1
|
Hildebrandt J, Bauerschlag DO, Fricker G, Girreser U, Konukiewitz B, Kellers F, Maass N, Clement B, Flörkemeier I. In Vivo and In Vitro Pharmacokinetic Studies of a Dual Topoisomerase I/II Inhibitor. ACS Pharmacol Transl Sci 2025; 8:1050-1071. [PMID: 40242581 PMCID: PMC11997890 DOI: 10.1021/acsptsci.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Due to high mortality rates, new and more effective drugs are urgently needed in cancer therapy. The novel dual topoisomerase inhibitor P8-D6, a dimethylaminoethyl-substituted pyridophenanthroline, showed in vitro impressive induction of apoptosis in tumors such as ovarian cancer or multiple myeloma compared to the current standard therapy. The purpose of this study was to investigate its in vitro and in vivo pharmacokinetics and to discover further potential drug candidates. Samples of plasma, various tissues, urine, feces, and cell culture supernatants were examined by HPLC. In addition, the efficacy of the metabolites against ovarian cancer was determined in vitro. Three phase I metabolites were identified in vitro and in vivo, and one phase II metabolite was identified in vivo. Among the metabolites, N-dealkylated P8-D6 (P8-D6 mono) achieved efficacy similar to that of P8-D6 in ovarian cancer. P8-D6 showed a relevant inhibitory effect on the efflux pumps P-GP (IC50 = 20.63 μM) and BCRP (16.32 μM). The calculated oral bioavailability in Sprague-Dawley rats was 21.5%, while P8-D6 had a high plasma protein binding of 99% and an extensive tissue distribution with an apparent volume of distribution between 57.69 (i.v.) and 82.92 (p.o.) L/m2. Both P8-D6 and its metabolites were detected in urine and feces. This study provides a basis for the clinical application of P8-D6 and has also identified P8-D6 mono as a very potent and metabolically stable drug candidate.
Collapse
Affiliation(s)
- Jonas Hildebrandt
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Dirk O. Bauerschlag
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
- Department
of Gynecology and Reproductive Medicine, Jena University Hospital, Jena 07747, Germany
| | - Gert Fricker
- Ruprecht-Karls
University, Institute of Pharmacy and Molecular Biotechnology, Heidelberg 69120, Germany
| | - Ulrich Girreser
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Björn Konukiewitz
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Franziska Kellers
- Department
of Pathology, University and University
Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Nicolai Maass
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| | - Bernd Clement
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
| | - Inken Flörkemeier
- Christian-Albrechts-University
Kiel, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, Kiel 24118, Germany
- Department
of Gynaecology and Obstetrics, University
and University Medical Center Schleswig-Holstein Campus Kiel, Kiel 24105, Germany
| |
Collapse
|
2
|
Chowdhary S, Preeti, Shekhar, Gupta N, Kumar R, Kumar V. Advances in chalcone-based anticancer therapy: mechanisms, preclinical advances, and future perspectives. Expert Opin Drug Discov 2024; 19:1417-1437. [PMID: 39621431 DOI: 10.1080/17460441.2024.2436908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Cancer remains a leading cause of death worldwide with traditional treatments like chemotherapy, and radiotherapy becoming less effective due to multidrug resistance (MDR). This highlights the necessity for novel chemotherapeutics like chalcone-based compounds, which demonstrate broad anti-cancer properties and target multiple pathways. These compounds hold promise for improving cancer treatment outcomes compared to existing therapies. AREAS COVERED This review provides a comprehensive synopsis of the recent literature (2018-2024) for anti-proliferative/anti-cancer activity of chalcones. It includes the identification of potential targets, their mechanisms of action, and possible modes of binding. Additionally, chalcone derivatives in preclinical trials are also discussed. EXPERT OPINION Chalcones mark a significant stride in anticancer therapies due to their multifaceted approach in targeting various cellular pathways. Their ability to simultaneously target multiple pathways enables them to overcome drug resistance as compared to traditional therapies. With well-defined mechanisms of action, these compounds can serve as lead molecules for designing new, more promising treatments. Continued progress in synthesis and structural optimization, along with promising results from preclinical trials, offers hope for the development of more potent molecules, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Nikita Gupta
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Aziz HA, El-Saghier AM, Badr M, Elsadek BEM, Abuo-Rahma GEDA, Shoman ME. Design, synthesis and mechanistic study of N-4-Piperazinyl Butyryl Thiazolidinedione derivatives of ciprofloxacin with Anticancer Activity via Topoisomerase I/II inhibition. Sci Rep 2024; 14:24101. [PMID: 39406816 PMCID: PMC11480511 DOI: 10.1038/s41598-024-73793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
A new group of thiazolidine-2,4-dione derivatives of ciprofloxacin having butyryl linker 3a-l was synthesized via an alkylation of thiazolidine-2,4-diones with butyryl ciprofloxacin with yield range 48-77% andfully characterized by various spectroscopic and analytical tools. Anti-cancer screening outcomes indicated that 3a and 3i possess antiproliferative activities against human melanoma LOX IMVI cancer cell line with IC50 values of 26.7 ± 1.50 and 25.4 ± 1.43 µM, respectively, using doxorubicin and cisplatin as positive controls with an IC50 of 7.03 ± 0.40 and 5.07 ± 0.29 µM, respectively. Additionally, compound 3j showed promising anticancer activity against human renal cancer A498 cell line with IC50 value of 33.9 ± 1.91 µM while doxorubicin and cisplatin showed IC50 values of 3.59 ± 0.20 and 7.92 ± 0.45, respectively. On the other hand, compound 3i did not show considerable anti-bacterial activity against S. aureus, E. coli and P. aeruginosa, and only moderate activity against K. pneumoniae with only a tenth of the activity of ciprofloxacin, confirming the cytotoxicity observed. Mechanistically, compound 3i inhibited both topoisomerase I and II with IC50 of 4.77 ± 0.26 and 15 ± 0.81 µM. Furthermore, it induced cell cycle arrest at S phase in melanoma LOX IMVI cells. Moreover, 3i provoked substantial levels of early, late apoptosis and necrosis in melanoma LOX IMVI cell line comparable to that induced by doxorubicin. Furthermore, compound 3i increased the expression level of active caspase-3 by 49 folds higher in LOX IMVI cell, increased protein expression level of Bax more than the control by 3 folds and inhibited PARP-1by 33% in LOX IMVI. All results were supported by theoretical docking studies on both tested enzymes confirming potential cytotoxicity for the synthesized hybrids.
