1
|
Wang YR, Yang L, Wang DT, Li AP, Zhang SY, Qin LL, Bian Q, Zhang ZJ, Ding YY, Zhou H, Peng D, Wang GH, Liu YQ. Design and synthesis aldehydes-thiourea and thiazolyl hydrazine derivatives as promising antifungal agents against Monilinia fructicola. PEST MANAGEMENT SCIENCE 2025; 81:170-184. [PMID: 39387322 DOI: 10.1002/ps.8417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Fungal diseases present a significant threat to global agriculture, necessitating the development of new, safe, and effective fungicides. Existing fungicides face resistance and health risks, prompting the synthesis of novel compounds. Researchers have synthesized aldehyde-based thiourea and thiazolyl hydrazine derivatives, evaluating their antifungal activities to identify impactful pesticide molecules. RESULTS The results showed that most of the compounds had broad-spectrum antifungal activity against six plant pathogenic fungi and four post-harvest fungi. Notably, compound LN18 showed the best antifungal activity against Monilinia fructicola with a half-maximal effective concentration (EC50) of 0.17 μg mL-1, which was better than the commercial fungicide natamycin. A structure-activity relationship (SAR) study showed that the presence of unsaturated double bonds in the structure and the length of the carbon chain were the main factors affecting antifungal activity. The presence of unsaturated double bonds and an increase in the length of the carbon chain greatly improved inhibitory activity against the tested pathogens. The preliminary mechanism study showed that LN18 could damage the integrity of the mycelial plasma membrane, leading to leakage of intracellular nucleic acid and protein. LN18 also induced an increase in the intracellular reactive oxygen species level to exert its antifungal effects. In addition, compound LN18 had a stronger antifungal effect in vivo, and better phytotoxicity than natamycin, indicating broad application prospects in agriculture. CONCLUSION Aldehydes-thiourea and thiazolyl hydrazine derivatives demonstrate remarkable antifungal efficacy against plant pathogenic and post-harvest fungi, offering a promising avenue for commercialization as highly efficacious, cost-effective and safe antifungal agents. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Liu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Deng-Tuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - An-Ping Li
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| | - Lu-Lu Qin
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Qiang Bian
- National Pesticide Engineering Research Center (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Deng Peng
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Sykuła A, Bodzioch A, Nowak A, Maniukiewicz W, Ścieszka S, Piekarska-Radzik L, Klewicka E, Batory D, Łodyga-Chruścińska E. Encapsulation and Biological Activity of Hesperetin Derivatives with HP-β-CD. Molecules 2023; 28:6893. [PMID: 37836736 PMCID: PMC10574185 DOI: 10.3390/molecules28196893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The encapsulation of insoluble compounds can help improve their solubility and activity. The effects of cyclodextrin encapsulation on hesperetin's derivatives (HHSB, HIN, and HTSC) and the physicochemical properties of the formed complexes were determined using various analytical techniques. The antioxidant (DPPH•, ABTS•+ scavenging, and Fe2+-chelating ability), cytotoxic, and antibacterial activities were also investigated. The inclusion systems were prepared using mechanical and co-evaporation methods using a molar ratio compound: HP-β-CD = 1:1. The identification of solid systems confirmed the formation of two inclusion complexes at hesperetin (CV) and HHSB (mech). The identification of systems of hesperetin and its derivatives with HP-β-CD in solutions at pHs 3.6, 6.5, and 8.5 and at various temperatures (25, 37 and 60 °C) confirmed the effect of cyclodextrin on their solubility. In the DPPH• and ABTS•+ assay, pure compounds were characterized by higher antioxidant activity than the complexes. In the FRAP study, all hesperetin and HHSB complexes and HTSC-HP-β-CD (mech) were characterized by higher values of antioxidant activity than pure compounds. The results obtained from cytotoxic activity tests show that for most of the systems tested, cytotoxicity increased with the concentration of the chemical, with the exception of HP-β-CD. All systems inhibited Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Anna Sykuła
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| | - Waldemar Maniukiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Elżbieta Łodyga-Chruścińska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| |
Collapse
|
3
|
Trivedi R, Chatterjee B, Kalave S, Pandya M. Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review. Curr Drug Deliv 2023; 20:694-707. [PMID: 35899950 DOI: 10.2174/1567201819666220721111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
Abstract
Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.
