1
|
Gaur S, Panda A, Fajardo JE, Hamilton J, Jiang Y, Gulani V. Magnetic Resonance Fingerprinting: A Review of Clinical Applications. Invest Radiol 2023; 58:561-577. [PMID: 37026802 PMCID: PMC10330487 DOI: 10.1097/rli.0000000000000975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
ABSTRACT Magnetic resonance fingerprinting (MRF) is an approach to quantitative magnetic resonance imaging that allows for efficient simultaneous measurements of multiple tissue properties, which are then used to create accurate and reproducible quantitative maps of these properties. As the technique has gained popularity, the extent of preclinical and clinical applications has vastly increased. The goal of this review is to provide an overview of currently investigated preclinical and clinical applications of MRF, as well as future directions. Topics covered include MRF in neuroimaging, neurovascular, prostate, liver, kidney, breast, abdominal quantitative imaging, cardiac, and musculoskeletal applications.
Collapse
Affiliation(s)
- Sonia Gaur
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Ananya Panda
- All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Jesse Hamilton
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Yun Jiang
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| | - Vikas Gulani
- Department of Radiology, Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
2
|
Ding H, Velasco C, Ye H, Lindner T, Grech-Sollars M, O’Callaghan J, Hiley C, Chouhan MD, Niendorf T, Koh DM, Prieto C, Adeleke S. Current Applications and Future Development of Magnetic Resonance Fingerprinting in Diagnosis, Characterization, and Response Monitoring in Cancer. Cancers (Basel) 2021; 13:4742. [PMID: 34638229 PMCID: PMC8507535 DOI: 10.3390/cancers13194742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Magnetic resonance imaging (MRI) has enabled non-invasive cancer diagnosis, monitoring, and management in common clinical settings. However, inadequate quantitative analyses in MRI continue to limit its full potential and these often have an impact on clinicians' judgments. Magnetic resonance fingerprinting (MRF) has recently been introduced to acquire multiple quantitative parameters simultaneously in a reasonable timeframe. Initial retrospective studies have demonstrated the feasibility of using MRF for various cancer characterizations. Further trials with larger cohorts are still needed to explore the repeatability and reproducibility of the data acquired by MRF. At the moment, technical difficulties such as undesirable processing time or lack of motion robustness are limiting further implementations of MRF in clinical oncology. This review summarises the latest findings and technology developments for the use of MRF in cancer management and suggests possible future implications of MRF in characterizing tumour heterogeneity and response assessment.
Collapse
Affiliation(s)
- Hao Ding
- Imperial College School of Medicine, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Huihui Ye
- State Key Laboratory of Modern Optical instrumentation, Zhejiang University, Hangzhou 310027, China;
| | - Thomas Lindner
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany;
| | - Matthew Grech-Sollars
- Department of Medical Physics, Royal Surrey NHS Foundation Trust, Surrey GU2 7XX, UK;
- Department of Surgery & Cancer, Imperial College London, London SW7 2AZ, UK
| | - James O’Callaghan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Crispin Hiley
- Cancer Research UK, Lung Cancer Centre of Excellence, University College London Cancer Institute, London WC1E 6DD, UK;
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Manil D. Chouhan
- UCL Centre for Medical Imaging, Division of Medicine, University College London, London W1W 7TS, UK; (J.O.); (M.D.C.)
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck, Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London SM2 5NG, UK;
- Department of Radiology, Royal Marsden Hospital, London SW3 6JJ, UK
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, St Thomas’ Hospital, King’s College London, London SE1 7EH, UK; (C.V.); (C.P.)
| | - Sola Adeleke
- High Dimensional Neurology Group, Queen’s Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Oncology, Guy’s & St Thomas’ Hospital, London SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Ter Voert EEGW, Heijmen L, van Asten JJA, Wright AJ, Nagtegaal ID, Punt CJA, de Wilt JHW, van Laarhoven HWM, Heerschap A. Levels of choline-containing compounds in normal liver and liver metastases of colorectal cancer as recorded by 1 H MRS. NMR IN BIOMEDICINE 2019; 32:e4035. [PMID: 30457686 DOI: 10.1002/nbm.4035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 09/07/2018] [Accepted: 09/28/2018] [Indexed: 06/09/2023]
Abstract
PURPOSE A relatively high signal for choline-containing compounds (total choline, tCho) is commonly found in 1 H MR spectra of malignant tumors, but it is unclear if this also occurs in tumors in the liver. We evaluated the potential of the tCho signal in single voxel 1 H MR spectra of the human liver to assess metastases of colorectal cancers. EXPERIMENT MR spectra of an 8 cm3 PRESS-localized voxel were obtained at 3 T from the livers of 12 healthy volunteers and from metastatic lesions in 20 patients in two different sessions. To correct for motion artifacts, sequentially recorded spectra were individually phased and frequency aligned before averaging. Spectra were analyzed using LCModel and tissue levels estimated by water referencing. Repeatability was assessed with Bland-Altman analyses. To estimate tumor necrosis, diffusion-weighted imaging of the liver was performed. High resolution magic angle spinning (HRMAS) spectra of tumor and normal liver samples were obtained at 11.7 T. RESULTS With increasing tumor volumes, tCho levels decreased, indicating a partial volume effect. Mean tCho content in tumors larger than the PRESS voxel (>8 cm3 ) was significantly lower (p < 0.01) than for normal liver: 1.6 (range 0.0-3.4) versus 6.9 (range 4.9-11.1) mmol/kg wet weight, while it was comparable for tumors smaller than 8 cm3 : 7.0 (range 3.8-9.3) mmol/kg. The higher 90th percentile apparent diffusion coefficient value in the larger lesions indicates more necrosis. Measurement repeatability was average in normal livers and poor in tumors. HRMAS did not show substantial differences in choline-containing compounds between normal liver and metastasis. CONCLUSION An increased tCho content was not observed in 1 H MR spectra of liver metastasis of colorectal cancer, compared with normal liver. This may be due to the background of a high tCho signal in spectra of normal liver or to an intrinsic lower tCho content in these tumors, but is most likely the result of necrosis in metastatic tumor tissue.