Collapse
Affiliation(s)
- Hossameldin A Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Valley University, New Valley, 72511, Egypt
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt
| | - Ahmed M El-Saghier
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Bakheet E M Elsadek
- Department of Biochemistry and Molecular Biology, Faculty of pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
- Department of Pharmaceutical Chemistry, Deraya University, New Minya, 61768, Minia, Egypt.
- Department of pharmaceutical chemistry, Deraya University, New Minia, 61768, Egypt.
| | - Mai E Shoman
- Department of Medicinal Chemistry, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
4
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
5
|
Sharma NK, Bahot A, Sekar G, Bansode M, Khunteta K, Sonar PV, Hebale A, Salokhe V, Sinha BK. Understanding Cancer's Defense against Topoisomerase-Active Drugs: A Comprehensive Review. Cancers (Basel) 2024; 16:680. [PMID: 38398072 PMCID: PMC10886629 DOI: 10.3390/cancers16040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Anjali Bahot
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Gopinath Sekar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Mahima Bansode
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Kratika Khunteta
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Priyanka Vijay Sonar
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Ameya Hebale
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Vaishnavi Salokhe
- Cancer and Translational Research Centre Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune 411033, Maharashtra, India; (N.K.S.); (A.B.); (G.S.); (M.B.); (K.K.); (P.V.S.); (A.H.); (V.S.)
| | - Birandra Kumar Sinha
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
6
|
Santos MB, de Azevedo Teotônio Cavalcanti M, de Medeiros E Silva YMS, Dos Santos Nascimento IJ, de Moura RO. Overview of the New Bioactive Heterocycles as Targeting Topoisomerase Inhibitors Useful Against Colon Cancer. Anticancer Agents Med Chem 2024; 24:236-262. [PMID: 38038012 DOI: 10.2174/0118715206269722231121173311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer globally, with high mortality. Metastatic CRC is incurable in most cases, and multiple drug therapy can increase patients' life expectancy by 2 to 3 years. Efforts are being made to understand the relationship between topoisomerase enzymes and colorectal cancer. Some studies have shown that higher expression of these enzymes is correlated to a poor prognosis for this type of cancer. One of the primary drugs used in the treatment of CRC is Irinotecan, which can be used in monotherapy or, more commonly, in therapeutic schemes such as FOLFIRI (Fluorouracil, Leucovorin, and Irinotecan) and CAPIRI (Capecitabine and Irinotecan). Like Camptothecin, Irinotecan and other compounds have a mechanism of action based on the formation of a ternary complex with topoisomerase I and DNA providing damage to it, therefore leading to cell death. Thus, this review focused on the principal works published in the last ten years that demonstrate a correlation between the inhibition of different isoforms of topoisomerase and in vitro cytotoxic activity against CRC by natural products, semisynthetic and synthetic compounds of pyridine, quinoline, acridine, imidazoles, indoles, and metal complexes. The results revealed that natural compounds, semisynthetic and synthetic derivatives showed potential in vitro cytotoxicity against several colon cancer cell lines, and this activity was often accompanied by the ability to inhibit both isoforms of topoisomerase (I and II), highlighting that these enzymes can be promising targets for the development of new chemotherapy against CRC. Pyridine analogs were considered the most promising for this study, while the evaluation of the real potential of natural products was limited by the lack of information in their work. Moreover, the complexes, although promising, presented as the main limitation the lack of selectivity.
Collapse
Affiliation(s)
- Mirelly Barbosa Santos
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Misael de Azevedo Teotônio Cavalcanti
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Yvnni Maria Sales de Medeiros E Silva
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| | - Igor José Dos Santos Nascimento
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Departament of Pharmacy, Cesmac University Center, Maceió, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program in Pharmaceutical Sciences, State University of Paraíba, Campina Grande, 58429-500, Brazil
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, Campina Grande, 58429-500, Brazil
| |
Collapse
|
7
|
Iacopetta D, Costabile C, La Chimia M, Mariconda A, Ceramella J, Scumaci D, Catalano A, Rosano C, Cuda G, Sinicropi MS, Longo P. NHC-Ag(I) and NHC-Au(I) Complexes with N-Boc-Protected α-Amino Acidate Counterions Powerfully Affect the Growth of MDA-MB-231 Cells. ACS Med Chem Lett 2023; 14:1567-1575. [PMID: 37974945 PMCID: PMC10641922 DOI: 10.1021/acsmedchemlett.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
N-Heterocyclic carbene (NHC) metal complexes are attracting scientists' interest as an alluring class of metallodrugs. Indeed, the versatile functionalization of NHC ligands makes them optimal scaffolds to be developed in medicinal chemistry. Besides, amino acids are great biological ligands for metals, such as silver and gold, even though their use is still under-investigated. Aiming to shed light on the anticancer properties of this kind of complex, we investigated a series of silver and gold complexes, stabilized by NHC ligands and bearing carboxylate salts of tert-butyloxycarbonyl (Boc)-N-protected glycine and l-phenylalanine as anionic ligands. The most active complexes, AuM1Gly and AuM1Phe, powerfully affect the growth of MDA-MB-231 breast cancer cells, with IC50 values in the low nanomolar range. Further studies demonstrated the blockade of the human topoisomerase I activity and actin polymerization reaction at 0.001 μM. These unique features make these complexes very interesting and worthy to be used for future in vivo studies.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Chiara Costabile
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| | - Marina La Chimia
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Annaluisa Mariconda
- Department
of Science, University of Basilicata, Viale dell’Ateneo Lucano
10, 85100 Potenza, Italy
| | - Jessica Ceramella
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Domenica Scumaci
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Alessia Catalano
- Department
of Pharmacy−Drug Sciences, University
of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Camillo Rosano
- U.O.
