1
|
Li Y, Deng J, Zhang Y. Universal mapping and patient-specific prior implicit neural representation for enhanced high-resolution MRI in MRI-guided radiotherapy. Med Phys 2025. [PMID: 40317743 DOI: 10.1002/mp.17863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Magnetic resonance imaging (MRI), known for its superior soft tissue contrast, plays a crucial role in radiation therapy (RT). The introduction of MR-LINAC systems enables the use of on-board MRI for adaptive radiotherapy (ART) on the day of treatment to maximize treatment accuracy. PURPOSE Due to patient comfort considerations and the time constraints associated with adaptive radiation therapy (ART), reducing the resolution of on-board MRI to accelerate image acquisition can improve efficiency, especially when acquiring multiple MRIs with different contrast weightings. However, the low-resolution imaging makes it challenging to identify key anatomical structures, potentially limiting treatment precision. To address this challenge, super-resolution of on-board MRI has emerged as a viable solution. METHODS To achieve super-resolution for on-board MRI, this study proposed a universal anatomical mapping and patient-specific prior implicit neural representation (USINR) framework. Unlike traditional methods that interpolate solely based on individual on-board MR images, USINR can fully utilize the patient-specific anatomical information from a high-resolution prior MRI. In addition, USINR leverages knowledge about universal mapping between population-based prior MRIs and on-board MRIs, elevating the upper bound of super-resolution performance and enabling faster on-board fine-tuning. RESULTS USINR was evaluated on three datasets, including IXI, BraTS, and an in-house abdominal dataset. It achieved state-of-the-art performance on all of them. For example, on the BraTS dataset, USINR was trained on 1151 paired training samples (for universal anatomical mapping) and tested on 50 patients. It achieved average SSIM, PSNR, and LPIPS scores of 0.9656, 37.12, and 0.0214, respectively, significantly outperforming the published state-of-the-art method SuperFormer, whose corresponding scores were 0.9488, 35.83, and 0.0388. Furthermore, USINR can complete patient-specific training in less than one minute, rendering it a favorable solution in time-constrained ART workflows. In addition to large-scale dataset evaluations, a case study was conducted on an in-house patient at UT Southwestern Medical Center. This case study included two MRI scans (a prior scan for plan simulation and a new one for on-board imaging) from a single patient with a long interval between two scans, during which the tumor size underwent a significant change. Despite these substantial anatomical changes between prior and on-board imaging, USINR was able to accurately capture the change in tumor size, highlighting its robustness for clinical applications. CONCLUSIONS By combining knowledge of universal anatomical mapping with patient-specific prior implicit neural representation, USINR offers a novel and reliable approach for MRI super-resolution. This method enhances the spatial resolution of MR images with minimal processing time, thereby balancing the need for image quality and the efficiency of MRI-guided adaptive radiotherapy.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - You Zhang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Ghafarian M, Cao M, Kirby KM, Schneider CW, Deng J, Mellon EA, Kishan AU, Maziero D, Wu TC. Magnetic Resonance Imaging Sequences and Technologies in Adaptive Radiation Therapy. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00384-0. [PMID: 40298856 DOI: 10.1016/j.ijrobp.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Radiation therapy is essential in both curative and palliative treatments for most cancers. However, traditional radiation therapy workflows using computed tomography (CT) simulation-based planning and cone beam CT image guidance face several technical challenges, including limited tumor visibility and daily fluctuations in tumor size and shape. Magnetic resonance imaging (MRI) guided linear accelerators (MR-Linacs) address these issues by enabling precise visualization of changes in tumor position and morphologic changes, as well as changes in surrounding organs-at-risk. The hybrid MR-Linac systems combine MRI with linear accelerator technology, offering enhanced soft tissue visualization and the potential for adaptive radiation therapy (ART). This narrative review provides a comprehensive introduction to MR guided ART technologies, covering protocol optimization with appropriate pulse sequence selection and parameter adjustment for clinical implementations on various disease sites.
Collapse
Affiliation(s)
- Melissa Ghafarian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California.
| | - Minsong Cao
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Krystal M Kirby
- Department of Physics, Mary Bird Perkins Cancer Center, Baton Rouge, Louisiana
| | | | - Jie Deng
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Eric A Mellon
- Department of Radiation Oncology and Biomedical Engineering, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Coral Gables, Florida
| | - Amar U Kishan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Danilo Maziero
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Trudy C Wu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
3
|
Li Y, Liao YP, Wang J, Lu W, Zhang Y. Patient-specific MRI super-resolution via implicit neural representations and knowledge transfer. Phys Med Biol 2025; 70:075021. [PMID: 40064110 DOI: 10.1088/1361-6560/adbed4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Objective.Magnetic resonance imaging (MRI) is a non-invasive imaging technique that provides high soft tissue contrast, playing a vital role in disease diagnosis and treatment planning. However, due to limitations in imaging hardware, scan time, and patient compliance, the resolution of MRI images is often insufficient. Super-resolution (SR) techniques can enhance MRI resolution, reveal more detailed anatomical information, and improve the identification of complex structures, while also reducing scan time and patient discomfort. However, traditional population-based models trained on large datasets may introduce artifacts or hallucinated structures, which compromise their reliability in clinical applications.Approach.To address these challenges, we propose a patient-specific knowledge transfer implicit neural representation (KT-INR) SR model. The KT-INR model integrates a dual-head INR with a pre-trained generative adversarial network (GAN) model trained on a large-scale dataset. Anatomical information from different MRI sequences of the same patient, combined with the SR mappings learned by the GAN model on a population-based dataset, is transferred as prior knowledge to the INR. This integration enhances both the performance and reliability of the SR model.Main results.We validated the effectiveness of the KT-INR model across three distinct clinical SR tasks on the brain tumor segmentation dataset. For task 1, KT-INR achieved an average structural similarity index, peak signal-to-noise ratio, and learned perceptual image patch similarity of 0.9813, 36.845, and 0.0186, respectively. In comparison, a state-of-the-art SR technique, ArSSR, attained average values of 0.9689, 33.4557, and 0.0309 for the same metrics. The experimental results demonstrate that KT-INR outperforms all other methods across all tasks and evaluation metrics, with particularly remarkable performance in resolving fine anatomical details.Significance.The KT-INR model significantly enhances the reliability of SR results, effectively addressing the hallucination effects commonly seen in traditional models. It provides a robust solution for patient-specific MRI SR.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Yen-Peng Liao
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - Weiguo Lu
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| | - You Zhang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, United States of America
| |
Collapse
|
4
|
Magnetic Resonance Imaging–guided Focal Boost to Intraprostatic Lesions Using External Beam Radiotherapy for Localized Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2022. [DOI: 10.1016/j.euo.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yuan J, Poon DMC, Lo G, Wong OL, Cheung KY, Yu SK. A narrative review of MRI acquisition for MR-guided-radiotherapy in prostate cancer. Quant Imaging Med Surg 2022; 12:1585-1607. [PMID: 35111651 PMCID: PMC8739116 DOI: 10.21037/qims-21-697] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/20/2021] [Indexed: 08/24/2023]
Abstract
Magnetic resonance guided radiotherapy (MRgRT), enabled by the clinical introduction of the integrated MRI and linear accelerator (MR-LINAC), is a novel technique for prostate cancer (PCa) treatment, promising to further improve clinical outcome and reduce toxicity. The role of prostate MRI has been greatly expanded from the traditional PCa diagnosis to also PCa screening, treatment and surveillance. Diagnostic prostate MRI has been relatively familiar in the community, particularly with the development of Prostate Imaging - Reporting and Data System (PI-RADS). But, on the other hand, the use of MRI in the emerging clinical practice of PCa MRgRT, which is substantially different from that in PCa diagnosis, has been so far sparsely presented in the medical literature. This review attempts to give a comprehensive overview of MRI acquisition techniques currently used in the clinical workflows of PCa MRgRT, from treatment planning to online treatment guidance, in order to promote MRI practice and research for PCa MRgRT. In particular, the major differences in the MRI acquisition of PCa MRgRT from that of diagnostic prostate MRI are demonstrated and explained. Limitations in the current MRI acquisition for PCa MRgRT are analyzed. The future developments of MRI in the PCa MRgRT are also discussed.
