1
|
Veiga-Matos J, Morales AI, Prieto M, Remião F, Silva R. Study Models of Drug-Drug Interactions Involving P-Glycoprotein: The Potential Benefit of P-Glycoprotein Modulation at the Kidney and Intestinal Levels. Molecules 2023; 28:7532. [PMID: 38005253 PMCID: PMC10673607 DOI: 10.3390/molecules28227532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
P-glycoprotein (P-gp) is a crucial membrane transporter situated on the cell's apical surface, being responsible for eliminating xenobiotics and endobiotics. P-gp modulators are compounds that can directly or indirectly affect this protein, leading to changes in its expression and function. These modulators can act as inhibitors, inducers, or activators, potentially causing drug-drug interactions (DDIs). This comprehensive review explores diverse models and techniques used to assess drug-induced P-gp modulation. We cover several approaches, including in silico, in vitro, ex vivo, and in vivo methods, with their respective strengths and limitations. Additionally, we explore the therapeutic implications of DDIs involving P-gp, with a special focus on the renal and intestinal elimination of P-gp substrates. This involves enhancing the removal of toxic substances from proximal tubular epithelial cells into the urine or increasing the transport of compounds from enterocytes into the intestinal lumen, thereby facilitating their excretion in the feces. A better understanding of these interactions, and of the distinct techniques applied for their study, will be of utmost importance for optimizing drug therapy, consequently minimizing drug-induced adverse and toxic effects.
Collapse
Affiliation(s)
- Jéssica Veiga-Matos
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Ana I. Morales
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Marta Prieto
- Toxicology Unit (Universidad de Salamanca), Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain; (A.I.M.); (M.P.)
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, Gul S, Gazioglu I, Pala Kara Z, Lévi F, Kavakli IH, Okyar A. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms 2023; 38:171-184. [PMID: 36762608 PMCID: PMC10037547 DOI: 10.1177/07487304221148779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The circadian timing system controls absorption, distribution, metabolism, and elimination processes of drug pharmacokinetics over a 24-h period. Exposure of target tissues to the active form of the drug and cytotoxicity display variations depending on the chronopharmacokinetics. For anticancer drugs with narrow therapeutic ranges and dose-limiting side effects, it is particularly important to know the temporal changes in pharmacokinetics. A previous study indicated that pharmacokinetic profile of capecitabine was different depending on dosing time in rat. However, it is not known how such difference is attributed with respect to diurnal rhythm. Therefore, in this study, we evaluated capecitabine-metabolizing enzymes in a diurnal rhythm-dependent manner. To this end, C57BL/6J male mice were orally treated with 500 mg/kg capecitabine at ZT1, ZT7, ZT13, or ZT19. We then determined pharmacokinetics of capecitabine and its metabolites, 5'-deoxy-5-fluorocytidine (5'DFCR), 5'-deoxy-5-fluorouridine (5'DFUR), 5-fluorouracil (5-FU), in plasma and liver. Results revealed that plasma Cmax and AUC0-6h (area under the plasma concentration-time curve from 0 to 6 h) values of capecitabine, 5'DFUR, and 5-FU were higher during the rest phase (ZT1 and ZT7) than the activity phase (ZT13 and ZT19) (p < 0.05). Similarly, Cmax and AUC0-6h values of 5'DFUR and 5-FU in liver were higher during the rest phase than activity phase (p < 0.05), while there was no significant difference in liver concentrations of capecitabine and 5'DFCR. We determined the level of the enzymes responsible for the conversion of capecitabine and its metabolites at each ZT. Results indicated the levels of carboxylesterase 1 and 2, cytidine deaminase, uridine phosphorylase 2, and dihydropyrimidine dehydrogenase (p < 0.05) are being rhythmically regulated and, in turn, attributed different pharmacokinetics profiles of capecitabine and its metabolism. This study highlights the importance of capecitabine administration time to increase the efficacy with minimum adverse effects.