Collapse
Affiliation(s)
- Rishab Trivedi
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Mrugank Pandya
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
4
|
Fernandes PDO, Martins JPA, de Melo EB, de Oliveira RB, Kronenberger T, Maltarollo VG. Quantitative structure-activity relationship and machine learning studies of 2-thiazolylhydrazone derivatives with anti- Cryptococcus neoformans activity. J Biomol Struct Dyn 2022; 40:9789-9800. [PMID: 34121616 DOI: 10.1080/07391102.2021.1935321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans is a fungus responsible for infections in humans with a significant number of cases in immunosuppressed patients, mainly in underdeveloped countries. In this context, the thiazolylhydrazones are a promising class of compounds with activity against C. neoformans. The understanding of the structure-activity relationship of these derivatives could lead to the design of robust compounds that could be promising drug candidates for fungal infections. Specifically, modern techniques such as 4D-QSAR and machine learning methods were employed in this work to generate two QSAR models (one 2D and one 4D) with high predictive power (r2 for the test set equals to 0.934 and 0.831, respectively), and one random forest classification model was reported with Matthews correlation coefficient equals to 1 and 0.62 for internal and external validations, respectively. The physicochemical interpretation of selected models, indicated the importance of aliphatic substituents at the hydrazone moiety to antifungal activity, corroborating experimental data.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Philipe de Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo B de Melo
- Laboratório de Química Medicinal e Ambiental Teórica, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thales Kronenberger
- Department of Pneumonology and Oncology, Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Liu N, Chen HP, Yang ZM, Xia MY, Wang D, Zang LH, Liu DC. Enhancement of Dissolving Capacity and Reducing Gastric Mucosa Irritation by Complex Formation of Resibufogenin with β-Cyclodextrin or 2-Hydroxypropyl-β-cyclodextrin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103213. [PMID: 35630687 PMCID: PMC9146005 DOI: 10.3390/molecules27103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 11/21/2022]
Abstract
Resibufogenin (RBG) is a natural medicinal ingredient with promising cardiac protection and antitumor activity. However, poor solubility and severe gastric mucosa irritation restrict its application in the pharmaceutical field. In this study, the inclusion complex of RBG with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was prepared using the co-evaporation method, and the molar ratio of RBG to CD was determined to be approximately 1:2 by continuous variation plot for both CDs. The formation of inclusion complexes between RBG and each CD (RBG/β-CD and RBG/HP-β-CD) was evaluated by phase solubility study, Fourier transform infrared spectroscopy, and thin-layer chromatography. Powder X-ray diffraction and differential scanning calorimetry confirmed drug amorphization and encapsulation in the molecular cage for both CDs. Moreover, the inclusion complexes’ morphologies were observed using scanning electron microscopy. The dissolution rate of the inclusion complexes was markedly improved compared to that of RBG, and the complexes retained their antitumor activity, as shown in the in vitro cytotoxicity assay on a human lung adenocarcinoma cancer (A549) cell line. Moreover, less gastric mucosal irritation was observed for the inclusion complex. Thus, the inclusion complex should be considered a promising strategy for the delivery of poorly water-soluble anticancer agents, such as RBG.
Collapse
Affiliation(s)
- Nan Liu
- Graduate School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China; (N.L.); (H.-P.C.); (D.W.)
- Graduate School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huan-Ping Chen
- Graduate School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China; (N.L.); (H.-P.C.); (D.W.)
| | - Zi-Meng Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Ming-Yu Xia
- Graduate School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (M.-Y.X.); (L.-H.Z.)
| | - Dong Wang
- Graduate School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China; (N.L.); (H.-P.C.); (D.W.)
| | - Ling-He Zang
- Graduate School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (M.-Y.X.); (L.-H.Z.)
| | - Dong-Chun Liu
- Graduate School of Traditional Chinese Medicines, Shenyang Pharmaceutical University, Shenyang 110016, China; (N.L.); (H.-P.C.); (D.W.)
- Correspondence:
| |
Collapse
|
6
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|