Collapse
Affiliation(s)
- Jing Yuan
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Darren M. C. Poon
- Comprehensive Oncology Centre, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Gladys Lo
- Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Oi Lei Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Kin Yin Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - Siu Ki Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China
| |
Collapse
|
6
|
The rationale for MR-only delineation and planning: retrospective CT–MR registration and target volume analysis for prostate radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920000230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAim:Magnetic resonance imaging (MRI) is indispensable for treatment planning in prostate radiotherapy (PR). Registration of MRI when compared to planning CT (pCT) is prone to uncertainty and this is rarely reported. In this study, we have compared three different types of registration methods to justify the direct use of MRI in PR.Methods and materials:Thirty patients treated for PR were retrospectively selected for this study and all underwent both CT and MRI. The MR scans were registered to the pCT using markers, focused and unfocussed methods and their registration are REGM, REGF, and REGNF, respectively. Registration comparison is done using the translational differences of three axes from the centre-of-mass values of gross tumour volume (GTV) generated using MRI.Results:The average difference in all three axes (x, y, z) is (1, 2·5, 2·3 mm) and (1, 3, 2·3 mm) for REGF-REFNF and REGF-REGM, respectively. MR-based GTV Volume is less in comparison to CT-based GTV and it is significantly different (p < 0·001).Findings:Image registration uncertainty is unavoidable for a regular CT–MR workflow. Additional planning target volume margin ranging from 2 to 3mm could be avoided if MR-only workflow is employed. This reduction in the margin is beneficial for small tumours treated with hypofractionation.
Collapse
|
7
|
Ueda Y, Wakayama T. [6. Basic Knowledge for Radiation Treatment Planning]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:506-514. [PMID: 34011794 DOI: 10.6009/jjrt.2021_jsrt_77.5.506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Center Institute
| | - Tsukasa Wakayama
- Department of Radiological Technology, Hyogo College of Medicine
| |
Collapse
|
8
|
A phantom study to contrast and compare polymer and gold fiducial markers in radiotherapy simulation imaging. Sci Rep 2021; 11:8931. [PMID: 33903651 PMCID: PMC8076319 DOI: 10.1038/s41598-021-88300-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/06/2021] [Indexed: 11/15/2022] Open
Abstract
To assess visibility and artifact characteristics of polymer fiducials compared to standard gold fiducials for radiotherapy CT and MRI simulation. Three gold and three polymer fiducials were inserted into a CT and MRI tissue-equivalent phantom that approximated the prostate cancer radiotherapy configuration. The phantom and fiducials were imaged on CT and MRI. Images were assessed in terms of fiducial visibility and artifact. ImageJ was employed to quantify the pixel gray-scale of each fiducial and artifact. Fiducial gray-scale histograms and profiles were generated for analysis. Objective measurements of the contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and artifact index (AI) were calculated. The CT images showed that the gold fiducials are visually brighter, with greater contrast than the polymer. The higher peak values illustrate this in the line profiles. However, they produce bright radiating and dark shadowing artifacts. This is depicted by the greater width of line profiles and the disruption of phantom area profiles. Quantitatively this results in greater percentile ranges of the histograms. Furthermore, for CT, gold had a higher CNR than polymer, relative to the phantom. However, the gold CNR and SNR were degraded by the greater artifact and thus AI. Both fiducials were visible on MRI and had similar histograms and profiles that were also reflected in comparable CNR, SNR and AI. Polymer fiducials were well visualized in a phantom on CT and MR and produce less artifact than the gold fiducials. Polymer markers could enhance the quality and accuracy of radiotherapy co-registration and planning but require clinical confirmation.
Collapse
|
9
|
Yoshimura T, Nishioka K, Hashimoto T, Fujiwara T, Ishizaka K, Sugimori H, Kogame S, Seki K, Tamura H, Tanaka S, Matsuo Y, Dekura Y, Kato F, Aoyama H, Shimizu S. Visualizing the urethra by magnetic resonance imaging without usage of a catheter for radiotherapy of prostate cancer. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2021; 18:1-4. [PMID: 34258400 PMCID: PMC8254197 DOI: 10.1016/j.phro.2021.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Post urination MRI is useful for urethra-sparing radiotherapy treatment planning. This prospective clinical trial included 11 prostate cancer patients. Post urination MRI is the identification method of prostatic urinary tract in non-invasive manner.
The urethra position may shift due to the presence/absence of the catheter. Our proposed post-urination-magnetic resonance imaging (PU-MRI) technique is possible to identify the urethra without catheter. We aimed to verify the inter-operator difference in contouring the urethra by PU-MRI. The mean values of the evaluation indices of dice similarity coefficient, mean slice-wise Hausdorff distance, and center coordinates were 0.93, 0.17 mm, and 0.36 mm for computed tomography, and 0.75, 0.44 mm, and 1.00 mm for PU-MRI. Therefore, PU-MRI might be useful for identifying the prostatic urinary tract without using a urethral catheter. Clinical trial registration: Hokkaido University Hospital for Clinical Research (018-0221).
Collapse
Affiliation(s)
- Takaaki Yoshimura
- Department of Health Sciences and Technology, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Kentaro Nishioka
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Hashimoto
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Taro Fujiwara
- Department of Radiation Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Kinya Ishizaka
- Department of Radiation Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroyuki Sugimori
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shoki Kogame
- Division of Radiological Science and Technology, Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuya Seki
- Division of Radiological Science and Technology, Department of Health Sciences, School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Tamura
- Department of Radiation Technology, Hokkaido University Hospital, Sapporo, Japan
| | - Sodai Tanaka
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yuto Matsuo
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan
| | - Yasuhiro Dekura
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Fumi Kato
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Department of Medical Physics, Hokkaido University Hospital, Sapporo, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Gillmann C, Homolka N, Johnen W, Runz A, Echner G, Pfaffenberger A, Mann P, Schneider V, Hoffmann AL, Troost EGC, Koerber SA, Kotzerke J, Beuthien-Baumann B. Technical Note: ADAM PETer - An anthropomorphic, deformable and multimodality pelvis phantom with positron emission tomography extension for radiotherapy. Med Phys 2020; 48:1624-1632. [PMID: 33207020 DOI: 10.1002/mp.14597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE To develop an anthropomorphic, deformable and multimodal pelvis phantom with positron emission tomography extension for radiotherapy (ADAM PETer). METHODS The design of ADAM PETer was based on our previous pelvis phantom (ADAM) and extended for compatibility with PET and use in 3T magnetic resonance imaging (MRI). The formerly manually manufactured silicon organ surrogates were replaced by three-dimensional (3D) printed organ shells. Two intraprostatic lesions, four iliac lymph node metastases and two pelvic bone metastases were added to simulate prostate cancer as multifocal and metastatic disease. Radiological properties [computed tomography (CT) and 3T MRI] of cortical bone, bone marrow and adipose tissue were simulated by heavy gypsum, a mixture of Vaseline and K2 HPO4 and peanut oil, respectively. For soft tissues, agarose gels with varying concentrations of agarose, gadolinium (Gd) and sodium fluoride (NaF) were developed. The agarose gels were doped with patient-specific activity concentrations of a Fluorine-18 labelled compound and then filled into the 3D printed organ shells of prostate lesions, lymph node and bone metastases. The phantom was imaged at a dual energy CT and a 3T PET/MRI scanner. RESULTS The compositions of the soft tissue surrogates are the following (given as mass fractions of agarose[w%]/NaF[w%]/Gd[w%]): Muscle (4/1/0.027), prostate (1.35/4.2/0.011), prostate lesions (2.25/4.2/0.0085), lymph node and bone metastases (1.4/4.2/0.025). In all imaging modalities, the phantom simulates human contrast. Intraprostatic lesions appear hypointense as compared to the surrounding normal prostate tissue in T2-weighted MRI. The PET signal of all tumors can be localized as focal spots at their respective site. Activity concentrations of 12.0 kBq/mL (prostate lesion), 12.4 kBq/mL (lymph nodes) and 39.5 kBq/mL (bone metastases) were measured. CONCLUSION The ADAM PETer pelvis phantom can be used as multimodal, anthropomorphic model for CT, 3T-MRI and PET measurements. It will be central to simulate and optimize the technical workflow for the integration of PET/MRI-based radiation treatment planning of prostate cancer patients.