Collapse
Affiliation(s)
- Edwin E G W Ter Voert
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Linda Heijmen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack J A van Asten
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan J Wright
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelis J A Punt
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes H W de Wilt
- Department of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hanneke W M van Laarhoven
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Advanced imaging to predict response to chemotherapy in colorectal liver metastases - a systematic review. HPB (Oxford) 2018; 20:120-127. [PMID: 29196021 DOI: 10.1016/j.hpb.2017.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND The assessment of colorectal liver metastases (CRLM) after treatment with chemotherapy is challenging due to morphological and/or functional change without changes in size. The aim of this review was to assess the value of FDG-PET, FDG-PET-CT, CT and MRI in predicting response to chemotherapy in CRLM. METHODS A systematic review was undertaken based on PRISMA statement. PubMed and Embase were searched up to October 2016 for studies on the accuracy of PET, PET-CT, CT and MRI in predicting RECIST or metabolic response to chemotherapy and/or survival in patients with CRLM. Articles evaluating the assessment of response after chemotherapy were excluded. RESULTS Sixteen studies met the inclusion criteria and were included for further analysis. Study results were available for 6 studies for FDG-PET(-CT), 6 studies for CT and 9 studies for MRI. Generally, features predicting RECIST or metabolic response often predicted shorter survival. The ADC (apparent diffusion coefficient, on MRI) seems to be the most promising predictor of response and survival. In CT-related studies, few attenuation-related parameters and texture features show promising results. In FDG-PET(-CT), findings were ambiguous. CONCLUSION Radiological data on the prediction of response to chemotherapy for CRLM is relatively sparse and heterogeneous. Despite that, a promising parameter might be ADC. Second, there seems to be a seemingly counterintuitive correlation between parameters that predict a good response and also predict poor survival.
Collapse
|
5
|
Jerome NP, d’Arcy JA, Feiweier T, Koh DM, Leach MO, Collins DJ, Orton MR. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol 2016; 61:N667-N680. [PMID: 27893459 PMCID: PMC5952260 DOI: 10.1088/1361-6560/61/24/n667] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 01/19/2023]
Abstract
The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n = 5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE = 62-102 ms, b = 0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE = 62 ms, with 3 additional b-values 0-50 mm-2s at TE = 80, 100 ms; scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4 ± 7% (TE = 62 ms) to 30.7 ± 11% (TE = 102 ms); T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9 ± 6%, T2-IVIM: 18.3 ± 7%), as well as T 2 = 42.1 ± 7 ms, 77.6 ± 30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model.
Collapse
Affiliation(s)
- N P Jerome
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, SM2 5NG, UK
| | - J A d’Arcy
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, SM2 5NG, UK
| | | | - D-M Koh
- Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, UK
| | - M O Leach
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, SM2 5NG, UK
| | - D J Collins
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, SM2 5NG, UK
| | - M R Orton
- Cancer Research UK Cancer Imaging Centre, Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, SM2 5NG, UK
| |
Collapse
|
6
|
Chen Y, Jiang Y, Pahwa S, Ma D, Lu L, Twieg MD, Wright KL, Seiberlich N, Griswold MA, Gulani V. MR Fingerprinting for Rapid Quantitative Abdominal Imaging. Radiology 2016; 279:278-86. [PMID: 26794935 DOI: 10.1148/radiol.2016152037] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To develop a magnetic resonance (MR) "fingerprinting" technique for quantitative abdominal imaging. MATERIALS AND METHODS This HIPAA-compliant study had institutional review board approval, and informed consent was obtained from all subjects. To achieve accurate quantification in the presence of marked B0 and B1 field inhomogeneities, the MR fingerprinting framework was extended by using a two-dimensional fast imaging with steady-state free precession, or FISP, acquisition and a Bloch-Siegert B1 mapping method. The accuracy of the proposed technique was validated by using agarose phantoms. Quantitative measurements were performed in eight asymptomatic subjects and in six patients with 20 focal liver lesions. A two-tailed Student t test was used to compare the T1 and T2 results in metastatic adenocarcinoma with those in surrounding liver parenchyma and healthy subjects. RESULTS Phantom experiments showed good agreement with standard methods in T1 and T2 after B1 correction. In vivo studies demonstrated that quantitative T1, T2, and B1 maps can be acquired within a breath hold of approximately 19 seconds. T1 and T2 measurements were compatible with those in the literature. Representative values included the following: liver, 745 msec ± 65 (standard deviation) and 31 msec ± 6; renal medulla, 1702 msec ± 205 and 60 msec ± 21; renal cortex, 1314 msec ± 77 and 47 msec ± 10; spleen, 1232 msec ± 92 and 60 msec ± 19; skeletal muscle, 1100 msec ± 59 and 44 msec ± 9; and fat, 253 msec ± 42 and 77 msec ± 16, respectively. T1 and T2 in metastatic adenocarcinoma were 1673 msec ± 331 and 43 msec ± 13, respectively, significantly different from surrounding liver parenchyma relaxation times of 840 msec ± 113 and 28 msec ± 3 (P < .0001 and P < .01) and those in hepatic parenchyma in healthy volunteers (745 msec ± 65 and 31 msec ± 6, P < .0001 and P = .021, respectively). CONCLUSION A rapid technique for quantitative abdominal imaging was developed that allows simultaneous quantification of multiple tissue properties within one 19-second breath hold, with measurements comparable to those in published literature.
