1
|
Aschauer MA, Keeling IM, Salvan-Schaschl CV, Knez I, Binder B, Raggam RB, Trantina-Yates AE. Gadofosveset-Trinatrium-Enhanced MR Angiography and MR Venography in the Diagnosis of Venous Thromboembolic Disease: A Single-Center Cohort Study. Diseases 2022; 10:diseases10040122. [PMID: 36547208 PMCID: PMC9777805 DOI: 10.3390/diseases10040122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND The aim of this single-center combined prospective/retrospective cohort study was to analyze Gadolinium (Gd)-enhanced MRA (magnetic resonance angiography) and MRV (MR venography) for the diagnosis of pulmonary artery embolism and deep venous thrombosis. The gold standard methods result in major exposure to radiation and a high amount of nephrotoxic iodinated contrast media. This is the first larger contrast-enhanced MR imaging study of acute and chronic venous thromboembolic disease of various stages. METHODS We prospectively examined 88 patients presenting clinical signs of deep vein thrombosis and/or pulmonary artery embolism. A single-session, one-stop shop Gd-enhanced MRA/MRV at 1.5 Tesla, using gradient echo sequences with very short repetition and echo times as well as low flip angles with subtraction and three-dimensional reconstruction, was performed. A diagnosis was made with the consensus of two experienced radiologists. RESULTS We observed excellent MRA image quality in 87% and even higher diagnostic image quality of MRV in 90% of our examinations. Pulmonary artery embolism occurred with deep vein thrombosis in 22%. CONCLUSIONS Gd-enhanced MRA/MRV provided excellent image quality for the diagnosis of venous thromboembolic disease in the majority of cases. It may be particularly useful to plan and follow-up filter implantation and retrieval in the inferior caval vein.
Collapse
Affiliation(s)
| | - Ingeborg M. Keeling
- Department of Cardiac Surgery, Medical University of Graz, 8036 Graz, Austria
- Correspondence:
| | | | - Igor Knez
- Department of Cardiac Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Barbara Binder
- Department of Dermatology, Medical University of Graz, 8036 Graz, Austria
| | | | | |
Collapse
|
2
|
Siebermair J, Kholmovski EG, Sheffer D, Schroeder J, Jensen L, Kheirkhahan M, Baher AA, Ibrahim MM, Reiter T, Rassaf T, Wakili R, Marrouche NF, McGann CJ, Wilson BD. Saturation recovery-prepared magnetic resonance angiography for assessment of left atrial and esophageal anatomy. Br J Radiol 2021; 94:20210048. [PMID: 34111982 DOI: 10.1259/bjr.20210048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Magnetic resonance angiography (MRA) has been established as an important imaging method in cardiac ablation procedures. In pulmonary vein (PV) isolation procedures, MRA has the potential to minimize the risk of severe complications, such as atrio-esophageal fistula, by providing detailed information on esophageal position relatively to cardiac structures. However, traditional non-gated, first-pass (FP) MRA approaches have several limitations, such as long breath-holds, non-uniform signal intensity throughout the left atrium (LA), and poor esophageal visualization. The aim of this observational study was to validate a respiratory-navigated, ECG-gated (EC), saturation recovery-prepared MRA technique for simultaneous imaging of LA, LA appendage, PVs, esophagus, and adjacent anatomical structures. METHODS Before PVI, 106 consecutive patients with a history of AF underwent either conventional FP-MRA (n = 53 patients) or our new EC-MRA (n = 53 patients). Five quality scores (QS) of LA and esophagus visibility were assessed by two experienced readers. The non-parametric Mann-Whitney U-test was used to compare QS between FP-MRA and EC-MRA groups, and linear regression was applied to assess clinical contributors to image quality. RESULTS EC-MRA demonstrated significantly better image quality than FP-MRA in every quality category. Esophageal visibility using the new MRA technique was markedly better than with the conventional FP-MRA technique (median 3.5 [IQR 1] vs median 1.0, p < 0.001). In contrast to FP-MRA, overall image quality of EC-MRA was not influenced by heart rate. CONCLUSION Our ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality and esophageal visibility than the established non-gated, breath-holding FP-MRA. Image quality of EC-MRA technique has the additional advantage of being unaffected by heart rate. ADVANCES IN KNOWLEDGE Detailed information of cardiac anatomy has the potential to minimize the risk of severe complications and improve success rates in invasive electrophysiological studies. Our novel ECG-gated, respiratory-navigated, saturation recovery-prepared MRA technique provides significantly better image quality of LA and esophageal structures than the traditional first-pass algorithm. This new MRA technique is robust to arrhythmia (tachycardic, irregular heart rates) frequently observed in AF patients.