Collapse
Affiliation(s)
- Clarissa Gillmann
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Noa Homolka
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Faculty for Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Wibke Johnen
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Armin Runz
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Gernot Echner
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Asja Pfaffenberger
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Philipp Mann
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Verena Schneider
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aswin L Hoffmann
- OncoRay - National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay - National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Stefan A Koerber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Kotzerke
- Department for Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus Dresden, Dresden, Germany.,Department for Nuclear Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Bettina Beuthien-Baumann
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site, Heidelberg, Germany
| |
Collapse
|
11
|
Dai X, Lei Y, Zhang Y, Qiu RLJ, Wang T, Dresser SA, Curran WJ, Patel P, Liu T, Yang X. Automatic multi-catheter detection using deeply supervised convolutional neural network in MRI-guided HDR prostate brachytherapy. Med Phys 2020; 47:4115-4124. [PMID: 32484573 DOI: 10.1002/mp.14307] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE High-dose-rate (HDR) brachytherapy is an established technique to be used as monotherapy option or focal boost in conjunction with external beam radiation therapy (EBRT) for treating prostate cancer. Radiation source path reconstruction is a critical procedure in HDR treatment planning. Manually identifying the source path is labor intensive and time inefficient. In recent years, magnetic resonance imaging (MRI) has become a valuable imaging modality for image-guided HDR prostate brachytherapy due to its superb soft-tissue contrast for target delineation and normal tissue contouring. The purpose of this study is to investigate a deep-learning-based method to automatically reconstruct multiple catheters in MRI for prostate cancer HDR brachytherapy treatment planning. METHODS Attention gated U-Net incorporated with total variation (TV) regularization model was developed for multi-catheter segmentation in MRI. The attention gates were used to improve the accuracy of identifying small catheter points, while TV regularization was adopted to encode the natural spatial continuity of catheters into the model. The model was trained using the binary catheter annotation images offered by experienced physicists as ground truth paired with original MRI images. After the network was trained, MR images of a new prostate cancer patient receiving HDR brachytherapy were fed into the model to predict the locations and shapes of all the catheters. Quantitative assessments of our proposed method were based on catheter shaft and tip errors compared to the ground truth. RESULTS Our method detected 299 catheters from 20 patients receiving HDR prostate brachytherapy with a catheter tip error of 0.37 ± 1.68 mm and a catheter shaft error of 0.93 ± 0.50 mm. For detection of catheter tips, our method resulted in 87% of the catheter tips within an error of less than ± 2.0 mm, and more than 71% of the tips can be localized within an absolute error of no >1.0 mm. For catheter shaft localization, 97% of catheters were detected with an error of <2.0 mm, while 63% were within 1.0 mm. CONCLUSIONS In this study, we proposed a novel multi-catheter detection method to precisely localize the tips and shafts of catheters in three-dimensional MRI images of HDR prostate brachytherapy. It paves the way for elevating the quality and outcome of MRI-guided HDR prostate brachytherapy.
Collapse
Affiliation(s)
- Xianjin Dai
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Yupei Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Sean A Dresser
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Shanker MD, Kim AN, Brown A, Tan AH. Anatomical and dosimetric assessment of the prostate apex: A pilot comparison of image-guided transperineal ultrasound to conventional computed tomography simulation. J Med Imaging Radiat Oncol 2020; 64:839-844. [PMID: 32383303 DOI: 10.1111/1754-9485.13045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Inaccuracies in prostate apex contour delineation based on simulation computed tomography (CT) imaging can impact treatment outcomes and toxicity profiles for prostate cancer radiotherapy. Transperineal ultrasound (TPUS) is a non-invasive imaging modality that can improve delineation of prostate volumes. We performed a pilot analysis to assess for differences in anatomical position between conventional CT and a TPUS delineated prostate apex and determined whether these translated into a clinically significant difference in apical point dose. METHODS A 2D 5 MHz TPUS autoscan image guidance system was utilised during definitive intensity-modulated radiotherapy (IMRT) for prostate cancer. Distances were measured from a fixed reference point to prostate apex on both US and CT in the mid-sagittal plane. Differences between groups were assessed using the Wilcoxon sign rank test with a two-tailed significance of α = 0.05. RESULTS Fifty-nine consecutive patients were independently assessed. There was strong evidence of a difference between CT and TPUS delineated apex position (P = 0.0075). Median apex position was 3.6 mm caudal on TPUS vs. CT imaging (95% CI: 2.5-4.8 mm). There was strong evidence of a difference in point dose between CT and TPUS delineated apex (P = 0.0029). Median point dose at the TPUS contoured apex was 1.9 Gy lower than CT (95% CI: 0.7-3.1 Gy) corresponding to 98% of prescribed dose. CONCLUSIONS This study demonstrates a difference in anatomical delineation of prostate apex position between CT imaging compared to TPUS, corresponding to a statistically significant difference in apex point dose. Further analysis will determine whether this translates to a clinically significant difference in outcomes.
Collapse
Affiliation(s)
- Mihir D Shanker
- Queensland Health, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Anna Nh Kim
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,ICON Cancer Centre, Brisbane, Queensland, Australia
| | - Amy Brown
- Queensland Health, Brisbane, Queensland, Australia.,Townsville Cancer Centre, Townsville Hospital and Health Service, Queensland, Australia.,James Cook University, Townsville, Queensland, Australia
| | - Alex Hm Tan
- Queensland Health, Brisbane, Queensland, Australia.,Townsville Cancer Centre, Townsville Hospital and Health Service, Queensland, Australia.,James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
13
|
A Hybrid End-to-End Approach Integrating Conditional Random Fields into CNNs for Prostate Cancer Detection on MRI. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostate Cancer (PCa) is the most common oncological disease in Western men. Even though a growing effort has been carried out by the scientific community in recent years, accurate and reliable automated PCa detection methods on multiparametric Magnetic Resonance Imaging (mpMRI) are still a compelling issue. In this work, a Deep Neural Network architecture is developed for the task of classifying clinically significant PCa on non-contrast-enhanced MR images. In particular, we propose the use of Conditional Random Fields as a Recurrent Neural Network (CRF-RNN) to enhance the classification performance of XmasNet, a Convolutional Neural Network (CNN) architecture specifically tailored to the PROSTATEx17 Challenge. The devised approach builds a hybrid end-to-end trainable network, CRF-XmasNet, composed of an initial CNN component performing feature extraction and a CRF-based probabilistic graphical model component for structured prediction, without the need for two separate training procedures. Experimental results show the suitability of this method in terms of classification accuracy and training time, even though the high-variability of the observed results must be reduced before transferring the resulting architecture to a clinical environment. Interestingly, the use of CRFs as a separate postprocessing method achieves significantly lower performance with respect to the proposed hybrid end-to-end approach. The proposed hybrid end-to-end CRF-RNN approach yields excellent peak performance for all the CNN architectures taken into account, but it shows a high-variability, thus requiring future investigation on the integration of CRFs into a CNN.
Collapse
|
14
|
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study. NEURAL APPROACHES TO DYNAMICS OF SIGNAL EXCHANGES 2020. [DOI: 10.1007/978-981-13-8950-4_25] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.07.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
A partial augmented reality system with live ultrasound and registered preoperative MRI for guiding robot-assisted radical prostatectomy. Med Image Anal 2019; 60:101588. [PMID: 31739281 DOI: 10.1016/j.media.2019.101588] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/31/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
We propose an image guidance system for robot assisted laparoscopic radical prostatectomy (RALRP). A virtual 3D reconstruction of the surgery scene is displayed underneath the endoscope's feed on the surgeon's console. This scene consists of an annotated preoperative Magnetic Resonance Image (MRI) registered to intraoperative 3D Trans-rectal Ultrasound (TRUS) as well as real-time sagittal 2D TRUS images of the prostate, 3D models of the prostate, the surgical instrument and the TRUS transducer. We display these components with accurate real-time coordinates with respect to the robot system. Since the scene is rendered from the viewpoint of the endoscope, given correct parameters of the camera, an augmented scene can be overlaid on the video output. The surgeon can rotate the ultrasound transducer and determine the position of the projected axial plane in the MRI using one of the registered da Vinci instruments. This system was tested in the laboratory on custom-made agar prostate phantoms. We achieved an average total registration accuracy of 3.2 ± 1.3 mm. We also report on the successful application of this system in the operating room in 12 patients. The average registration error between the TRUS and the da Vinci system for the last 8 patients was 1.4 ± 0.3 mm and average target registration error of 2.1 ± 0.8 mm, resulting in an in vivo overall robot system to MRI mean registration error of 3.5 mm or less, which is consistent with our laboratory studies.