Proteomica e Spettrometria di Massa, IRCCS
Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Giovanni Cuda
- Laboratory
of Proteomics, Department of Experimental and Clinical Medicine, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
- Research
Center on Advanced Biochemistry and Molecular Biology, Magna Græcia University of Catanzaro, S Venuta University Campus, 88100 Catanzaro, Italy
| | - Maria Stefania Sinicropi
- Department
of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department
of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy
| |
Collapse
|
8
|
Gok E, Unal N, Gungor B, Karakus G, Kaya S, Canturk P, Katin KP. Evaluation of the Anticancer and Biological Activities of Istaroxime via Ex Vivo Analyses, Molecular Docking and Conceptual Density Functional Theory Computations. Molecules 2023; 28:7458. [PMID: 38005181 PMCID: PMC10672917 DOI: 10.3390/molecules28227458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that occurs as a result of abnormal or uncontrolled growth of cells due to DNA damage, among many other causes. Certain cancer treatments aim to increase the excess of DNA breaks to such an extent that they cannot escape from the general mechanism of cell checkpoints, leading to the apoptosis of mutant cells. In this study, one of the Sarco-endoplasmic reticulum Ca2+ATPase (SERCA2a) inhibitors, Istaroxime, was investigated. There has been very limited number of articles so far reporting Istaroxime's anticancer activity; thus, we aimed to evaluate the anticancer effects of Istaroxime by cell proliferation assay and revealed the cytotoxic activity of the compound. We further determined the interaction of Istaroxime with topoisomerase enzymes through enzyme activity tests and detailed molecular modeling analysis. Istaroxime exhibited an antiproliferative effect on A549, MCF7, and PC3 cell lines and inhibited Topoisomerase I, suggesting that Istaroxime can act as a Topoisomerase I inhibitor under in vitro conditions. Molecular docking analysis supported the experimental observations. A chemical reactivity analysis of the Istaroxime molecule was made in the light of Density Functional Theory computations. For this aim, important chemical reactivity descriptors such as hardness, electronegativity, and electrophilicity were computed and discussed as detailed.
Collapse
Affiliation(s)
- Ege Gok
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Naz Unal
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Burcin Gungor
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Gulderen Karakus
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Pakize Canturk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Konstantin P. Katin
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
| |
Collapse
|
9
|
Li J, Wang Z, Chen Z, Xue X, Lin K, Chen H, Pan L, Yuan Y, Ma Z. Silver complexes with substituted terpyridines as promising anticancer metallodrugs and their crystal structure, photoluminescence, and DNA interactions. Dalton Trans 2023; 52:9607-9621. [PMID: 37377144 DOI: 10.1039/d2dt03463h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Six silver hexafluoroantimonate complexes (1-6) with 4'-(4'-substituted-phenyl)-2,2':6',2''-terpyridine compounds bearing hydrogen (L1), methyl (L2), methylsulfonyl (L3), chloro (L4), bromo (L5) and iodo (L6) were prepared and characterized by 1H NMR, 13C NMR, IR, elemental analysis and single crystal X-ray diffraction. All the compounds exhibit interesting photoluminescence properties in the solid state and solution. In vitro data demonstrate that all of them show higher antiproliferative activities than cisplatin against three human carcinoma cell lines, A549, Eca-109 and MCF-7. Compound 3 exhibits the lowest IC50 value (2.298 μM) against A549 cell lines, which is 2.963 μM for 4 against Eca-109 and 1.830 μM for 1 against MCF-7. For silver halogen-substituted terpyridine compounds, their anticancer activities decrease following the sequence of -Cl, -Br, and -I substituents. The comparison results show that their anticancer activity is significantly higher than that of their free ligands. The DNA interaction was studied by fluorescence titration, circular dichroism spectroscopy and molecular modeling methods. Spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalators and molecular docking studies indicate that the binding is contributed by the π-π stacking and hydrogen bonds. The DNA binding ability of the complexes has been correlated with their anticancer activities, which could potentially provide a new rationale for the future design of terpyridine-based metal complexes with antitumor potential.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Zhiyuan Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Zhongting Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University, Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, People's Republic of China
| | - Xingyong Xue
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Kejuan Lin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, People's Republic of China
| | - Yulin Yuan
- Department of Laboratory Medicine, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, People's Republic of China.
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China.