Collapse
Affiliation(s)
- Johannes Siebermair
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Essen Medical School, University Duisburg-Essen, Essen, Germany.,Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany.,German Cardiovascular Research Center (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Eugene G Kholmovski
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Douglas Sheffer
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA
| | - Joyce Schroeder
- UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Leif Jensen
- UCAIR, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Mobin Kheirkhahan
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alex A Baher
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA
| | - Majd M Ibrahim
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresa Reiter
- Department of Internal Medicine, Cardiology, University Hospital Wuerzburg, Würzburg, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Essen Medical School, University Duisburg-Essen, Essen, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, University of Essen Medical School, University Duisburg-Essen, Essen, Germany.,Department of Medicine I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany.,German Cardiovascular Research Center (DZHK), partner site: Munich Heart Alliance, Munich, Germany
| | - Nassir F Marrouche
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,Section of Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher J McGann
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,Swedish Heart and Vascular Institute, Seattle, WA, USA
| | - Brent D Wilson
- Comprehensive Arrhythmia Research & Management Center, University of Utah, Salt Lake City, UT, USA.,Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Nacif MS, Raman FS, Gai N, Jones J, van der Geest RJ, T Sibley C, Liu S, David AB. Myocardial T1 mapping and determination of partition coefficients at 3 tesla: comparison between gadobenate dimeglumine and gadofosveset trisodium. Radiol Bras 2018; 51:13-19. [PMID: 29559761 PMCID: PMC5846320 DOI: 10.1590/0100-3984.2016.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective To compare an albumin-bound gadolinium chelate (gadofosveset trisodium) and
an extracellular contrast agent (gadobenate dimeglumine), in terms of their
effects on myocardial longitudinal (T1) relaxation time and partition
coefficient. Materials and Methods Study subjects underwent two imaging sessions for T1 mapping at 3 tesla with
a modified look-locker inversion recovery (MOLLI) pulse sequence to obtain
one pre-contrast T1 map and two post-contrast T1 maps (mean 15 and 21 min,
respectively). The partition coefficient was calculated as
ΔR1myocardium
/ΔR1blood , where
R1 is 1/T1. Results A total of 252 myocardial and blood pool T1 values were obtained in 21
healthy subjects. After gadolinium administration, the myocardial T1 was
longer for gadofosveset than for gadobenate, the mean difference between the
two contrast agents being −7.6 ± 60 ms (p = 0.41).
The inverse was true for the blood pool T1, which was longer for gadobenate
than for gadofosveset, the mean difference being 56.5 ± 67 ms
(p < 0.001). The partition coefficient (λ)
was higher for gadobenate than gadofosveset (0.41 vs. 0.33), indicating
slower blood pool washout for gadofosveset than for gadobenate. Conclusion Myocardial T1 times did not differ significantly between gadobenate and
gadofosveset. At typical clinical doses of the contrast agents, partition
coefficients were significantly lower for the intravascular contrast agent
than for the extravascular agent.