Collapse
|
17
|
Cuccia F, Mazzola R, Arcangeli S, Mortellaro G, Figlia V, Caminiti G, Di Paola G, Spera A, Iacoviello G, Alongi F, Lo Casto A, Magrini SM, Ferrera G. Moderate hypofractionated helical tomotherapy for localized prostate cancer: preliminary report of an observational prospective study. TUMORI JOURNAL 2019; 105:516-523. [PMID: 31432765 DOI: 10.1177/0300891619867846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To report preliminary findings of a phase II study exploring the clinical outcomes of moderate hypofractionated radiotherapy performed with helical tomotherapy (HT) using computed tomography-magnetic resonance imaging-based planning for localized prostate cancer. METHODS The phase II prospective study received ethics approval from our institutional ethics committee. A dose of 60 Gy/20 fractions for low-intermediate risk prostate cancer by means of HT was explored. Primary endpoints of the study were acute and late gastrointestinal (GI) and genitourinary (GU) toxicities. Secondary endpoints were quality of life and biochemical-free survival. RESULTS A total of 35 patients were included in this interim report. At the time of the analysis, median follow-up was 36 months (range, 13-62). Acute GI toxicity was recorded as follows: grade 1 in 34% and grade 2 in 14%; acute GU toxicity was grade 1 in 71% and grade 2 in 11%. For the entire population of the study, no acute toxicities ⩾ grade 3 occurred. A single case of late grade 3 GU toxicity was registered, whereas no late GI toxicity ⩾grade 3 was recorded. At the time of the final assessment, no biochemical failure was detected. CONCLUSIONS The preliminary results of the present phase II trial, using HT for moderate hypofractionation in localized prostate cancer, are optimal. In fact, HT guaranteed an acceptable tolerability profile with low rates of GU and GI side effects and, more specifically, no acute severe adverse events were recorded. Long-term findings are warranted.
Collapse
Affiliation(s)
- Francesco Cuccia
- Radiation Oncology School, University of Palermo, Palermo, Italy
| | - Rosario Mazzola
- Radiation Oncology, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan "Bicocca," Milan, Italy
| | | | - Vanessa Figlia
- Radiation Oncology, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Giovanni Caminiti
- Radiation Oncology, Centro di Medicina Nucleare San Gaetano, Bagheria, Palermo, Italy
| | | | - Antonio Spera
- Radiation Oncology School, University of Palermo, Palermo, Italy
| | | | - Filippo Alongi
- Radiation Oncology, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy.,Radiation Oncology, University of Brescia, Brescia, Italy
| | - Antonio Lo Casto
- Radiation Oncology School, University of Palermo, Palermo, Italy
| | - Stefano Maria Magrini
- Radiation Oncology, University of Brescia, Brescia, Italy.,Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | | |
Collapse
|
18
|
Niebuhr NI, Johnen W, Echner G, Runz A, Bach M, Stoll M, Giske K, Greilich S, Pfaffenberger A. The ADAM-pelvis phantom—an anthropomorphic, deformable and multimodal phantom for MRgRT. ACTA ACUST UNITED AC 2019; 64:04NT05. [DOI: 10.1088/1361-6560/aafd5f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
de Abreu LCL, de Souza Furtado P, da Silva Honorio T, Hudson Hossy B, de Pádula M, Francielle Souza Domingos T, Almada do Carmo F, Campos de Oliveira Miguel N, Rangel Rodrigues C, de Sousa VP, Cunha Sathler P, Mendes Cabral L. A synergistic nanoformulation of babassu and copaiba oils as natural alternative for prevention of benign prostatic hyperplasia. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Tanaka H, Yamaguchi T, Hachiya K, Hayashi M, Ogawa S, Nishibori H, Kamei S, Ishihara S, Matsuo M. Does intensity-modulated radiation therapy (IMRT) alter prostate size? Magnetic resonance imaging evaluation of patients undergoing IMRT alone. Rep Pract Oncol Radiother 2017; 22:477-481. [PMID: 28951699 PMCID: PMC5607145 DOI: 10.1016/j.rpor.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/11/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022] Open
Abstract
AIM To assess the changes in prostate size in patients with prostate cancer undergoing intensity-modulated radiation therapy (IMRT). BACKGROUND The effect of size change produced by IMRT is not well known. MATERIALS AND METHODS We enrolled 72 patients who received IMRT alone without androgen-deprivation therapy and underwent magnetic resonance imaging (MRI) examination before and after IMRT. The diameter of the entire prostate in the anterior-posterior (P-AP) and left-right (P-LR) directions was measured. The transitional zone diameter in the anterior-posterior (T-AP) and left-right (T-LR) directions was also measured. RESULTS The average relative P-AP values at 3, 6, 12, 24, and 36 months after IMRT compared to the pre-IMRT value were 0.94, 0.90, 0.89, 0.89, and 0.90, respectively; the average relative P-LR values were 0.93, 0.92, 0.91, 0.91, and 0.90, respectively. The average P-AP and P-LR decreased by approximately 10% during the 12 months post-IMRT, and remained unchanged thereafter. The average relative T-AP values at 3, 6, 12, 24, and 36 months after IMRT compared to the pre-IMRT value were 0.93, 0.88, 0.91, 0.87, and 0.89, respectively; the average relative T-LR values were 0.96, 0.90, 0.91, 0.87, and 0.88, respectively. The average T-AP and T-LR also decreased by approximately 10% during the 12 months post-IMRT, and remained unchanged thereafter. At 12 months after IMRT, the average relative T-AP was significantly lower in patients with recurrence than in those without recurrence. CONCLUSIONS The average prostate diameter decreased by approximately 10% during the 12 months after IMRT; thereafter remained unchanged.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Radiology, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Takahiro Yamaguchi
- Department of Radiology, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Kae Hachiya
- Department of Radiology, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| | - Masahide Hayashi
- Department of Radiation Oncology, Kizawa Memorial Hospital, Shimokobi 590, Kobicho, Minokamo 505-8503, Japan
| | - Shinichi Ogawa
- Department of Radiation Oncology, Kizawa Memorial Hospital, Shimokobi 590, Kobicho, Minokamo 505-8503, Japan
| | - Hironori Nishibori
- Department of Radiation Oncology, Kizawa Memorial Hospital, Shimokobi 590, Kobicho, Minokamo 505-8503, Japan
| | - Shingo Kamei
- Department of Urology, Kizawa Memorial Hospital, Shimokobi 590, Kobicho, Minokamo 505-8503, Japan
| | - Satoshi Ishihara
- Department of Urology, Kizawa Memorial Hospital, Shimokobi 590, Kobicho, Minokamo 505-8503, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, Yanagido 1-1, Gifu 501-1194, Japan
| |
Collapse
|
21
|
Towards intrinsic R2* imaging in the prostate at 3 and 7 tesla. Magn Reson Imaging 2017; 42:16-21. [DOI: 10.1016/j.mri.2017.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/26/2017] [Accepted: 04/30/2017] [Indexed: 12/17/2022]
|
22
|
Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging. INFORMATION 2017. [DOI: 10.3390/info8020049] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Rai R, Sidhom M, Lim K, Ohanessian L, Liney GP. MRI micturating urethrography for improved urethral delineation in prostate radiotherapy planning: a case study. Phys Med Biol 2017; 62:3003-3010. [PMID: 28306557 DOI: 10.1088/1361-6560/62/8/3003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stereotactic ablative body radiotherapy is used in prostate cancer to deliver a high dose of radiation to the tumour over a small number of treatments. This involves the simulation of the patient using both CT and MRI. Current practice is to insert an indwelling catheter (IDC) during CT to assist with visualisation of the urethra and subsequently minimise dose to this highly critical structure. However, this procedure is invasive and has an associated risk of infection. This is a case study, which demonstrates our initial experience of using a real-time non-invasive MRI technique to replace the use of IDC for prostate cancer patients. The patient was scanned on a dedicated 3T MRI and was instructed to micturate in their own time whereupon a sagittal T2 weighted HASTE sequence was acquired every 5 s. This was subsequently followed by T2 weighted axial imaging at the level of mid prostate to provide improved urethral definition. Acquired images showed bladder voidance in real-time and an increase in signal intensity in the proximal urethra post voiding allowing for delineation of the urethra. The dimension and shape of the proximal urethra was well visualised and accumulation time of urine in the urethra was sufficient to enable optimum timing of the scanning technique. We have presented for the first time a micturating urethography technique using MRI, which has allowed us to visualise the urethra without contrast and with minimal invasiveness to the patient.