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| |
Collapse
|
10
|
Yang H, Qin C, Wu M, Wang FT, Wang W, Agama K, Pommier Y, Hu DX, An LK. Synthesis and Biological Activities of 11- and 12-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. ChemMedChem 2023; 18:e202200593. [PMID: 36932053 PMCID: PMC10233710 DOI: 10.1002/cmdc.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Herein, a series of 11- or 12-substituted benzophenanthridinone derivatives was designed and synthesized for the discovery of dual topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Enzyme-based assays indicated that two compounds 12 and 38 showed high TOP1 inhibitory potency (+++), and four compounds 35, 37, 39 and 43 showed good TDP1 inhibition with IC50 values ranging from 10 to 18 μM. 38 could induce cellular TOP1cc formation, resulting in the highest cytotoxicity against HCT-116 cells (0.25 μM). The most potent TDP1 inhibitor 43 (10 μM) could induce cellular TDP1cc formation and enhance topotecan-induced DNA damage and showed strong synergistic cytotoxicity with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Chao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Geetha R, Meera MR, Vijayakumar C, Premkumar R, Milton Franklin Benial A. Synthesis, spectroscopic characterization, molecular docking and in vitro cytotoxicity investigations on 8-Amino-6-Methoxy Quinolinium Picrate: a novel breast cancer drug. J Biomol Struct Dyn 2023; 41:1753-1766. [PMID: 34984960 DOI: 10.1080/07391102.2021.2024259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Density Functional Theory (DFT) studies of the 8-Amino-6-Methoxy Quinolinium Picrate (8A6MQP) molecule have been carried out with extensive and accurate investigations of detailed vibrational and spectroscopic investigations as well as validated experimentally. The 8A6MQP sample was synthesized and characterized using FT-IR, FT-Raman, FT-NMR and UV-Vis spectroscopic techniques. Subsequently, the optimized molecular structure and harmonic resonance frequencies of the molecule were computed based on DFT/B3LYP method with a 6-311G++(d,p) basis set using the Gaussian 09 program. The experimental and calculated vibrational wavenumbers were assigned. The absorption spectrum of the molecule was computed in the liquid phase (ethanol), which exhibits n to л* electronic transition and compared with the observed UV-Vis spectrum. Frontier molecular orbital analysis shows the molecular reactivity and kinetic stability of the molecule. The Mulliken atomic charge distribution and molecular electrostatic potential surface analysis of the molecule validate the reactive site of the molecule. The natural bond orbital analysis proves the bioactivity of the molecule. Molecular docking analysis indicates that the 8A6MQP molecule inhibits the action of DNA topoisomerase 2-alpha protein, which is associated with breast cancer. In addition, the in vitro cytotoxicity analysis of the 8A6MQP molecule against human cervical cancer cell lines (ME180) and human breast cancer cell lines (MDA MB 231) were determined by MTT assay, which evidences that the title molecule exhibits higher inhibition against the breast cancer cell lines compared to that of cervical cancer cell lines. Hence, the present study paves the way for the development of novel drugs in the treatment of breast cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- R Geetha
- Research scholar, Department of Physics, St. Jude's College, Thoothoor, Affiliated to Manonmanium Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - M R Meera
- Department of Physics, Sree Ayyappa College for Women, Chunkankadai, Nagercoil, Tamil Nadu, India
| | - C Vijayakumar
- Department of Physics, St. Jude's College, Thoothoor, Kanyakumari District, Tamil Nadu, India
| | - R Premkumar
- PG and Research Department of Physics, N.M.S.S.V.N. College, Madurai, Tamil Nadu, India
| | | |
Collapse
|
12
|
Li D, Chen X, Yan R, Jiang Z, Zhou B, Lv B. G-quadruplex-containing oligodeoxynucleotides as DNA topoisomerase I inhibitors. Int J Biol Macromol 2022; 223:281-289. [PMID: 36356864 DOI: 10.1016/j.ijbiomac.2022.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
DNA topoisomerase I was found to be highly abundant in fast-proliferating tumor cells and is a potential target for anticancer therapy. A series of G-quadruplex-containing oligodeoxynucleotides (ODNs) were designed and used as inhibitors of DNA topoisomerase I. It was demonstrated that ODNs with G-quadruplexes can efficiently inhibit the supercoiled DNA relaxation reaction catalyzed by DNA topoisomerase I. Compared with the other conformations, the parallel propeller-type G-quadruplex was the most efficient DNA topoisomerase I inhibitor. Further studies revealed that integrating G-quadruplexes with duplexes to form quadruplex-duplex hybrids could significantly improve the inhibition efficiency. In addition, a circular ODN that consists of a G-quadruplex motif and DNA topoisomerase I binding site was synthesized and used as a DNA topoisomerase I inhibitor. The results showed that the particularly designed circular ODN displayed high inhibitory efficiency on the activity of DNA topoisomerase I with an IC50 value of 54.8 nM. Moreover, the circular ODN exhibited excellent thermal stability and nuclease resistance. Considering the low cytotoxicity of DNA-based biopharmaceuticals, the design strategy and results reported in this study may shed new light on nucleic acid-based DNA topoisomerase I inhibitor construction for potential anticancer drugs.
Collapse
Affiliation(s)
- Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiyu Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rumeng Yan
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Zeshan Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bing Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Bei Lv
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China.
| |
Collapse
|
13
|
Dual Targeting Topoisomerase/G-Quadruplex Agents in Cancer Therapy-An Overview. Biomedicines 2022; 10:biomedicines10112932. [PMID: 36428499 PMCID: PMC9687504 DOI: 10.3390/biomedicines10112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Topoisomerase (Topo) inhibitors have long been known as clinically effective drugs, while G-quadruplex (G4)-targeting compounds are emerging as a promising new strategy to target tumor cells and could support personalized treatment approaches in the near future. G-quadruplex (G4) is a secondary four-stranded DNA helical structure constituted of guanine-rich nucleic acids, and its stabilization impairs telomere replication, triggering the activation of several protein factors at telomere levels, including Topos. Thus, the pharmacological intervention through the simultaneous G4 stabilization and Topos inhibition offers a new opportunity to achieve greater antiproliferative activity and circumvent cellular insensitivity and resistance. In this line, dual ligands targeting both Topos and G4 emerge as innovative, efficient agents in cancer therapy. Although the research in this field is still limited, to date, some chemotypes have been identified, showing this dual activity and an interesting pharmacological profile. This paper reviews the available literature on dual Topo inhibitors/G4 stabilizing agents, with particular attention to the structure-activity relationship studies correlating the dual activity with the cytotoxic activity.
Collapse
|
14
|
Transcriptomics and Proteomics Characterizing the Anticancer Mechanisms of Natural Rebeccamycin Analog Loonamycin in Breast Cancer Cells. Molecules 2022; 27:molecules27206958. [PMID: 36296549 PMCID: PMC9611194 DOI: 10.3390/molecules27206958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
The present study is to explore the anticancer effect of loonamycin (LM) in vitro and in vivo, and investigate the underlying mechanism with combined multi-omics. LM exhibited anticancer activity in human triple negative breast cancer cells by promoting cell apoptosis. LM administration inhibited the growth of MDA-MB-468 tumors in a murine xenograft model of breast cancer. Mechanistic studies suggested that LM could inhibit the topoisomerase I in a dose-dependent manner in vitro experiments. Combined with the transcriptomics and proteomic analysis, LM has a significant effect on O-glycan, p53-related signal pathway and EGFR/PI3K/AKT/mTOR signal pathway in enrichment of the KEGG pathway. The GSEA data also suggests that the TNBC cells treated with LM may be regulated by p53, O-glycan and EGFR/PI3K/AKT/mTOR signaling pathway. Taken together, our findings predicted that LM may target p53 and EGFR/PI3K/AKT/mTOR signaling pathway, inhibiting topoisomerase to exhibit its anticancer effect.
