1
|
Nimer RM, Arjah S, Obeidat M, Jaradat SA, Zenati RA, Bustanji Y, Semreen MH, Dahabiyeh LA. Untargeted LC-MS/MS- based metabolomics profiling of colorectal cancer cell lines reveals potential hypoxia-associated biomarkers. J Pharm Biomed Anal 2025; 263:116912. [PMID: 40306139 DOI: 10.1016/j.jpba.2025.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/02/2025]
Abstract
Colorectal cancer (CRC), a common cancer of the large intestine, is influenced by metabolic reprogramming due to hypoxia. Novel biomarkers may be identified through metabolomics. While many CRC studies have reported metabolomic profiling, the metabolic profile of CRC in the context of oxygen content has yet to be elucidated. Comprehending the metabolic alterations in cancer cells transitioning from normoxia (NMX) to hypoxia (HPX) and anoxia (ANX) is essential for the formulation of drugs that target particular metabolic pathways. Our study aimed to find metabolic changes in the HCT-116 CRC cell line under ANX, HPX, and NMX conditions, as well as to investigate novel biomarkers for CRC utilizing liquid chromatography-mass spectrometry (LC-MS/MS) based metabolomics approaches. Our findings showed significant changes in 77 metabolites in HCT-116 CRC cells across ANX, HPX, and NMX conditions, with 34 metabolites significantly disrupted in HPX compared to NMX, and 64 metabolites significantly changed in HPX compared to ANX. Significant differences included glutathione, gamma-glutamylcysteine, glycerophosphocholine, adenosine monophosphate, 5'-methylthioadenosine, guanosine 5'-diphosphate, threonic acid, and L-acetylcarnitine. Comprehending the metabolic changes in HPX, ANX, and NMX may uncover new pathways that could be targeted for potential treatments.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Sara Arjah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Marya Obeidat
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saied A Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ruba A Zenati
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
2
|
Titkare N, Chaturvedi S, Borah S, Sharma N. Advances in mass spectrometry for metabolomics: Strategies, challenges, and innovations in disease biomarker discovery. Biomed Chromatogr 2024; 38:e6019. [PMID: 39370857 DOI: 10.1002/bmc.6019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
Mass spectrometry (MS) plays a crucial role in metabolomics, especially in the discovery of disease biomarkers. This review outlines strategies for identifying metabolites, emphasizing precise and detailed use of MS techniques. It explores various methods for quantification, discusses challenges encountered, and examines recent breakthroughs in biomarker discovery. In the field of diagnostics, MS has revolutionized approaches by enabling a deeper understanding of tissue-specific metabolic changes associated with disease. The reliability of results is ensured through robust experimental design and stringent system suitability criteria. In the past, data quality, standardization, and reproducibility were often overlooked despite their significant impact on MS-based metabolomics. Progress in this field heavily depends on continuous training and education. The review also highlights the emergence of innovative MS technologies and methodologies. MS has the potential to transform our understanding of metabolic landscapes, which is crucial for disease biomarker discovery. This article serves as an invaluable resource for researchers in metabolomics, presenting fresh perspectives and advancements that propels the field forward.