Collapse
Affiliation(s)
- Robba Rai
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool, Australia. Ingham Institute for Applied Medical Research, Liverpool, Australia
| | | | | | | | | |
Collapse
|
24
|
Rylander S, Buus S, Pedersen EM, Bentzen L, Tanderup K. Dosimetric impact of contouring and needle reconstruction uncertainties in US-, CT- and MRI-based high-dose-rate prostate brachytherapy treatment planning. Radiother Oncol 2017; 123:125-132. [PMID: 28284493 DOI: 10.1016/j.radonc.2017.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The purpose was to evaluate the dosimetric impact of target contouring and needle reconstruction uncertainties in an US-, CT- and MRI-based HDR prostate BT treatment planning. MATERIAL AND METHODS US, CT, and MR images were acquired post-needle insertion in 22 HDR-BT procedures for 11 consecutive patients. Dose plans were simulated for an US-, CT- and MRI-based HDR-BT treatment planning procedure. Planning uncertainties in US- and CT-based plans were evaluated using MRI-based planning as reference. Target (CTVProstate) was re-contoured on MRI. Dose results were expressed in total equivalent dose given in 2Gy fractionation dose for EBRT (46Gy) plus 2 HDR-BT fractions. RESULTS Uncertainties in US- and CT-based planning caused the planned CTVProstate-D90% to decrease with a mean of 2.9±5.0Gy (p=0.03) and 2.9±2.9Gy (p=0.001), respectively. The intra-observer contouring variation on MRI resulted in a mean variation of 1.6±1.5Gy in CTVProstate-D90%. Reconstruction uncertainties on US resulted in a dose variation of±3Gy to the urethra, whereas data for CT were not available for this. CONCLUSIONS Uncertainties related to contouring and reconstruction in US- and CT-based HDR-BT treatment plans resulted in a systematic overestimation of the prescribed target dose. Inter-modality uncertainties (US and CT versus MR) were larger than MR intra-observer uncertainties.
Collapse
Affiliation(s)
- Susanne Rylander
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark.
| | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik M Pedersen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
25
|
Prostate Cancer Radiation Therapy: What Do Clinicians Have to Know? BIOMED RESEARCH INTERNATIONAL 2016; 2016:6829875. [PMID: 28116302 PMCID: PMC5225325 DOI: 10.1155/2016/6829875] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022]
Abstract
Radiotherapy (RT) for prostate cancer (PC) has steadily evolved over the last decades, with improving biochemical disease-free survival. Recently population based research also revealed an association between overall survival and doses ≥ 75.6 Gray (Gy) in men with intermediate- and high-risk PC. Examples of improved RT techniques are image-guided RT, intensity-modulated RT, volumetric modulated arc therapy, and stereotactic ablative body RT, which could facilitate further dose escalation. Brachytherapy is an internal form of RT that also developed substantially. New devices such as rectum spacers and balloons have been developed to spare rectal structures. Newer techniques like protons and carbon ions have the intrinsic characteristics maximising the dose on the tumour while minimising the effect on the surrounding healthy tissue, but clinical data are needed for confirmation in randomised phase III trials. Furthermore, it provides an overview of an important discussion issue in PC treatment between urologists and radiation oncologists: the comparison between radical prostatectomy and RT. Current literature reveals that all possible treatment modalities have the same cure rate, but a different toxicity pattern. We recommend proposing the possible different treatment modalities with their own advantages and side-effects to the individual patient. Clinicians and patients should make treatment decisions together (shared decision-making) while using patient decision aids.
Collapse
|
26
|
Shahedi M, Cool DW, Romagnoli C, Bauman GS, Bastian-Jordan M, Rodrigues G, Ahmad B, Lock M, Fenster A, Ward AD. Postediting prostate magnetic resonance imaging segmentation consistency and operator time using manual and computer-assisted segmentation: multiobserver study. J Med Imaging (Bellingham) 2016; 3:046002. [PMID: 27872873 DOI: 10.1117/1.jmi.3.4.046002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/19/2016] [Indexed: 11/14/2022] Open
Abstract
Prostate segmentation on T2w MRI is important for several diagnostic and therapeutic procedures for prostate cancer. Manual segmentation is time-consuming, labor-intensive, and subject to high interobserver variability. This study investigated the suitability of computer-assisted segmentation algorithms for clinical translation, based on measurements of interoperator variability and measurements of the editing time required to yield clinically acceptable segmentations. A multioperator pilot study was performed under three pre- and postediting conditions: manual, semiautomatic, and automatic segmentation. We recorded the required editing time for each segmentation and measured the editing magnitude based on five different spatial metrics. We recorded average editing times of 213, 328, and 393 s for manual, semiautomatic, and automatic segmentation respectively, while an average fully manual segmentation time of 564 s was recorded. The reduced measured postediting interoperator variability of semiautomatic and automatic segmentations compared to the manual approach indicates the potential of computer-assisted segmentation for generating a clinically acceptable segmentation faster with higher consistency. The lack of strong correlation between editing time and the values of typically used error metrics ([Formula: see text]) implies that the necessary postsegmentation editing time needs to be measured directly in order to evaluate an algorithm's suitability for clinical translation.
Collapse
Affiliation(s)
- Maysam Shahedi
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Robarts Research Institute, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; University of Western Ontario, Graduate Program in Biomedical Engineering, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Derek W Cool
- University of Western Ontario, Robarts Research Institute, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; University of Western Ontario, Department of Medical Imaging, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Cesare Romagnoli
- University of Western Ontario , Department of Medical Imaging, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Glenn S Bauman
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Department of Medical Biophysics, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; University of Western Ontario, Department of Oncology, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Matthew Bastian-Jordan
- University of Western Ontario , Department of Medical Imaging, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - George Rodrigues
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Department of Oncology, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Belal Ahmad
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Department of Oncology, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Michael Lock
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Department of Oncology, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Aaron Fenster
- University of Western Ontario, Robarts Research Institute, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; University of Western Ontario, Graduate Program in Biomedical Engineering, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; University of Western Ontario, Department of Medical Imaging, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; University of Western Ontario, Department of Medical Biophysics, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Aaron D Ward
- London Regional Cancer Program, 790 Commissioners Road, London, Ontario N6A 4L6, Canada; University of Western Ontario, Graduate Program in Biomedical Engineering, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; University of Western Ontario, Department of Medical Biophysics, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; University of Western Ontario, Department of Oncology, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| |
Collapse
|
27
|
Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 2016; 11:148. [PMID: 27829431 PMCID: PMC5103611 DOI: 10.1186/s13014-016-0718-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/17/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Radiomics or computer - extracted texture features have been shown to achieve superior performance than multiparametric MRI (mpMRI) signal intensities alone in targeting prostate cancer (PCa) lesions. Radiomics along with deformable co-registration tools can be used to develop a framework to generate targeted focal radiotherapy treatment plans. METHODS The Rad-TRaP framework comprises three distinct modules. Firstly, a module for radiomics based detection of PCa lesions on mpMRI via a feature enabled machine learning classifier. The second module comprises a multi-modal deformable co-registration scheme to map tissue, organ, and delineated target volumes from MRI onto CT. Finally, the third module involves generation of a radiomics based dose plan on MRI for brachytherapy and on CT for EBRT using the target delineations transferred from the MRI to the CT. RESULTS Rad-TRaP framework was evaluated using a retrospective cohort of 23 patient studies from two different institutions. 11 patients from the first institution were used to train a radiomics classifier, which was used to detect tumor regions in 12 patients from the second institution. The ground truth cancer delineations for training the machine learning classifier were made by an experienced radiation oncologist using mpMRI, knowledge of biopsy location and radiology reports. The detected tumor regions were used to generate treatment plans for brachytherapy using mpMRI, and tumor regions mapped from MRI to CT to generate corresponding treatment plans for EBRT. For each of EBRT and brachytherapy, 3 dose plans were generated - whole gland homogeneous ([Formula: see text]) which is the current clinical standard, radiomics based focal ([Formula: see text]), and whole gland with a radiomics based focal boost ([Formula: see text]). Comparison of [Formula: see text] against conventional [Formula: see text] revealed that targeted focal brachytherapy would result in a marked reduction in dosage to the OARs while ensuring that the prescribed dose is delivered to the lesions. [Formula: see text] resulted in only a marginal increase in dosage to the OARs compared to [Formula: see text]. A similar trend was observed in case of EBRT with [Formula: see text] and [Formula: see text] compared to [Formula: see text]. CONCLUSIONS A radiotherapy planning framework to generate targeted focal treatment plans has been presented. The focal treatment plans generated using the framework showed reduction in dosage to the organs at risk and a boosted dose delivered to the cancerous lesions.