Collapse
|
15
|
Qin T, Ma YY, Dong CE, Wu WL, Feng YY, Yang S, Su JB, Si XX, Wang XJ, Shi DH. Design, synthesis, cytotoxicity evaluation and molecular docking studies of 1,4-naphthoquinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Pan X, Mao TY, Mai YW, Liang CC, Huang WH, Rao Y, Huang ZS, Huang SL. Discovery of Quinacrine as a Potent Topo II and Hsp90 Dual-Target Inhibitor, Repurposing for Cancer Therapy. Molecules 2022; 27:molecules27175561. [PMID: 36080326 PMCID: PMC9458065 DOI: 10.3390/molecules27175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Topo II and Hsp90 are promising targets. In this study, we first verified the structural similarities between Topo IIα ATPase and Hsp90α N−ATPase. Subsequently, 720 compounds from the Food and Drug Administration (FDA) drug library and kinase library were screened using the malachite green phosphate combination with the Topo II-mediated DNA relaxation and MTT assays. Subsequently, the antimalarial drug quinacrine was found to be a potential dual−target inhibitor of Topo II and Hsp90. Mechanistic studies showed that quinacrine could specifically bind to the Topo IIα ATPase domain and inhibit the activity of Topo IIα ATPase without impacting DNA cleavage. Furthermore, our study revealed that quinacrine could bind Hsp90 N−ATPase and inhibit Hsp90 activity. Significantly, quinacrine has broad antiproliferation activity and remains sensitive to the multidrug−resistant cell line MCF−7/ADR and the atypical drug−resistant tumor cell line HL−60/MX2. Our study identified quinacrine as a potential dual−target inhibitor of Topo II and Hsp90, depending on the ATP−binding domain, positioning it as a hit compound for further structural modification.
Collapse
Affiliation(s)
- Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Teng-yu Mao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan-wen Mai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng-cheng Liang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei-hao Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Rao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510120, China
| | - Shi-liang Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-20-39943053; Fax: +86-20-39943056
| |
Collapse
|
17
|
Zhang X, Yang T, Jin X, Lin K, Dai X, Gao T, Huang G, Fan M, Ma L, Liu Z, Cao J. Synthesis and biological evaluation of cytotoxic activity of novel podophyllotoxin derivatives incorporating piperazinyl-cinnamic amide moieties. Bioorg Chem 2022; 123:105761. [DOI: 10.1016/j.bioorg.2022.105761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022]
|
18
|
Mohammed HHH, Abd El-Hafeez AA, Ebeid K, Mekkawy AI, Abourehab MAS, Wafa EI, Alhaj-Suliman SO, Salem AK, Ghosh P, Abuo-Rahma GEDA, Hayallah AM, Abbas SH. New 1,2,3-triazole linked ciprofloxacin-chalcones induce DNA damage by inhibiting human topoisomerase I& II and tubulin polymerization. J Enzyme Inhib Med Chem 2022; 37:1346-1363. [PMID: 35548854 PMCID: PMC9116245 DOI: 10.1080/14756366.2022.2072308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Amer Ali Abd El-Hafeez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Cancer Biology Department, Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Kareem Ebeid
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Manufacturing, Deraya University, New Minia City, Minia, Egypt
| | - Aml I Mekkawy
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA.,Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Alaa M Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
19
|
Martín-Encinas E, Selas A, Palacios F, Alonso C. The design and discovery of topoisomerase I inhibitors as anticancer therapies. Expert Opin Drug Discov 2022; 17:581-601. [PMID: 35321631 DOI: 10.1080/17460441.2022.2055545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Cancer has been identified as one of the leading causes of death worldwide. The biological target of some anticancer agents is topoisomerase I, an enzyme involved in the relaxation of supercoiled DNA. The synthesis of new compounds with antiproliferative effect and behaving as topoisomerase I inhibitors has become an active field of research. Depending on their mechanism of inhibition, they can be classified as catalytic inhibitors or poisons. AREAS COVERED This review article summarizes the state of the art for the development of selective topoisomerase I inhibitors. Collected compounds showed inhibition of the enzyme, highlighting those approved for clinical use, the combination therapies developed, as well as related drawbacks and future focus. EXPERT OPINION Research related to topoisomerase I inhibitors in cancer therapy started with camptothecin (CPT). This compound was first selected as a good anticancer agent and then topoisomerase I was identified as its therapeutic target. Derivatives of CPT irinotecan, topotecan, and belotecan are the only clinically approved inhibitors. Currently, their limitations are being addressed by different stretegies. Future studies should focus not only on developing other active molecules but also on improving the bioavailability and pharmacokinetics of potent synthetic derivatives.
Collapse
Affiliation(s)
- Endika Martín-Encinas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Asier Selas
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| | - Concepción Alonso
- Departamento de Química Orgánica I - Centro de Investigación Lascaray, Facultad de Farmacia, Universidad del País Vasco, Paseo de la Universidad 7, 01006 Vitoria, Spain
| |
Collapse
|
20
|
Dual-target inhibitors based on PARP1: new trend in the development of anticancer research. Future Med Chem 2022; 14:511-525. [PMID: 35257598 DOI: 10.4155/fmc-2021-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PARP1 is a hot target, and its inhibitors have been approved for cancer therapy. However, some undesirable properties restrict the application of PARP1 inhibitors, including drug resistance, side effects and low efficiency. For multifactorial diseases, dual-target drugs have exhibited excellent synergistic effects, such as reduced drug resistance, low side effects and high therapeutic efficacy, by simultaneously regulating the main pathogenic and compensatory signal pathways of diseases. In recent years, several dual-target inhibitors based on PARP1 have been reported and have demonstrated unique advantages. In this review we summarize the research progress in dual-target inhibitors based on PARP1 and discuss the related drug design strategies and structure-activity relationships. This work is expected to provide references for the development of PARP1 inhibitors.