Collapse
Affiliation(s)
- Nikhil Titkare
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sachin Chaturvedi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Sapan Borah
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Nitish Sharma
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Bhattacharya S, Raval H, Bhirud D. Hyaluronic acid-functionalized carboxymethyl dextran-coated melatonin nanoconjugates for targeted etoposide delivery in metastatic colon cancer: Extensive in-vitro investigation in HCT116 cell lines, antimicrobial efficacy, and anti-angiogenic potential in chick chorioallantoic membrane (CAM) assay. Int J Biol Macromol 2024; 281:136373. [PMID: 39395515 DOI: 10.1016/j.ijbiomac.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Managing advanced colon cancer is challenging, requiring targeted therapies. This study presents a novel nanoconjugate system, HA-CMD@ETP-MLT-NCs, designed to deliver etoposide (ETP) specifically to colon cancer cells. The system consists of Hyaluronic Acid (HA)-Functionalized Carboxymethyl Dextran (CMD) coated with Melatonin (MLT). The nanoconjugates showed good stability, with a zeta potential of -29.90 mV and a particle size of 199.1 nm. They achieved an 80.3 % yield and a high drug entrapment efficiency of 93.4 %. In vitro release studies demonstrated pH-dependent drug release, with 73.4 % released at pH 5.5 (tumour-like environment) and 42.6 % at pH 7.4 (normal tissue) over 24 h. The nanoconjugates improved cellular uptake, induced apoptosis, and reduced reactive oxygen species (ROS) in HCT116 colon cancer cells. Flow cytometry showed a significant decrease in ROS levels, and lipid peroxidation inhibition increased to 56.67 %. These findings suggest that HA-CMD@ETP-MLT-NCs enhance etoposide delivery and reduce side effects. Further in vivo studies and clinical trials are needed to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Harshvardhan Raval
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Darshan Bhirud
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
4
|
Dabbousy R, Rima M, Roufayel R, Rahal M, Legros C, Sabatier JM, Fajloun Z. Plant Metabolomics: The Future of Anticancer Drug Discovery. Pharmaceuticals (Basel) 2024; 17:1307. [PMID: 39458949 PMCID: PMC11510165 DOI: 10.3390/ph17101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development from medicinal plants constitutes an important strategy for finding natural anticancer therapies. While several plant secondary metabolites with potential antitumor activities have been identified, well-defined mechanisms of action remained uncovered. In fact, studies of medicinal plants have often focused on the genome, transcriptome, and proteome, dismissing the relevance of the metabolome for discovering effective plant-based drugs. Metabolomics has gained huge interest in cancer research as it facilitates the identification of potential anticancer metabolites and uncovers the metabolomic alterations that occur in cancer cells in response to treatment. This holds great promise for investigating the mode of action of target metabolites. Although metabolomics has made significant contributions to drug discovery, research in this area is still ongoing. In this review, we emphasize the significance of plant metabolomics in anticancer research, which continues to be a potential technique for the development of anticancer drugs in spite of all the challenges encountered. As well, we provide insights into the essential elements required for performing effective metabolomics analyses.
Collapse
Affiliation(s)
- Ranin Dabbousy
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Mohamad Rima
- Department of Natural Sciences, Lebanese American University, Byblos P.O. Box 36, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Mohamad Rahal
- School of Pharmacy, Lebanese International University, Beirut 146404, Lebanon;
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, Faculty of Medicine, University Angers, 49000 Angers, France;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| |
Collapse
|
5
|
Venugopala KN, Kamat V. Pyrimidines: A New Versatile Molecule in the Drug Development Field, Scope, and Future Aspects. Pharmaceuticals (Basel) 2024; 17:1258. [PMID: 39458899 PMCID: PMC11510439 DOI: 10.3390/ph17101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Pyrimidine is a moiety that occurs in living organisms and has a variety of significant biological properties in pharmacology. Due to the easy handling of synthesis, easily available precursor, and less duration for the reaction, for the synthesis, not many technical skills are needed. All these factors attract chemists to focus more on pyrimidines. Apart from the synthesis of biological applications of pyrimidines, medicinal chemists have gathered to explore more pyrimidine scaffolds due to their interesting medicinal properties and easy targeting of various binding sites. This review delves into the diverse biological activities of compounds derived from pyrimidine during the year 2024. We have attempted to explore the growing significance of pyrimidine derivatives and provide a new path for designing new potent molecules.