Collapse
Affiliation(s)
- Rakesh Shiradkar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106 USA
| | - Tarun K Podder
- Department of Radiation Oncology, Case School of Medicine, Cleveland, 44106 USA
| | - Ahmad Algohary
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106 USA
| | - Satish Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106 USA
| | - Rodney J. Ellis
- Department of Radiation Oncology, Case School of Medicine, Cleveland, 44106 USA
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, 44106 USA
| |
Collapse
|
28
|
What are the current and future requirements for magnetic resonance imaging interpretation skills in radiotherapy? A critical review. JOURNAL OF RADIOTHERAPY IN PRACTICE 2016. [DOI: 10.1017/s1460396916000418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurposeIncreasing usage of magnetic resonance imaging (MRI) in radiotherapy (RT) and the advent of MRI-based image-guided radiotherapy (IGRT) suggests a need for additional training within the RT profession. This critical review aimed to identify potential gaps in knowledge by evaluating the current skill base in MRI among therapeutic radiographers as evidenced by published research.MethodsPapers related to MRI usage were retrieved. Topic areas included outlining, planning and IGRT; diagnosis, follow-up and staging-related papers were excluded. After selection and further text analysis, papers were grouped by tumour site and year of publication.ResultsThe literature search and filtering resulted in a total of 123 papers, of which 66 were related to ‘outlining’, 37 to ‘planning’ and 20 to ‘IGRT’. The main sites of existing MRI expertise in RT were brain, central nervous system, prostate, and head and neck tumours. Expertise was clearly related to regions where MRI offered improved soft-tissue contrast. MRI studies within RT have been published from 2007 onwards at a steadily increasing rate.ConclusionCurrent use of MRI in RT is mainly restricted to sites where MRI offers a considerable imaging advantage over computed tomography. Given the changing use of MRI for image guidance, emerging therapeutic radiographers will require training in MRI interpretation across a wider range of anatomical regions.
Collapse
|
29
|
De Visschere PJL, Vral A, Perletti G, Pattyn E, Praet M, Magri V, Villeirs GM. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate. Eur Radiol 2016; 27:2095-2109. [DOI: 10.1007/s00330-016-4479-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/21/2023]
|
30
|
Niebuhr NI, Johnen W, Güldaglar T, Runz A, Echner G, Mann P, Möhler C, Pfaffenberger A, Jäkel O, Greilich S. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med Phys 2016; 43:908-16. [DOI: 10.1118/1.4939874] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
31
|
Derraz F, Forzy G, Delebarre A, Taleb-Ahmed A, Oussalah M, Peyrodie L, Verclytte S. Prostate contours delineation using interactive directional active contours model and parametric shape prior model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2015; 31. [PMID: 26009857 DOI: 10.1002/cnm.2726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 06/04/2023]
Abstract
Prostate contours delineation on Magnetic Resonance (MR) images is a challenging and important task in medical imaging with applications of guiding biopsy, surgery and therapy. While a fully automated method is highly desired for this application, it can be a very difficult task due to the structure and surrounding tissues of the prostate gland. Traditional active contours-based delineation algorithms are typically quite successful for piecewise constant images. Nevertheless, when MR images have diffuse edges or multiple similar objects (e.g. bladder close to prostate) within close proximity, such approaches have proven to be unsuccessful. In order to mitigate these problems, we proposed a new framework for bi-stage contours delineation algorithm based on directional active contours (DAC) incorporating prior knowledge of the prostate shape. We first explicitly addressed the prostate contour delineation problem based on fast globally DAC that incorporates both statistical and parametric shape prior model. In doing so, we were able to exploit the global aspects of contour delineation problem by incorporating a user feedback in contours delineation process where it is shown that only a small amount of user input can sometimes resolve ambiguous scenarios raised by DAC. In addition, once the prostate contours have been delineated, a cost functional is designed to incorporate both user feedback interaction and the parametric shape prior model. Using data from publicly available prostate MR datasets, which includes several challenging clinical datasets, we highlighted the effectiveness and the capability of the proposed algorithm. Besides, the algorithm has been compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Foued Derraz
- Telecommunications Laboratory, Technology Faculty, Abou Bekr Belkaïd University, Tlemcen, 13000, Algeria
- Université Nord de France, F-59000, Lille, France
- Unité de Traitement de Signaux Biomédicaux, Faculté de médecine et maïeutique, Lille, France
- LAMIH UMR CNRS 8201, Le Mont Houy, Université de Valenciennes et Cambresis, 59313, Valenciennes, France
| | - Gérard Forzy
- Unité de Traitement de Signaux Biomédicaux, Faculté de médecine et maïeutique, Lille, France
- Groupement des Hopitaux de l'́Institut Catholique de Lille, France
| | - Arnaud Delebarre
- Groupement des Hopitaux de l'́Institut Catholique de Lille, France
| | - Abdelmalik Taleb-Ahmed
- Université Nord de France, F-59000, Lille, France
- LAMIH UMR CNRS 8201, Le Mont Houy, Université de Valenciennes et Cambresis, 59313, Valenciennes, France
| | - Mourad Oussalah
- School of Electronics, Electrical and Computer Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laurent Peyrodie
- Université Nord de France, F-59000, Lille, France
- Hautes Etudes dÍngénieur, 13 rue de Toul, 59000, Lille, France
| | | |
Collapse
|
32
|
Review of potential improvements using MRI in the radiotherapy workflow. Z Med Phys 2015; 25:210-20. [PMID: 25779877 DOI: 10.1016/j.zemedi.2014.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/20/2014] [Accepted: 11/25/2014] [Indexed: 12/29/2022]
Abstract
The goal of modern radiotherapy is to deliver a lethal amount of dose to tissue volumes that contain a significant amount of tumour cells while sparing surrounding unaffected or healthy tissue. Online image guided radiotherapy with stereotactic ultrasound, fiducial-based planar X-ray imaging or helical/conebeam CT has dramatically improved the precision of radiotherapy, with moving targets still posing some methodical problems regarding positioning. Therefore, requirements for precise target delineation and identification of functional body structures to be spared by high doses become more evident. The identification of areas of relatively radioresistant cells or areas of high tumor cell density is currently under development. This review outlines the state of the art of MRI integration into treatment planning and its importance in follow up and the quantification of biological effects. Finally the current state of the art of online imaging for patient positioning will be outlined and indications will be given what the potential of integrated radiotherapy/online MRI systems is.