Collapse
|
21
|
Drug Resistance and Endoplasmic Reticulum Stress in Hepatocellular Carcinoma. Cells 2022; 11:cells11040632. [PMID: 35203283 PMCID: PMC8870354 DOI: 10.3390/cells11040632] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide. It is usually diagnosed in an advanced stage and is characterized by a high intrinsic drug resistance, leading to limited chemotherapeutic efficacy and relapse after treatment. There is therefore a vast need for understanding underlying mechanisms that contribute to drug resistance and for developing therapeutic strategies that would overcome this. The rapid proliferation of tumor cells, in combination with a highly inflammatory microenvironment, causes a chronic increase of protein synthesis in different hepatic cell populations. This leads to an intensified demand of protein folding, which inevitably causes an accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum (ER). This process is called ER stress and triggers the unfolded protein response (UPR) in order to restore protein synthesis or—in the case of severe or prolonged ER stress—to induce cell death. Interestingly, the three different arms of the ER stress signaling pathways have been shown to drive chemoresistance in several tumors and could therefore form a promising therapeutic target. This review provides an overview of how ER stress and activation of the UPR contributes to drug resistance in HCC.
Collapse
|
22
|
Hao X, Deng J, Zhang H, Liang Z, Lei F, Wang Y, Yang X, Wang Z. Design, synthesis and bioactivity evaluation of novel N-phenyl-substituted evodiamine derivatives as potent anti-tumor agents. Bioorg Med Chem 2022; 55:116595. [PMID: 34990980 DOI: 10.1016/j.bmc.2021.116595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 02/09/2023]
Abstract
Natural products are important sources for the development of therapeutic medicine, among which evodia fruit has a wide range of medicinal properties in traditional Chinese medicine. Evodiamine, the main active component of evodia fruit, has various anti-cancer effects and has been proved to be a Topo inhibitor. From our previous attempts of modifying evodiamine, we found that the N14 phenyl substituted derivatives had showed great anti-tumor activity, which prompted us to further explore the novel structures and activities of these compounds. Compound 6f, as a N14 3-fluorinated phenyl substituted evodiamine derivative, showed a certain inhibitory activity against Topo I at 200 μM. By studying its anti-tumor effects in vitro, compound 6f could inhibit proliferation and induce apoptosis, as well as arrest the cell cycle of HGC-27 and HT-29 cell lines at G2/M phase in a concentration-dependent manner. Moreover, compound 6f could inhibit the migration and invasion of HGC-27 cell lines. Meanwhile, compound 6f could induce apoptosis of HGC-27 cells by inhibiting PI3K/AKT pathway. Overall, this work demonstrated that the N14 phenyl-substituted evodiamine derivatives had a good inhibitory effect on tumor cells in vitro, providing a promising strategy for developing potential anticancer agents for the treatment of gastrointestinal tumors.
Collapse
Affiliation(s)
- Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Jiedan Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Ziyi Liang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fang Lei
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuqing Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
23
|
Hwang SY, Shrestha A, Park S, Bist G, Kunwar S, Kadayat TM, Jang H, Seo M, Sheen N, Kim S, Jeon KH, Lee ES, Kwon Y. Identification of new halogen-containing 2,4-diphenyl indenopyridin-5-one derivative as a boosting agent for the anticancer responses of clinically available topoisomerase inhibitors. Eur J Med Chem 2022; 227:113916. [PMID: 34678573 DOI: 10.1016/j.ejmech.2021.113916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Based on previous reports on the significance of halogen moieties and the indenopyridin-5-one skeleton, we designed and synthesized a novel series of halogen (F-, Cl-, Br-, CF3- and OCF3-)-containing 2,4-diphenyl indenopyridin-5-ones and their corresponding -5-ols. Unlike indenopyridin-5-ols, most of the prepared indenopyridin-5-ones with Cl-, Br-, and CF3- groups at the 2-phenyl ring conferred a strong dual topoisomerase I/IIα inhibitory effect. Among the series, para-bromophenyl substituted compound 9 exhibited the most potent topoisomerase inhibition and antiproliferative effects, which showed dependency upon the topoisomerase gene expression level of diverse cancer cells. In particular, as a DNA minor groove-binding non-intercalative topoisomerase I/IIα catalytic inhibitor, compound 9 synergistically promoted the anticancer efficacy of clinically applied topoisomerase I/IIα poisons both in vitro and in vivo, having the great advantage of alleviating poison-related toxicities.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ganesh Bist
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Surendra Kunwar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Tara Man Kadayat
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Haejin Jang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minjung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Naeun Sheen
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seojeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
24
|
Klausz K, Kellner C, Gehlert CL, Krohn S, Wilcken H, Floerkemeier I, Günther A, Bauerschlag DO, Clement B, Gramatzki M, Peipp M. The Novel Dual Topoisomerase Inhibitor P8-D6 Shows Anti-myeloma Activity In Vitro and In Vivo. Mol Cancer Ther 2021; 21:70-78. [PMID: 34725192 DOI: 10.1158/1535-7163.mct-21-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
P8-D6 is a novel dual inhibitor of human topoisomerase I (TOP1) and II (TOP2) with broad pro-apoptotic antitumor activity. NCI-60 screening revealed markedly improved cytotoxicity of P8-D6 against solid and leukemia cell lines compared with other single and dual topoisomerase inhibitors, for example, irinotecan, doxorubicin, or pyrazoloacridine. In this study, we investigated the capacity of P8-D6 to inhibit myeloma cell growth in vitro and in vivo Growth inhibition assays demonstrated significant anti-myeloma effects against different myeloma cell lines with IC50 values in the low nanomolar range. Freshly isolated plasma cells of patients with multiple myeloma were killed by P8-D6 with similar doses. P8-D6 activated caspase 3/7 and induced significant apoptosis of myeloma cells. Supportive effects of bone marrow stromal cells on IL6-dependent INA-6 myeloma cells were abrogated by P8-D6 and apoptosis occurred in a time- and dose-dependent manner. Of note, healthy donor peripheral blood mononuclear cells and human umbilical vein endothelial cells were not affected at concentrations toxic for malignant plasma cells. Treatment of myeloma xenografts in immunodeficient SCID/beige mice by intravenous and, notably, also oral application of P8-D6 markedly inhibited tumor growths, and significantly prolonged survival of tumor-bearing mice.