Collapse
Affiliation(s)
- Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Vinuta Kamat
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangaluru 574 199, Karnataka, India
| |
Collapse
|
6
|
Venugopala KN, Buccioni M. Current Understanding of the Role of Adenosine Receptors in Cancer. Molecules 2024; 29:3501. [PMID: 39124905 PMCID: PMC11313767 DOI: 10.3390/molecules29153501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer, a complex array of diseases, involves the unbridled proliferation and dissemination of aberrant cells in the body, forming tumors that can infiltrate neighboring tissues and metastasize to distant sites. With over 200 types, each cancer has unique attributes, risks, and treatment avenues. Therapeutic options encompass surgery, chemotherapy, radiation therapy, hormone therapy, immunotherapy, targeted therapy, or a blend of these methods. Yet, these treatments face challenges like late-stage diagnoses, tumor diversity, severe side effects, drug resistance, targeted drug delivery hurdles, and cost barriers. Despite these hurdles, advancements in cancer research, encompassing biology, genetics, and treatment, have enhanced early detection methods, treatment options, and survival rates. Adenosine receptors (ARs), including A1, A2A, A2B, and A3 subtypes, exhibit diverse roles in cancer progression, sometimes promoting or inhibiting tumor growth depending on the receptor subtype, cancer type, and tumor microenvironment. Research on AR ligands has revealed promising anticancer effects in lab studies and animal models, hinting at their potential as cancer therapeutics. Understanding the intricate signaling pathways and interactions of adenosine receptors in cancer is pivotal for crafting targeted therapies that optimize benefits while mitigating drawbacks. This review delves into each adenosine receptor subtype's distinct roles and signaling pathways in cancer, shedding light on their potential as targets for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Katharigatta Narayanaswamy Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, ChIP, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy;
| |
Collapse
|
7
|
Chitiva LC, Santamaría-Torres MA, Rezende-Teixeira P, Borlot JRPDO, Romagna RDA, Londoño X, Kitagawa RR, Costa-Lotufo LV, Prieto-Rodríguez JA, Castro-Gamboa I, Costa GM. Uncovering Metabolic Alterations in HCT-116 Colon Cancer Cells upon Exposure to Bamboo Leaf Extract Obtained from Guadua incana Londoño. Molecules 2024; 29:2985. [PMID: 38998936 PMCID: PMC11243423 DOI: 10.3390/molecules29132985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Metabolic alterations are increasingly recognized as important aspects of colorectal cancer (CRC), offering potential avenues for identifying therapeutic targets. Previous studies have demonstrated the cytotoxic potential of bamboo leaf extract obtained from Guadua incana (BLEGI) against HCT-116 colon cancer cells. However, the altered metabolic pathways in these tumor cells remain unknown. Therefore, this study aimed to employ an untargeted metabolomic approach to reveal the metabolic alterations of the endometabolome and exometabolome of HCT-116 cells upon exposure to BLEGI treatment. First, a chemical characterization of the BLEGI was conducted through liquid chromatography coupled with mass spectrometry (LC-MS). Next, we assessed cell viability via MTT and morphological analysis using an immunofluorescence assay against colon cancer cells, and anti-inflammatory activity using an LPS-stimulated macrophage model. Subsequently, we employed LC-MS and proton nuclear magnetic resonance (1H-NMR) to investigate intra- and extracellular changes. Chemical characterization primarily revealed the presence of compounds with a flavone glycoside scaffold. Immunofluorescence analysis showed condensed chromatin and subsequent formation of apoptotic bodies, suggesting cell death by apoptosis. The results of the metabolomic analysis showed 98 differential metabolites, involved in glutathione, tricarboxylic acid cycle, and lipoic acid metabolism, among others. Additionally, BLEGI demonstrated significant nitric oxide (NO) inhibitory capacity in macrophage cells. This study enhances our understanding of BLEGI's possible mechanism of action and provides fresh insights into therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- Luis Carlos Chitiva
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, Brazil
| | | | - Paula Rezende-Teixeira
- Laboratório de Farmacologia de Produtos Naturais Marinhos, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Rodrigo de Almeida Romagna
- Laboratório de Triagem Biológica de Produtos Naturais, Department of Pharmaceutical Sciences, Federal University of Espírito Santo (UFES), Vitoria 29047-105, Brazil
| | - Ximena Londoño
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Palmira 763533, Colombia
| | - Rodrigo Rezende Kitagawa
- Laboratório de Triagem Biológica de Produtos Naturais, Department of Pharmaceutical Sciences, Federal University of Espírito Santo (UFES), Vitoria 29047-105, Brazil
| | - Leticia V Costa-Lotufo
- Laboratório de Farmacologia de Produtos Naturais Marinhos, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Juliet A Prieto-Rodríguez
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ian Castro-Gamboa
- Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais (NuBBE), Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, Brazil
| | - Geison Modesti Costa
- Grupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ), Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
8
|