Collapse
Affiliation(s)
- Marcelo Souto Nacif
- MD, PhD, Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Fabio S Raman
- Biomedical Engineer, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Neville Gai
- MD, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Jacquin Jones
- PhD, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | | | - Christopher T Sibley
- MD, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - Songtao Liu
- MD, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - A Bluemke David
- MD, PhD, National Institutes of Health Clinical Center, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| |
Collapse
|
4
|
Ahlman MA, Raman FS, Penzak SR, Pang J, Fan Z, Liu S, Gai N, Li D, Bluemke DA. Part 1 - Coronary angiography with gadofosveset trisodium: a prospective feasibility study evaluating injection techniques for steady-state imaging. BMC Cardiovasc Disord 2015; 15:177. [PMID: 26695065 PMCID: PMC4688989 DOI: 10.1186/s12872-015-0176-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background The purpose of this study was to define an optimal injection protocol for 5–10 min duration navigator-based coronary MR angiography using an intravascular gadolinium-based contrast agent (GBCA), which is better suited for steady-state coronary MR angiography than conventional GBCAs. Methods Using projections from pharmacokinetic models of the intravascular concentration of gadofosveset, a dual-injection protocol was formulated and tested on 14 healthy human subjects. Modified Look-Locker inversion recovery (MOLLI) sequences were used for T1 mapping at 3 Tesla to evaluate the concentration of tracer in the aorta over the scanning interval. Results Pharmacokinetic models for a bolus plus slow infusion technique at a 5, 10, and 15 min steady state intravascular concentration was compared to single bolus curves. The 70 %/30 % bolus/slow infusion technique resulted in the highest intravascular concentration over a 5 min scan duration. Similarly, the 60 %/40 % bolus/slow infusion technique was projected to be ideal for image acquisition duration of 5–10 min. These models were confirmed with T1 maps on normal volunteers. Arterial-venous mixing of contrast was achieved within 90 s of the beginning of the bolus. Conclusions Gadofosveset injection is optimized for the lowest intravascular T1 time for 5–10 min duration MR angiography by bolus injection of 60–70 % of the total dose followed by slow infusion of the remainder of the total dose. This protocol achieves rapid and prolonged steady state intravascular concentrations of the GBCA that may be useful for prolonged image acquisition, such as required for navigator-based coronary MR angiography at 3 Tesla. Trial registration ClinicalTrials.gov identifier: NCT01130545NCT01130545, registered as of May 25, 2010.
Collapse
Affiliation(s)
- Mark A Ahlman
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Fabio S Raman
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Scott R Penzak
- Department of Pharmacotherapy, University of North Texas, Fort Worth, TX, USA.
| | - Jianing Pang
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Zhaoyang Fan
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Songtao Liu
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Neville Gai
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| | - Debiao Li
- Bioengineering, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - David A Bluemke
- Radiology and Imaging Sciences - National Institutes of Health Clinical Center, Bethesda, MD, USA.
| |
Collapse
|
5
|
Roujol S, Foppa M, Basha TA, Akçakaya M, Kissinger KV, Goddu B, Berg S, Nezafat R. Accelerated free breathing ECG triggered contrast enhanced pulmonary vein magnetic resonance angiography using compressed sensing. J Cardiovasc Magn Reson 2014; 16:91. [PMID: 25416082 PMCID: PMC4240816 DOI: 10.1186/s12968-014-0091-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To investigate the feasibility of accelerated electrocardiogram (ECG)-triggered contrast enhanced pulmonary vein magnetic resonance angiography (CE-PV MRA) with isotropic spatial resolution using compressed sensing (CS). METHODS Nineteen patients (59±13 y, 11 M) referred for MR were scanned using the proposed accelerated free breathing ECG-triggered 3D CE-PV MRA sequence (FOV=340×340×110 mm3, spatial resolution=1.5×1.5×1.5 mm3, acquisition window=140 ms at mid diastole and CS acceleration factor=5) and a conventional first-pass breath-hold non ECG-triggered 3D CE-PV MRA sequence. CS data were reconstructed offline using low-dimensional-structure self-learning and thresholding reconstruction (LOST) CS reconstruction. Quantitative analysis of PV sharpness and subjective qualitative analysis of overall image quality were performed using a 4-point scale (1: poor; 4: excellent). RESULTS Quantitative PV sharpness was increased using the proposed approach (0.73±0.09 vs. 0.51±0.07 for the conventional CE-PV MRA protocol, p<0.001). There were no significant differences in the subjective image quality scores between the techniques (3.32±0.94 vs. 3.53±0.77 using the proposed technique). CONCLUSIONS CS-accelerated free-breathing ECG-triggered CE-PV MRA allows evaluation of PV anatomy with improved sharpness compared to conventional non-ECG gated first-pass CE-PV MRA. This technique may be a valuable alternative for patients in which the first pass CE-PV MRA fails due to inaccurate first pass timing or inability of the patient to perform a 20-25 seconds breath-hold.