Collapse
Affiliation(s)
- Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany.
| | - Christian Kellner
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Carina Lynn Gehlert
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Steffen Krohn
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Hauke Wilcken
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Inken Floerkemeier
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Günther
- Helios Clinics Schwerin, Hematology/Oncology/Stem Cell Transplantation, Schwerin, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Bernd Clement
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, Christian-Albrechts-University, Kiel, Germany
| | - Martin Gramatzki
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Campus Kiel, and Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
25
|
Zhang J, Xie S, Zhou L, Tang X, Guan X, Deng M, Zheng H, Wang Y, Lu R, Guo L. Up-regulation of GSTT1 in serous ovarian cancer associated with resistance to TAXOL / carboplatin. J Ovarian Res 2021; 14:122. [PMID: 34535163 PMCID: PMC8447655 DOI: 10.1186/s13048-021-00873-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Serous ovarian cancer (SOC) is the most common women cancer and the leading cause of cancer-related mortality among the gynaecological malignancies. Although effective chemotherapeutics combined with surgery are developed for the treatment, the five-year survival rate is unsatisfactory due to chemoresistance. To overcome this shortcoming of chemotherapy, we established taxol and carboplatin resistant SOC cell lines for the understandings of the molecular and cellular mechanisms of chemoresistance. Here, we found that these chemoresistant cell lines showed less viability and proliferation, due to more cells arrested at G0/G1 phase. Glutathione-S-transferases-theta1 (GSTT1) was significantly upregulated in these chemoresistant cells, along with other chemoresistant genes. Meanwhile, GSTT1 expression was also significantly upregulated in the SOC patient tissues after taxol treatment, indicating this upregulation was physiologically relevant to chemotherapy. Further, suppression of GSTT1 expression by shRNA in SOC cell lines led to more sensitivity to drug treatment, through increasing divided cells and promoting cell death. Moreover, the expression of DNA topoisomerase 1 (Topo I) was in synergy with that of GSTT1 in the chemoresistant cells, and GSTT1 can bind to Topo I in vitro, which suggested GSTT1 could function through DNA repair mechanism during chemoresistance. In summary, our data imply that GSTT1 may be a potential biomarker or indicator of drug resistance in serous ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Lei Zhou
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Xiaoyu Tang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Xiaolin Guan
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minjie Deng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Hu DX, Tang WL, Zhang Y, Yang H, Wang W, Agama K, Pommier Y, An LK. Synthesis of Methoxy-, Methylenedioxy-, Hydroxy-, and Halo-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB (TOP1) and Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors and Their Biological Activity for Drug-Resistant Cancer. J Med Chem 2021; 64:7617-7629. [PMID: 34008967 PMCID: PMC10087287 DOI: 10.1021/acs.jmedchem.1c00318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a recently discovered DNA repair enzyme, tyrosyl-DNA phosphodiesterase 1 (TDP1) removes topoisomerase IB (TOP1)-mediated DNA protein cross-links. Inhibiting TDP1 can potentiate the cytotoxicity of TOP1 inhibitors and overcome cancer cell resistance to TOP1 inhibitors. On the basis of our previous study, herein we report the synthesis of benzophenanthridinone derivatives as TOP1 and TDP1 inhibitors. Seven compounds (C2, C4, C5, C7, C8, C12, and C14) showed a robust TOP1 inhibitory activity (+++ or ++++), and four compounds (A13, C12, C13, and C26) showed a TDP1 inhibition (half-maximal inhibitory concentration values of 15 or 19 μM). We also show that the dual TOP1 and TDP1 inhibitor C12 induces both cellular TOP1cc, TDP1cc formation and DNA damage, resulting in cancer cell apoptosis at a sub-micromolar concentration. In addition, C12 showed an enhanced activity in drug-resistant MCF-7/TDP1 cancer cells and was synergistic with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Lin Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda 20892, Maryland, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China
| |
Collapse
|
27
|
Design, Synthesis, and Molecular Docking Study of New Tyrosyl-DNA Phosphodiesterase 1 (TDP1) Inhibitors Combining Resin Acids and Adamantane Moieties. Pharmaceuticals (Basel) 2021; 14:ph14050422. [PMID: 34062881 PMCID: PMC8147275 DOI: 10.3390/ph14050422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/26/2023] Open
Abstract
In this paper, a series of novel abietyl and dehydroabietyl ureas, thioureas, amides, and thioamides bearing adamantane moieties were designed, synthesized, and evaluated for their inhibitory activities against tyrosil-DNA-phosphodiesterase 1 (TDP1). The synthesized compounds were able to inhibit TDP1 at micromolar concentrations (0.19–2.3 µM) and demonstrated low cytotoxicity in the T98G glioma cell line. The effect of the terpene fragment, the linker structure, and the adamantane residue on the biological properties of the new compounds was investigated. Based on molecular docking results, we suppose that adamantane derivatives of resin acids bind to the TDP1 covalent intermediate, forming a hydrogen bond with Ser463 and hydrophobic contacts with the Phe259 and Trp590 residues and the oligonucleotide fragment of the substrate.