Dakilah I, Harb A, Abu-Gharbieh E, El-Huneidi W, Taneera J, Hamoudi R, Semreen MH, Bustanji Y. Potential of CDC25 phosphatases in cancer research and treatment: key to precision medicine. Front Pharmacol 2024; 15:1324001. [PMID: 38313315 PMCID: PMC10834672 DOI: 10.3389/fphar.2024.1324001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
The global burden of cancer continues to rise, underscoring the urgency of developing more effective and precisely targeted therapies. This comprehensive review explores the confluence of precision medicine and CDC25 phosphatases in the context of cancer research. Precision medicine, alternatively referred to as customized medicine, aims to customize medical interventions by taking into account the genetic, genomic, and epigenetic characteristics of individual patients. The identification of particular genetic and molecular drivers driving cancer helps both diagnostic accuracy and treatment selection. Precision medicine utilizes sophisticated technology such as genome sequencing and bioinformatics to elucidate genetic differences that underlie the proliferation of cancer cells, hence facilitating the development of customized therapeutic interventions. CDC25 phosphatases, which play a crucial role in governing the progression of the cell cycle, have garnered significant attention as potential targets for cancer treatment. The dysregulation of CDC25 is a characteristic feature observed in various types of malignancies, hence classifying them as proto-oncogenes. The proteins in question, which operate as phosphatases, play a role in the activation of Cyclin-dependent kinases (CDKs), so promoting the advancement of the cell cycle. CDC25 inhibitors demonstrate potential as therapeutic drugs for cancer treatment by specifically blocking the activity of CDKs and modulating the cell cycle in malignant cells. In brief, precision medicine presents a potentially fruitful option for augmenting cancer research, diagnosis, and treatment, with an emphasis on individualized care predicated upon patients' genetic and molecular profiles. The review highlights the significance of CDC25 phosphatases in the advancement of cancer and identifies them as promising candidates for therapeutic intervention. This statement underscores the significance of doing thorough molecular profiling in order to uncover the complex molecular characteristics of cancer cells.
Collapse
Affiliation(s)
- Ibraheem Dakilah
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammed H Semreen
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
9
|
Bhattacharya S, Bonde S, Hatware K, Sharma S, Anjum MM, Sahu RK. Physicochemical characterization, in vitro and in vivo evaluation of chitosan/carrageenan encumbered with Imatinib mesylate-polysarcosine nanoparticles for sustained drug release and enhanced colorectal cancer targeted therapy. Int J Biol Macromol 2023; 245:125529. [PMID: 37379942 DOI: 10.1016/j.ijbiomac.2023.125529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The objective of this investigation was to fabricate nanoparticles consisting of Imatinib mesylate-poly sarcosine-loaded chitosan/carrageenan in order to attain prolonged drug release and efficacious therapy for colorectal cancer. The study involved the synthesis of nanoparticles through the utilisation of ionic complexation and nanoprecipitation techniques. The subsequent nanoparticles were subjected to an assessment of their physicochemical characteristics, anti-cancer efficacy using HCT116 cell line, and acute toxicity. The present study examined two distinct nanoparticle formulations, namely IMT-PSar-NPs and CS-CRG-IMT-NPs, with respect to their particle size, zeta potential, and morphology. Both formulations demonstrated satisfactory characteristics, as they displayed consistent and prolonged drug release for a duration of 24 h, with the highest level of release occurring at a pH of 5.5. The efficacy and safety of IMT-PSar-NPs and CS-CRG-IMT-PSar-NPs nanoparticles were evaluated through various tests including in vitro cytotoxicity, cellular uptake, apoptosis, scratch test, cell cycle analysis, MMP & ROS estimate, acute toxicity, and stability tests. The results suggest that these nanoparticles were well fabricated and have promising potential for in vivo applications. The prepared polysaccharide nanoparticles have great potential for active targeting and could potentially reduce dose-dependent toxicity in the treatment of colon cancer.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Smita Bonde
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Ketan Hatware
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Export Promotion Industrial Park (EPIP), Zandaha Road, NH322, Hajipur, Bihar 844102, India
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, P.O. Kilkileshwar, Via Kritinagar, Distt. Tehri Garhwal Pin-249161, Uttarakhand, India
| |
Collapse
|
10
|
Skubisz K, Dąbkowski K, Samborowska E, Starzyńska T, Deskur A, Ambrozkiewicz F, Karczmarski J, Radkiewicz M, Kusnierz K, Kos-Kudła B, Sulikowski T, Cybula P, Paziewska A. Serum Metabolite Biomarkers for Pancreatic Tumors: Neuroendocrine and Pancreatic Ductal Adenocarcinomas-A Preliminary Study. Cancers (Basel) 2023; 15:3242. [PMID: 37370852 DOI: 10.3390/cancers15123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
Collapse
Affiliation(s)
- Karolina Skubisz
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Pediatric Hospital of Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Kusnierz
- The Department of Gastrointestinal Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| |
Collapse
|