Collapse
Affiliation(s)
- Sébastien Roujol
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Murilo Foppa
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Tamer A Basha
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Mehmet Akçakaya
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Kraig V Kissinger
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Beth Goddu
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Sophie Berg
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
6
|
Groarke JD, Waller AH, Vita TS, Michaud GF, Di Carli MF, Blankstein R, Kwong RY, Steigner M. Feasibility study of electrocardiographic and respiratory gated, gadolinium enhanced magnetic resonance angiography of pulmonary veins and the impact of heart rate and rhythm on study quality. J Cardiovasc Magn Reson 2014; 16:43. [PMID: 24947763 PMCID: PMC4078012 DOI: 10.1186/1532-429x-16-43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 05/23/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND We aimed to assess the feasibility of 3 dimensional (3D) respiratory and ECG gated, gadolinium enhanced magnetic resonance angiography (MRA) on a 3 Tesla (3 T) scanner for imaging pulmonary veins (PV) and left atrium (LA). The impact of heart rate (HR) and rhythm irregularity associated with atrial fibrillation (AF) on image and segmentation qualities were also assessed. METHODS 101 consecutive patients underwent respiratory and ECG gated (ventricular end systolic window) MRA for pre AF ablation imaging. Image quality (assessed by PV delineation) was scored as 1 = not visualized, 2 = poor, 3 = good and 4 = excellent. Segmentation quality was scored on a similar 4 point scale. Signal to noise ratios (SNRs) were calculated for the LA, LA appendage (LAA), and PV. Contrast to noise ratios (CNRs) were calculated between myocardium and LA, LAA and PV, respectively. Associations between HR/rhythm and quality metrics were assessed. RESULTS 35 of 101 (34.7%) patients were in AF at time of MRA. 100 (99%) patients had diagnostic studies, and 91 (90.1%) were of good or excellent quality. Overall, mean ± standard deviation (SD) image quality score was 3.40 ± 0.69. Inter observer agreement for image quality scores was substantial, (kappa = 0.68; 95% confidence interval (CI): 0.46, 0.90). Neither HR adjusting for rhythm [odds ratio (OR) = 1.03, 95% CI = 0.98,1.09; p = 0.22] nor rhythm adjusting for HR [OR = 1.25, 95% CI = 0.20, 7.69; p = 0.81] demonstrated association with image quality. Similarly, SNRs and CNRs were largely independent of HR after adjusting for rhythm. Segmentation quality scores were good or excellent for 77.3% of patients: mean ± SD score = 2.91 ± 0.63, and scores did not significantly differ by baseline rhythm (p = 0.78). CONCLUSIONS 3D respiratory and ECG gated, gadolinium enhanced MRA of the PVs and LA on a 3 T system is feasible during ventricular end systole, achieving high image quality and high quality image segmentation when imported into electroanatomic mapping systems. Quality is independent of HR and heart rhythm for this free breathing, radiation free, alternative strategy to current MRA or CT based approaches, for pre AF ablation imaging of PVs and LA.
Collapse
Affiliation(s)
- John D Groarke
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfonso H Waller
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomas S Vita
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory F Michaud
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron Blankstein
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond Y Kwong
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Steigner
- Cardiovascular Imaging Program, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Fahlenkamp U, Lembcke A, Roesler R, Schwenke C, Huppertz A, Streitparth F, Taupitz M, Hamm B, Wagner M. ECG-gated imaging of the left atrium and pulmonary veins: Intra-individual comparison of CTA and MRA. Clin Radiol 2013; 68:1059-64. [DOI: 10.1016/j.crad.2013.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/30/2022]
|
8
|
Raman FS, Nacif MS, Cater G, Gai N, Jones J, Li D, Sibley CT, Liu S, Bluemke DA. 3.0-T whole-heart coronary magnetic resonance angiography: comparison of gadobenate dimeglumine and gadofosveset trisodium. Int J Cardiovasc Imaging 2013; 29:1085-94. [PMID: 23515949 PMCID: PMC3702681 DOI: 10.1007/s10554-013-0192-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