Collapse
Affiliation(s)
- Yasemin Kubra Akyel
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Narin Ozturk Seyhan
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Seref Gul
- Biotechnology Division, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Isil Gazioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Francis Lévi
- UPR "Chronotherapy, Cancer and Transplantation," Medical School, Paris-Saclay University, Villejuif, France
- Medical Oncology Department, Paul Brousse Hospital, Villejuif, France
- Cancer Chronotherapy Team, Cancer Research Centre, Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
3
|
Zou Y, Wang Y, Li K, Zhou M, Li J, Wang X, Tan R, Wu C, Liu Y, Li W, Zheng J. Metabolic Activation of Militarine In Vitro and In Vivo. Chem Res Toxicol 2022; 35:817-828. [PMID: 35476398 DOI: 10.1021/acs.chemrestox.1c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bletilla striata is consumed as food and herbal medicine. Militarine (MLT) is a major ingredient in B. striata. Previous studies demonstrated that MLT showed teratogenic toxicity to zebrafish embryos. The present study aimed to identify reactive metabolites possibly involved in the cytotoxicity of MLT and determine the metabolic pathways involved. MLT was found to be hydrolyzed to p-hydroxybenzyl alcohol (HBA) by β-glucosidase and esterases. The resulting HBA further underwent spontaneous dehydration to form quinone methide. HBA was also metabolized to the corresponding sulfate, followed by departure of the sulfate to generate a quinone methide. The resultant quinone methide reacted with hepatic glutathione (GSH) and protein to form the corresponding GSH conjugate and protein adduction. Additionally, inhibition of sulfotransferases (SULTs) attenuated the susceptibility of hepatocytes to the toxicity of MLT. This study provides that the hydrolytic enzymes β-glucosidase, esterases, and SULTs participate in the metabolic activation of MLT.
Collapse
Affiliation(s)
- Ying Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Kunna Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Xu Wang
- Wuya of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rong Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Chutian Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004 Guizhou, PR China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China.,Wuya of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
4
|
Ozturk N, Ozturk Civelek D, Sancar S, Kaptan E, Pala Kara Z, Okyar A. Dosing-time dependent testicular toxicity of everolimus in mice. Eur J Pharm Sci 2021; 165:105926. [PMID: 34242751 DOI: 10.1016/j.ejps.2021.105926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/13/2021] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
The circadian timing system controls many biological functions in mammals including drug metabolism and detoxification, cell cycle events, and thus may affect pharmacokinetics, target organ toxicity and efficacy of medicines. Selective mTOR (mammalian target of rapamycin) inhibitor everolimus is an immunosuppressant and anticancer drug that is effective against several cancers. The aim of this study was to investigate dosing-time dependent testicular toxicity of subacute everolimus administration in mice. C57BL/6 J male mice were synchronized with Light-Dark (12h:12 h) cycle, with Light-onset at Zeitgeber Time (ZT)-0. Everolimus (5 mg/kg/day) was administered orally to mice at ZT1rest-span or ZT13activity-span for 4 weeks. Body weight loss, clinical signs, changes in testicular weights, testis histology, spermatogenesis and proliferative activity of germinal epithelium of seminiferous tubules were examined. Steady-state everolimus concentrations in testes were determined with validated HPLC method. Everolimus toxicity was less severe following dosing at ZT13 compared to ZT1, as shown with least body weight loss (p<0.001), least reductions in testes weights (p<0.001) and least histopathological findings. Everolimus-induced histological changes on testes included vacuolisation and atrophy of germinal epithelium, and loss of germinal cell attachment. The severity of everolimus-induced histological toxicity on testes was significantly more evident in mice treated at ZT1 than ZT13 (p<0.001). Spermatogenic cell population significantly decreased when everolimus administered at ZT1 compared to ZT13 (p<0.001). Proliferative activity of germinal epithelium was significantly decreased due to treatment at ZT1 compared to ZT13 (p<0.001). Everolimus concentrations in testes indicated a pronounced circadian variation, which was greater in mice treated at ZT1 compared to ZT13 (p<0.05). Our study revealed dosing-time dependent testicular toxicity of everolimus in mice, which was greater in severity when everolimus administered at early rest-span (daytime-ZT1) than early activity-span (nighttime-ZT13). These findings support the concept of everolimus chronotherapy for minimizing reproductive toxicity and increasing the tolerability of everolimus, as a clinical advantage.
Collapse
Affiliation(s)
- Narin Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Dilek Ozturk Civelek
- Department of Pharmacology, Faculty of Pharmacy, Bezmialem Vakif University, Fatih-Istanbul, Turkey
| | - Serap Sancar
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler-Istanbul, Turkey
| | - Engin Kaptan
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler-Istanbul, Turkey
| | - Zeliha Pala Kara
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit-Istanbul, Turkey.
| |
Collapse
|