Collapse
|
33
|
Rusu M, Bloch BN, Jaffe CC, Genega EM, Lenkinski RE, Rofsky NM, Feleppa E, Madabhushi A. Prostatome: a combined anatomical and disease based MRI atlas of the prostate. Med Phys 2015; 41:072301. [PMID: 24989400 DOI: 10.1118/1.4881515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain, approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. METHODS The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides "ground truth" mapping of cancer extent on in vivo imaging for 23 subjects. RESULTS AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The AnCoR framework yielded a central gland Dice similarity coefficient (DSC) of 90%, and prostate DSC of 88%, while the misalignment of the urethra and verumontanum was found to be 3.45 mm, and 4.73 mm, respectively, which were measured to be significantly smaller compared to the alternative strategies. As might have been anticipated from our limited cohort of biopsy confirmed cancers, the disease atlas showed that most of the tumor extent was limited to the peripheral zone. Moreover, central gland tumors were typically larger in size, possibly because they are only discernible at a much later stage. CONCLUSIONS The authors presented the AnCoR framework to explicitly model anatomic constraints for the construction of a fused anatomic imaging-disease atlas. The framework was applied to constructing a preliminary version of an anatomic-disease atlas of the prostate, the prostatome. The prostatome could facilitate the quantitative characterization of gland morphology and imaging features of prostate cancer. These techniques, may be applied on a large sample size data set to create a fully developed prostatome that could serve as a spatial prior for targeted biopsies by urologists. Additionally, the AnCoR framework could allow for incorporation of complementary imaging and molecular data, thereby enabling their careful correlation for population based radio-omics studies.
Collapse
Affiliation(s)
- Mirabela Rusu
- Case Western Reserve University, Cleveland, Ohio 44106
| | - B Nicolas Bloch
- Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carl C Jaffe
- Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | | | | |
Collapse
|
34
|
Dirix P, Haustermans K, Vandecaveye V. The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol 2015; 24:151-9. [PMID: 24931085 DOI: 10.1016/j.semradonc.2014.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The success of highly conformal radiotherapy techniques in the sparing of normal tissues or in dose escalation, or both, relies heavily on excellent imaging. Because of its superior soft tissue contrast, magnetic resonance imaging is increasingly being used in radiotherapy treatment planning. This review discusses the current clinical evidence to support the pivotal role of magnetic resonance imaging in radiation oncology.
Collapse
Affiliation(s)
- Piet Dirix
- Department of Radiation Oncology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Leuven, Belgium; Department of Radiology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Leuven, Belgium.
| | - Karin Haustermans
- Department of Radiation Oncology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Vincent Vandecaveye
- Department of Radiology, Leuvens Kankerinstituut (LKI), University Hospitals Leuven, Leuven, Belgium; Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Validation of the CT-MRI image registration with a dedicated phantom. Radiol Med 2014; 119:942-950. [PMID: 25024060 DOI: 10.1007/s11547-014-0392-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/28/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The present study was aimed at verifying the automatic registration of the Focal (Elekta) platform with a dedicated phantom. MATERIALS AND METHODS A phantom that simulates the pelvis region in a stylised way and finalised to the registration of computed tomography-magnetic resonance images was designed and realised. After acquiring the two sets of images, the registration was performed both in automatic and manual mode to verify whether they were comparable. To test the repeatability of the automatic registration, some known rigid transformations were imposed to the original images. If the registration method works correctly, parameters which bring the images into alignment must always be the same. RESULTS Automatic registration performed by the software did not prove satisfactory, whereas if a specific tool [volume of interest (VOI) tool] allowing the calculation to be limited to the landmark region was used, the registration parameters were comparable with those of the manual registration. Regarding the repeatability of the automatic registration, the software brought the images in the correct alignment performing translations and rotations along the longitudinal axis up to 40°, while it was not satisfactory for rotations along the transverse axes. CONCLUSION The experimental results showed that in clinical application automatic registration is reliable if the VOI tool that includes visible landmarks in both studies is used. However, because the algorithm did not prove sensitive to rotations along the transverse axes, the position of the patient during the examinations plays a crucial role.
Collapse
|
36
|
Qayyum T, Willder JM, McArdle PA, Horgan PG, Edwards J, Underwood MA. The accuracy of magnetic resonance imaging in radical prostatectomy. Curr Urol 2014; 7:62-4. [PMID: 24917760 DOI: 10.1159/000356250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
AIMS The aim of this study was to examine the accuracy of standard magnetic resonance imaging (MRI) in the localised staging of prostate cancer in those who had undergone radical prostatectomy. PATIENTS AND METHODS The cohort consisted of 110 patients who had undergone MRI for staging of prostate cancer and subsequently underwent radical prostatectomy. T stage was analysed both on MRI and from the specimen following radical surgery. RESULTS Of the patients 57% of patients had their disease up-staged following radical surgery from preoperative MRI findings. Of those patients who had their disease up-staged following surgery, nearly 50% of patients had gone from organ confined disease at time of MRI to extra-prostatic involvement from the surgical specimen. CONCLUSION We have reported that MRI has a wide range of accuracy. Given developments in MRI technologies further work should be pursued to help in the staging of this disease for which decision to treat is difficult.
Collapse
Affiliation(s)
- T Qayyum
- Unit of Experimental Therapeutics, Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow, UK
| | - J M Willder
- Unit of Experimental Therapeutics, Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow, UK
| | - P A McArdle
- Department of Urology, Royal Infirmary, Glasgow, UK
| | - P G Horgan
- School of Medicine, College of MVLS, University of Glasgow, Royal Infirmary, Glasgow, UK
| | - J Edwards
- Unit of Experimental Therapeutics, Institute of Cancer, College of MVLS, University of Glasgow, Western Infirmary, Glasgow, UK
| | | |
Collapse
|
37
|
Qiu W, Yuan J, Ukwatta E, Sun Y, Rajchl M, Fenster A. Dual optimization based prostate zonal segmentation in 3D MR images. Med Image Anal 2014; 18:660-73. [PMID: 24721776 DOI: 10.1016/j.media.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 02/18/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC.
Collapse
Affiliation(s)
- Wu Qiu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
| | - Jing Yuan
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Eranga Ukwatta
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada
| | - Yue Sun
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada
| | - Martin Rajchl
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada
| | - Aaron Fenster
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Biomedical Engineering Graduate Program, University of Western Ontario, London, ON, Canada; Medical Biophysics, University of Western Ontario, London, ON, Canada
| |
Collapse
|
38
|
Fütterer JJ, Barentsz JO, Heijmijnk STWPJ. Imaging modalities for prostate cancer. Expert Rev Anticancer Ther 2014; 9:923-37. [DOI: 10.1586/era.09.63] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
|
40
|
Langerak TR, van der Heide UA, Kotte ANTJ, Berendsen FF, van Vulpen M, Pluim JPW. Expert-driven label fusion in multi-atlas-based segmentation of the prostate using weighted atlases. Int J Comput Assist Radiol Surg 2013; 8:929-36. [PMID: 23546993 DOI: 10.1007/s11548-013-0836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/18/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Automated segmentation is required for radiotherapy treatment planning, and multi-atlas methods are frequently used for this purpose. The combination of multiple intermediate results from multi-atlas segmentation into a single segmentation map can be achieved by label fusion. A method that includes expert knowledge in the label fusion phase of multi-atlas-based segmentation was developed. The method was tested by application to prostate segmentation, and the accuracy was compared to standard techniques. METHODS The selective and iterative method for performance level estimation (SIMPLE) algorithm for label fusion was modified with a weight map given by an expert that indicates the importance of each region in the evaluation of segmentation results. Voxel-based weights specified by an expert when performing the label fusion step in atlas-based segmentation were introduced into the modified SIMPLE algorithm. These weights incorporate expert knowledge on accuracy requirements in different regions of a segmentation. Using this knowledge, segmentation accuracy in regions known to be important can be improved by sacrificing segmentation accuracy in less important regions. Contextual information such as the presence of vulnerable tissue is then used in the segmentation process. This method using weight maps to fine-tune the result of multi-atlas-based segmentation was tested using a set of 146 atlas images consisting of an MR image of the lower abdomen and a prostate segmentation. Each image served as a target in a set of leave-one-out experiments. These experiments were repeated for a weight map derived from the clinical practice in our hospital. RESULTS The segmentation accuracy increased 6 % in regions that border vulnerable tissue using expert-specified voxel-based weight maps. This was achieved at the cost of a 4 % decrease in accuracy in less clinically relevant regions. CONCLUSION The inclusion of expert knowledge in a multi-atlas-based segmentation procedure was shown to be feasible for prostate segmentation. This method allows an expert to ensure that automatic segmentation is most accurate in critical regions. This improved local accuracy can increase the practical value of automatic segmentation.