Gadolinium enhanced coronary magnetic resonance angiography (MRA) at 3 T appears to be superior to non-contrast methods. Gadofosveset is an intravascular contrast agent that may be well suited to this application. The purpose of this study was to perform an intra-individual comparison of gadofosveset and gadobenate for coronary MRA at 3 T. In this prospective randomized study, 22 study subjects [8 (36%) male; 27.9 ± 6 years; BMI = 22.8 ± 2 kg/m(2)] underwent two studies using a contrast-enhanced inversion recovery three-dimensional fast low angle shot MRA at 3 T. The order of contrast agent administration was varied randomly, separated by an average of 30 ± 5 days, using either gadobenate dimeglumine (Gd-BOPTA; Bracco, 0.1 mmol/Kg) or gadofosveset trisodium (MS-325; Lantheus Med, 0.03 mmol/Kg). Acquisition time, signal-to-noise ratio (SNR) of coronary vessels and contrast-to-noise ratio (CNR) were evaluated. Of 308 coronary arteries and veins segment analyzed, overall SNR of coronary arteries and veins segments were not different for the two contrast agents (132 ± 79 for gadofosveset vs. 135 ± 78 for gadobenate, p = 0.69). Coronary artery CNR was greater for gadofosveset in comparison to gadobenate (73.5 ± 46.9 vs. 59.3 ± 75.7 respectively, p = 0.03). Gadofosveset-enhanced MRA images displayed better image quality than gadobenate-enhanced MRA images (2.77 ± 0.61 for gadofosveset vs. 2.11 ± 0.51, p < .001). Inter- and intra-reader variability was excellent (ICC > 0.90) for both contrast agents. Gadofosveset trisodium appears to show slightly better performance for coronary MRA at 3 T compared to gadobenate.
Collapse
Affiliation(s)
- Fabio S Raman
- Radiology and Imaging Sciences, National Institutes of Health of Clinical Center, 10 Center Drive, Building 10, Rm 1C355, Bethesda, MD 20892-1182, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Vasanawala SS, Chan FP, Newman B, Alley MT. Combined respiratory and cardiac triggering improves blood pool contrast-enhanced pediatric cardiovascular MRI. Pediatr Radiol 2011; 41:1536-44. [PMID: 21786125 PMCID: PMC3755368 DOI: 10.1007/s00247-011-2196-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/27/2011] [Accepted: 06/02/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Contrast-enhanced cardiac MRA suffers from cardiac motion artifacts and often requires a breath-hold. OBJECTIVE This work develops and evaluates a blood pool contrast-enhanced combined respiratory- and ECG-triggered MRA method. MATERIALS AND METHODS An SPGR sequence was modified to enable combined cardiac and respiratory triggering on a 1.5-T scanner. Twenty-three consecutive children referred for pediatric heart disease receiving gadofosveset were recruited in HIPAA-compliant fashion with IRB approval and informed consent. Children underwent standard non-triggered contrast-enhanced MRA with or without suspended respiration. Additionally, a free-breathing-triggered MRA was acquired. Triggered and non-triggered studies were presented in blinded random order independently to two radiologists twice. Anatomical structure delineation was graded for each triggered and non-triggered acquisition and the visual quality on triggered MRA was compared directly to that on non-triggered MRA. RESULTS Triggered images received higher scores from each radiologist for all anatomical structures on each of the two reading sessions (Wilcoxon rank sum test, P < 0.05). In direct comparison, triggered images were preferred over non-triggered images for delineating cardiac structures, with most comparisons reaching statistical significance (binomial test, P < 0.05). CONCLUSION Combined cardiac and respiratory triggering, enabled by a blood pool contrast agent, improves delineation of most anatomical structures in pediatric cardiovascular MRA.
Collapse
Affiliation(s)
- Shreyas S Vasanawala
- Department of Radiology, Stanford University School of Medicine, Lucile Packard Children's Hospital, 725 Welch Road, Room 1679, Stanford, CA 94305-5913, USA.
| | | | | | | |
Collapse
|
10
|
Advances in pediatric body MRI. Pediatr Radiol 2011; 41 Suppl 2:549-54. [PMID: 21847737 PMCID: PMC3505997 DOI: 10.1007/s00247-011-2103-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/14/2011] [Accepted: 03/15/2011] [Indexed: 10/17/2022]
Abstract
MRI offers an alternative to CT, and thus is central to an ALARA strategy. However, long exam times, limited magnet availability, and motion artifacts are barriers to expanded use of MRI. This article reviews developments in pediatric body MRI that might reduce these barriers: high field systems, acceleration, navigation and newer contrast agents.
Collapse
|
11
|
|