1
|
Bazaei M, Honarvar B, Esfandiari N, Sajadian SA, Aboosadi ZA. Production of pazopanib hydrochloride nanoparticles (anti-kidney cancer drug) using a supercritical gas antisolvent (GAS) method. RSC Adv 2024; 14:39844-39857. [PMID: 39697250 PMCID: PMC11653517 DOI: 10.1039/d4ra07079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Supercritical fluid-based methods have been receiving increasing popularity in the production of pharmaceutical nanoparticles due to their ability to control the size and distribution of the particles and offer high purity products. The gas anti-solvent method is one of the methods in which a supercritical fluid serves as an anti-solvent. The aim of this work is to develop pazopanib hydrochloride nanoparticles as an anti-cancer agent by the supercritical GAS method. For this purpose, nanoparticles were produced at different temperatures (313, 323 and 333 K), pressures (10, 13 and 16 MPa), and initial solute concentrations (12, 22 and 32 mg ml-1) employing the Box-Behnken design. The results showed that pressure had the most significant effect on the particle size. The average initial particle size of unprocessed pazopanib hydrochloride was about 37.5 ± 8.7 μm. The optimum process parameter values were determined to obtain the smallest particle size using the BBD method. The parameters were optimized at 320 K, 16 MPa, and 12.6 mg ml-1. The average particle size was 311.1 nm, close to the predicted value of 302.3 nm. FTIR analysis indicated that the chemical structure remained unaltered. Furthermore, DSC and XRD results confirmed the reduction in particle size.
Collapse
Affiliation(s)
- Majid Bazaei
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Nadia Esfandiari
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| | - Seyed Ali Sajadian
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan Kashan 87317-53153 Iran
| | - Zahra Arab Aboosadi
- Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University Marvdasht Iran
| |
Collapse
|
2
|
Jansook P, Loftsson T, Stefánsson E. Drug-like properties of tyrosine kinase inhibitors in ophthalmology: Formulation and topical availability. Int J Pharm 2024; 655:124018. [PMID: 38508428 DOI: 10.1016/j.ijpharm.2024.124018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) can inhibit edema and neovascularization, such as in age-related macular degeneration and diabetic retinopathy. However, their topical administration in ophthalmology is limited by their toxicity and poor aqueous solubility. There are multiple types of TKIs, and each TKI has an affinity to more than one type of receptor. Studies have shown that ocular toxicity can be addressed by selecting TKIs that have a high affinity for specific vascular endothelial growth factor receptors (VEGFRs) but a low affinity for epidermal growth factor receptors (EGFRs). Drugs permeate from the aqueous tear fluid into the eye via passive diffusion. Thus, a sustained high concentration of the dissolved drug in the aqueous tear fluid is essential for a successful delivery to posterior tissues such as the retina. Unfortunately, the aqueous solubility of the TKIs that have the most favorable VEGFR/EGFR affinity ratio, that is, axitinib and cabozantinib, is well below 1 µg/mL, making their topical delivery very challenging. This is a review of the drug-like properties of TKIs that are currently being evaluated or have been evaluated as ophthalmic drugs. These properties include their solubilization, cyclodextrin complexation, and ability to permeate from the aqueous tear fluid to the posterior eye segment.
Collapse
Affiliation(s)
- Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Payathai Road, Pathumwan, Bangkok, 10330, Thailand; Cyclodextrin Application and Nanotechnology-Based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Einar Stefánsson
- Department of Ophthalmology, Landspitali University Hospital, IS-101 Reykjavik, Iceland
| |
Collapse
|
3
|
Yu JE, You BH, Bae M, Han SY, Jung K, Choi YH. Evaluation of Pharmacokinetic Feasibility of Febuxostat/L-pyroglutamic Acid Cocrystals in Rats and Mice. Pharmaceutics 2023; 15:2167. [PMID: 37631381 PMCID: PMC10459842 DOI: 10.3390/pharmaceutics15082167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Febuxostat (FBX), a selective xanthine oxidase inhibitor, belongs to BCS class II, showing low solubility and high permeability with a moderate F value (<49%). Recently, FBX/L-pyroglutamic acid cocrystal (FBX-PG) was developed with an improving 4-fold increase of FBX solubility. Nevertheless, the in vivo pharmacokinetic properties of FBX-PG have not been evaluated yet. Therefore, the pharmacokinetic feasibility of FBX in FBX- and FBX-PG-treated rats and mice was compared in this study. The results showed that the bioavailability (F) values of FBX were 210% and 159% in FBX-PG-treated rats and mice, respectively. The 2.10-fold greater total area under the plasma concentration-time curve from time zero to infinity (AUC0-inf) of FBX was due to the increased absorption [i.e., 2.60-fold higher the first peak plasma concentration (Cmax,1) at 15 min] and entero-hepatic circulation of FBX [i.e., 1.68-fold higher the second peak plasma concentration (Cmax,2) at 600 min] in FBX-PG-treated rats compared to the FBX-treated rats. The 1.59-fold greater AUC0-inf of FBX was due to a 1.65-fold higher Cmax,1 at 5 min, and a 1.15-fold higher Cmax,2 at 720 min of FBX in FBX-PG-treated mice compared to those in FBX-treated mice. FBX was highly distributed in the liver, stomach, small intestine, and lungs in both groups of mice, and the FBX distributions to the liver and lungs were increased in FBX-PG-treated mice compared to FBX-treated mice. The results suggest the FBX-PG has a suitable pharmacokinetic profile of FBX for improving its oral F value.
Collapse
Affiliation(s)
- Jeong-Eun Yu
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Byoung Hoon You
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Mingoo Bae
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Seung Yon Han
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| | - Kiwon Jung
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
- Oncobix Co., Ltd., 120 Heungdeokjungang-ro, Giheung-gu, Yongin-si 16950, Gyeonggi-do, Republic of Korea
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University_Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (J.-E.Y.); (B.H.Y.); (M.B.); (S.Y.H.)
| |
Collapse
|