
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
| | - Mikołaj Świerczyński
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Marcin M. Grzybowski
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jacek Olczak
- OncoArendi Therapeutics SA, Żwirki i Wigury 101, 02-089 Warsaw, Poland; (M.M.G.); (J.O.)
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.M.); (J.W.); (M.Ś.)
- Correspondence: ; Tel.: +48-42-272-57-07
| |
Collapse
|
10
|
Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2617881. [PMID: 34966476 PMCID: PMC8710911 DOI: 10.1155/2021/2617881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD), a global disease threatening human health, is commonly accompanied by secondary liver damage (SLD) mediated by the gut-liver axis. Oxidative stress acts a critical role in the onset of IBD, during which excessive oxidation would destroy the tight junctions between intestinal cells, promote proinflammatory factors to penetrate, and thereby damage the intestinal mucosa. Ficus pandurata Hance (FPH) is widely used for daily health care in South China. Our previous study showed that FPH protected acute liver damage induced by alcohol. However, there is no study reporting FPH treating ulcerative colitis (UC). This study is designed to investigate whether FPH could inhibit UC and reveal its potential mechanism. The results showed that FPH significantly alleviated the UC disease symptoms including the body weight loss, disease activity index (DAI), stool consistency changing, rectal bleeding, and colon length loss of UC mice induced by dextran sulfate sodium (DSS) and reversed the influences of DSS on myeloperoxidase (MPO) and diamine oxidase activity (DAO). FPH suppressed UC via inhibiting the TLR4/MyD88/NF-κB pathway and strengthened the gut barrier of mice via increasing the expressions of ZO-1 and occludin and enhancing the colonic antioxidative stress property by increasing the levels of T-SOD and GSH-Px and the expressions of NRF2, HO-1, and NQO1 and reducing MDA level and Keap1, p22-phox, and NOX2 expressions. Furthermore, FPH significantly inhibited SLD related to colitis by reducing the abnormal levels of the liver index, ALT, AST, and cytokines including TNFα, LPS, LBP, sCD14, and IL-18 in the livers, as well as decreasing the protein expressions of NLRP3, TNFα, LBP, CD14, TLR4, MyD88, NF-κB, and p-NF-κB, suggesting that FPH alleviated UC-related SLD via suppressing inflammation mediated by inhibiting the TLR4/MyD88/NF-κB pathway. Our study firstly investigates the anticolitis pharmacological efficacy of FPH, suggesting that it can be enlarged to treat colitis and colitis-associated liver diseases in humans.
Collapse
|
11
|
Shahdadi Sardou H, Akhgari A, Mohammadpour AH, Beheshti Namdar A, Kamali H, Jafarian AH, Afrasiabi Garekani H, Sadeghi F. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur J Pharm Sci 2021; 168:106072. [PMID: 34774715 DOI: 10.1016/j.ejps.2021.106072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023]
Abstract
Formulation design for colon-specific delivery of 5-aminosalicylic acid (5-ASA) could bring some therapeutic benefits in the treatment of ulcerative colitis (UC). In the current study, a 32 full factorial design was used to predict optimum coating composed of two enteric (poly methacrylic acid, methyl methacrylates 1:2 and 1:1) and time-dependent (poly ethyl acrylate, methyl methacrylate, trimethylammonio ethyl methacrylate chloride 1:2:0.1) polymethacrylates for colon-specific delivery of 5-ASA pellets. A unique coating composition and coating level predicted by the model was applied onto either inulin-free 5-ASA pellets or inulin-bearing 5-ASA pellets and the coated pellets were examined by dissolution test in-vitro. The coated pellets were also tested in a rat model of UC and compared with the a commercially available colonic delivery system of 5-ASA. The ratio of the two enteric polymethacrylates and time-dependet polymethacrylate of 16:64:20 w/w at a coating level of 15% was discovered as the optimum coating for delivery of 5-ASA pellets to the colon. In general, the coated pellets offered a better therapeutic outcome compared to commercially available colonic delivery system of 5-ASA and uncoated pellets in terms of colitis activity index and the colon's tissue enzymes of MDA and GSH. It seems that the coating composed of enteric and pH-dependent polymethacrylates could tune up the rate of drug release from 5-ASA-coated pellets and trigger drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Colonic macrophage-targeted curcumin nanoparticles alleviate DSS-induced colitis in mice through the NF-kappa B pathway. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Pabari RM, Tambuwala MM, Lajczak-McGinley N, Aljabali A, Kirby BP, Keely S, Ramtoola Z. Novel polyurethane based particulate formulations of infliximab reduce inflammation in DSS induced murine model of colitis - A preliminary study. Int J Pharm 2021; 604:120717. [PMID: 34015378 DOI: 10.1016/j.ijpharm.2021.120717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
Our recent study showed that novel infliximab (INF) loaded polyesterurethane (INF-PU) and INF-PU-PEG particulate formulations reduced inflammation in an in-vitro epithelial inflammation model. In this study we investigated therapeutic potential of novel INF-PU and INF-PU-PEG particulate formulations to reduce inflammation in a dextran sodium sulfate (DSS) induced murine model of colitis. Severity of colitis was assessed by measurement of disease activity index (DAI) score, inflammatory markers (neutrophil infiltration, TNFα) and histological score. Treatment groups orally administered with INF-PU and INF-PU-PEG particulate formulations showed improvement in the clinical signs of colitis, similar to that observed with intraperitoneally administered INF, in both, moderate and severe DSS induced colitis model. This was related to a significant reduction in inflammatory cytokines, resulting in a significant reduction in histological score (ANOVA; p < 0.05), indicative of mucosal healing, a key goal of IBD therapy. This could be attributed to its targeted delivery to the inflamed colon and higher permeation of these particulate formulations across the inflamed colonic mucosa, as observed by the confocal images, resulting in local inhibition of TNFα at its site of production. These promising preliminary results warrant further investigation of orally administered INF and its novel particulate formulations in a wider preclinical study.
Collapse
Affiliation(s)
- Ritesh M Pabari
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland.
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County, Londonderry BT52 1SA, Northern Ireland, United Kingdom
| | | | - Alaa Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Brian P Kirby
- RCSI, University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephen Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|