Collapse
Affiliation(s)
- Yong Chen
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Yun Jiang
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Shivani Pahwa
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Dan Ma
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Lan Lu
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Michael D Twieg
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Katherine L Wright
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Nicole Seiberlich
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Mark A Griswold
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| | - Vikas Gulani
- From the Departments of Radiology (Y.C., S.P., D.M., L.L., K.L.W., M.A.G., V.G.), Biomedical Engineering (Y.J., N.S., M.A.G.), and Electrical Engineering and Computer Science (M.D.T.), Case Western Reserve University/University Hospitals Case Medical Center, 11100 Euclid Ave, Bolwell Building, Room B120, Cleveland, OH 44106
| |
Collapse
|
7
|
Bönner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, Butzbach B, Haberkorn S, Westenfeld R, Neizel-Wittke M, Flögel U, Kelm M. Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson 2015; 17:9. [PMID: 25656484 PMCID: PMC4318191 DOI: 10.1186/s12968-015-0118-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 01/13/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND T2 mapping indicates to be a sensitive method for detection of tissue oedema hidden beyond the detection limits of T2-weighted Cardiovascular Magnetic Resonance (CMR). However, due to variability of baseline T2 values in volunteers, reference values need to be defined. Therefore, the aim of the study was to investigate the effects of age and sex on quantitative T2 mapping with a turbo gradient-spin-echo (GRASE) sequence at 1.5 T. For that reason, we studied sensitivity issues as well as technical and biological effects on GRASE-derived myocardial T2 maps. Furthermore, intra- and interobserver variability were calculated using data from a large volunteer group. METHODS GRASE-derived multiecho images were analysed using dedicated software. After sequence optimization, validation and sensitivity measurements were performed in muscle phantoms ex vivo and in vivo. The optimized parameters were used to analyse CMR images of 74 volunteers of mixed sex and a wide range of age with typical prevalence of hypertension and diabetes. Myocardial T2 values were analysed globally and according to the 17 segment model. Strain-encoded (SENC) imaging was additionally performed to investigate possible effects of myocardial strain on global or segmental T2 values. RESULTS Ex vivo studies in muscle phantoms showed, that GRASE-derived T2 values were comparable to those acquired by a standard multiecho spinecho sequence but faster by a factor of 6. Besides that, T2 values reflected tissue water content. The in vivo measurements in volunteers revealed intra- and interobserver correlations with R2=0.91 and R2=0.94 as well as a coefficients of variation of 2.4% and 2.2%, respectively. While global T2 time significantly decreased towards the heart basis, female volunteers had significant higher T2 time irrespective of myocardial region. We found no correlation of segmental T2 values with maximal systolic, diastolic strain or heart rate. Interestingly, volunteers´ age was significantly correlated to T2 time while that was not the case for other coincident cardiovascular risk factors. CONCLUSION GRASE-derived T2 maps are highly reproducible. However, female sex and aging with typical prevalence of hypertension and diabetes were accompanied by increased myocardial T2 values. Thus, sex and age must be considered as influence factors when using GRASE in a diagnostic manner.
Collapse
Affiliation(s)
- Florian Bönner
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Niko Janzarik
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Jacoby
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
- />Department of Molecular Cardiology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
| | - Maximilian Spieker
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Felix Range
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Britta Butzbach
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Sebastian Haberkorn
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ralf Westenfeld
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Mirja Neizel-Wittke
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ulrich Flögel
- />Department of Molecular Cardiology, Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- />CARID (Cardiovascular Research Institute Düsseldorf), Düsseldorf, Germany
| | - Malte Kelm
- />Department of Cardiology, Pulmonology and Vascular Medicine, Heinrich Heine University, Medical Faculty, Moorenstraße 5, 40225 Düsseldorf, Germany
- />CARID (Cardiovascular Research Institute Düsseldorf), Düsseldorf, Germany
| |
Collapse
|