Collapse
|
28
|
Chrabąszcz K, Błauż A, Gruchała M, Wachulec M, Rychlik B, Plażuk D. Synthesis and Biological Activity of Ferrocenyl and Ruthenocenyl Analogues of Etoposide: Discovery of a Novel Dual Inhibitor of Topoisomerase II Activity and Tubulin Polymerization. Chemistry 2021; 27:6254-6262. [PMID: 33465263 DOI: 10.1002/chem.202005133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Two series of the ferrocenyl and ruthenocenyl analogues of etoposide bearing 1,2,3-triazolyl or aminoalkyl linker were synthesized and evaluated for their cytotoxic properties, influence on the cell cycle, ability to induce tubulin polymerization, and inhibition of topoisomerase II activity. We found that the replacement of the etoposide carbohydrate moiety with a metallocenyl group led to organometallic conjugates exhibiting differentiated antiproliferative activity. Biological studies demonstrated that two ferrocenylalkylamino conjugates were notably more active than etoposide, with submicromolar or low-micromolar IC50 values towards SW620, etoposide-resistant SW620E, and methotrexate-resistant SW620M cancer cell lines. Moreover, the simplest ferrocenylmethylamino conjugate exerted dual inhibitory action against tubulin polymerization and topoisomerase II activity while other studied compounds affected only topoisomerase II activity.
Collapse
Affiliation(s)
- Karolina Chrabąszcz
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| | - Andrzej Błauż
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Martyna Gruchała
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Marcin Wachulec
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Błażej Rychlik
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 90236, Łódź, Poland
| | - Damian Plażuk
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, ul. Tamka 12, 91403, Łódź, Poland
| |
Collapse
|
29
|
Zhuang XC, Zhang YL, Chen GL, Liu Y, Hu XL, Li N, Wu JL, Guo MQ. Identification of Anti-Inflammatory and Anti-Proliferative Neolignanamides from Warburgia ugandensis Employing Multi-Target Affinity Ultrafiltration and LC-MS. Pharmaceuticals (Basel) 2021; 14:ph14040313. [PMID: 33915848 PMCID: PMC8065987 DOI: 10.3390/ph14040313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Previous reports have illustrated that the incidence and mortality of cancer are increasing year by year worldwide. In addition, the occurrence, development, recurrence and metastasis of cancer are closely related to inflammation, which is a kind of defensive response of human body to various stimuli. As an important medicinal plant in Africa, Warburgia ugandensis has been reported to have certain anti-inflammatory and anti-proliferative activities, but its specific components and mechanisms of action remain elusive. To tackle this challenge, affinity ultrafiltration with drug targets of interest coupled to high-performance liquid chromatography-mass spectrometry (AUF-HPLC-MS/MS) could be utilized to quickly screen out bioactive constituents as ligands against target enzymes from complex extracts of this plant. AUF-HPLC-MS/MS with four drug targets, i.e., cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), topoisomerase I (Top I) and topoisomerase II (Top II) were used to rapidly screen and characterize the anti-inflammatory and anti-proliferative natural ligands from W. ugandensis, and the resulting potential active compounds as ligands with specific binding affinity to COX-2, 5-LOX, Top I and Top II, were isolated with modern separation and purification techniques and identified with spectroscopic method like NMR, and then their antiinflammatory and anti-proliferative activities were tested to verify the screening results from AUF-HPLC-MS/MS. Compounds 1 and 2, which screened out and identified from W. ugandensis showed remarkable binding affinity to COX-2, 5-LOX, Top I and Top II with AUF-HPLC-MS/MS. In addition, 1 new compound (compound 3), together with 5 known compounds were also isolated and identified from W. ugandensis. The structure of compound 3 was elucidated by extensive 1D, 2D NMR data and UPLC-QTOF-MS/MS. Furthermore, compounds 1 and 2 were further proved to possess both anti-inflammatory and anti-proliferative activities which are in good agreement with the screening results using AUF-HPLC-MS/MS. This work showcased an efficient method for quickly screening out bioactive components with anti-inflammatory and anti-proliferative activity from complex medicinal plant extracts using AUF-HPLC-MS/MS with target enzymes of interest, and also demonstrated that neolignanamides (compounds 1 and 2) from W. ugandensis would be the active components responsible for its anti-inflammatory and anti-proliferative activity with the potential to treat cancer and inflammation.
Collapse
Affiliation(s)
- Xiao-Cui Zhuang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Yong-Li Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gui-Lin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ye Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao-Lan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; (X.-L.H.); (N.L.); (J.-L.W.)
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (X.-C.Z.); (Y.-L.Z.); (G.-L.C.); (Y.L.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-027-87700850
| |
Collapse
|
30
|
Guarra F, Pratesi A, Gabbiani C, Biver T. A focus on the biological targets for coinage metal-NHCs as potential anticancer complexes. J Inorg Biochem 2021; 217:111355. [PMID: 33596529 DOI: 10.1016/j.jinorgbio.2021.111355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Metal complexes of N-heterocyclic carbene (NHC) ligands are the object of increasing attention for therapeutic purposes. Among the different metal centres, interest on Au-based compounds started with the application as anti-arthritis drugs. On the other hand, Ag(I) antimicrobial properties have been known for a long time. For Au(I)/Au(III)-NHC and Ag(I)-NHC anti-tumour and anti-proliferative properties have been quite recently demonstrated. In addition to these and as for Group 11, copper is a much less investigated metal centre, but a few papers underline its pharmacological potential. This review wants to focus on the different biological targets for these metal-based compounds. It is divided into chapters which are respectively devoted on: i) mitochondria and thiol oxidoreductase systems; ii) other relevant enzymes; iii) nucleic acids. Examples of representative coinage NHCs for each of the targets are provided together with significant references on recent advances on the topic. Moreover, a final comment summarises the aspects enlightened by each chapter and provides some hints to better understand the metal-NHCs mechanistic behaviour based on structure-activity relationships.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| |
Collapse
|
31
|
Sabnis RW. Novel Oxopyrido[1,2- a]pyrimidine Compounds for Treating Bacterial Infection. ACS Med Chem Lett 2021; 12:324-325. [PMID: 33738054 DOI: 10.1021/acsmedchemlett.1c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1230 Peachtree Street NE, Suite 3100, Atlanta, Georgia 30309, United States
| |
Collapse
|