Collapse
Affiliation(s)
- T R Langerak
- Image Sciences Institute, University Medical Center, Utrecht, The Netherlands,
| | | | | | | | | | | |
Collapse
|
41
|
Liu X, Peng W, Zhou L, Wang H. Biexponential apparent diffusion coefficients values in the prostate: comparison among normal tissue, prostate cancer, benign prostatic hyperplasia and prostatitis. Korean J Radiol 2013; 14:222-32. [PMID: 23483254 PMCID: PMC3590334 DOI: 10.3348/kjr.2013.14.2.222] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/18/2012] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the biexponential apparent diffusion parameters of diverse prostate tissues and compare them with monoexponential apparent diffusion coefficient (ADC) value in the efficacy to discriminate prostate cancer from benign lesions. Materials and Methods Eleven healthy volunteers and 61 patients underwent a conventional (b-factors 0, 1000 s/mm2) and a 10 b-factor (0 to 3000 s/mm2) diffusion-weighted imaging (DWI). The monoexponential ADC value and biexponential parameters of fast ADC (ADCf), fraction of ADCf (f), slow ADC (ADCs) value for 29 prostate cancer, 28 benign prostatic hyperplasia (BPH), 24 prostatitis lesions and normal tissue were calculated and compared. Receiver operating characteristic analysis was performed to determine the sensitivity, specificity and optimal cut-off points. Results Prostate cancer had lower ADC, ADCf, f, and ADCs than all other tissues (p < 0.01). Prostatitis exhibited a lower ADC, ADCf, ADCs and f than the peripheral zone tissue (p < 0.01), and BPH showed a lower ADC and ADCf than the central gland tissue (p < 0.01). The ADCf demonstrated a comparable accuracy with ADC in differentiating cancer from BPH [area under the curve (AUC) 0.93 vs. 0.92] and prostatitis AUC 0.98 vs. 0.99) (both p > 0.05), but the AUC of f and ADCs in differentiating cancer from BPH (0.73 and 0.81) and prostatitis (0.88 and 0.91) were significantly lower than ADC (all p < 0.05). Conclusion The biexponential DWI appears to provide additional parameters for tissue characterization in prostate, and ADCf helps to yield comparable accuracy with ADC in differentiating cancer from benign lesions.
Collapse
Affiliation(s)
- Xiaohang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | | | | | | |
Collapse
|
42
|
Jointly Segmenting Prostate Zones in 3D MRIs by Globally Optimized Coupled Level-Sets. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-642-40395-8_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|
43
|
|
44
|
Isebaert S, Van den Bergh L, Haustermans K, Joniau S, Lerut E, De Wever L, De Keyzer F, Budiharto T, Slagmolen P, Van Poppel H, Oyen R. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 2012; 37:1392-401. [PMID: 23172614 DOI: 10.1002/jmri.23938] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 10/04/2012] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sofie Isebaert
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Greene DE, Mayadev JS, Valicenti RK. Radiation treatment for patients with intermediate-risk prostate cancer. Ther Adv Urol 2012; 4:113-24. [PMID: 22654963 DOI: 10.1177/1756287212442977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Around 70% of men presenting with prostate cancer will have organ-confined disease, with the majority presenting with low- or intermediate-risk prostate cancer. This article reviews the evidence supporting the current standard of care in radiation oncology for the evaluation and management of men with intermediate-risk prostate cancer. Dose escalation, hormonal therapy, combined modality therapy, and modern techniques for the delivery of radiation therapy are reviewed.
Collapse
Affiliation(s)
- David E Greene
- Lieutenant Commander, 4501 X st, Radiation Oncology, Sacramento, CA 95817, USA
| | | | | |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW In this review, we summarize the recent advances in modern imaging, particularly multiparametric (mp) MRI and its role in the selection and monitoring of patients on active surveillance. RECENT FINDINGS Current diagnostic pathway has some limitations in selecting patients with insignificant prostate cancer for active surveillance. Hence, percentage of men under active surveillance for insignificant prostate cancer and reclassified as significant cancer at 2 years is 20-30%. It is mainly because of anterior cancer underdiagnosis by systematic posterior biopsies. mp-MRI is accurate for significant cancer detection and staging, including anterior cancers, which represent 20% of cancers in an unselected population of men with suspicious prostate-specific antigen elevation. One way to reduce the risk of underestimation is to target the needle on significant cancer identified at prebiopsy anatomical and functional imaging, so that detection and personalized risk stratification can be improved. MRI reveals greater volume of cancers and higher grade than systematic 12-core biopsies. MRI 95% negative predictive value has the potential to avoid biopsy series for monitoring patients under active surveillance. SUMMARY Upon confirmation of these results, MRI may be used to better select patients for active surveillance inclusion. Incorporation of mp-MRI into active surveillance selection criterias for patients with low-risk prostate cancer can reduce the number of patients reclassified at subsequent biopsies because of better initial prognosis evaluation. In addition to additional cost, MRI requires a highly skilled team to obtain information adequate to drive clinical decisions.
Collapse
|
47
|
Roeloffzen EM, Crook J, Monninkhof EM, McLean M, van Vulpen M, Saibishkumar EP. External validation of the pretreatment nomogram to predict acute urinary retention after 125I prostate brachytherapy. Brachytherapy 2012; 11:256-64. [DOI: 10.1016/j.brachy.2011.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/19/2011] [Accepted: 12/28/2011] [Indexed: 10/28/2022]
|
48
|
Isebaert S, De Keyzer F, Haustermans K, Lerut E, Roskams T, Roebben I, Van Poppel H, Joniau S, Oyen R. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol 2012; 81:e217-22. [DOI: 10.1016/j.ejrad.2011.01.107] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
|
49
|
Roeloffzen EM, van Vulpen M, Battermann JJ, van Roermund JG, Saibishkumar EP, Monninkhof EM. Pretreatment Nomogram to Predict the Risk of Acute Urinary Retention After I-125 Prostate Brachytherapy. Int J Radiat Oncol Biol Phys 2011; 81:737-44. [DOI: 10.1016/j.ijrobp.2010.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/03/2010] [Accepted: 06/09/2010] [Indexed: 11/29/2022]
|
50
|
Tanaka H, Hayashi S, Ohtakara K, Hoshi H, Iida T. Usefulness of CT-MRI fusion in radiotherapy planning for localized prostate cancer. JOURNAL OF RADIATION RESEARCH 2011; 52:782-788. [PMID: 21959829 DOI: 10.1269/jrr.11053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We compared the prostate volumes and rectal doses calculated by CT and CT-MRI fusion, and verified the usefulness of CT-MRI fusion in three-dimensional (3D) radiotherapy planning for localized prostate cancer. Three observers contoured the prostate and rectum of 13 patients with CT and CT-MRI fusion. Prostate delineations were classified into three sub-parts, and the volumes and distances to the rectum (PR distance) were calculated. 3D radiotherapy plans were generated. A dose-volume histogram (DVH) was constructed for the rectum. The intermodality and interobserver variations were assessed. CT-MRI fusion yielded a significantly lower prostate volume by 31%. In the sub-part analysis, the greatest difference was seen for the apical side. The PR distance was significantly extended by 3.5-mm, and the greatest difference was seen for the basal side. The irradiated rectal volume was reduced in the CT-MRI fusion-based plan. The reduction rates were greater in the relatively high-dose regions. The decrease of the prostate volume and length alteration of the distance between the prostate and rectum were correlated with the decrease of the irradiated rectal volume. The prostate volume delineated by CT-MRI fusion was negatively correlated with the decrease of the irradiated rectal volume. CT showed a tendency towards overestimation of the prostate volume and underestimation of the PR distance as compared to CT-MRI fusion. The rectal dose was significantly reduced in CT-MRI fusion-based plan. Using CT-MRI fusion, especially in cases with a small prostate, the irradiated rectal volume can be reduced, with consequent reduction in rectal complications.
Collapse
|