1
|
Gawlitza J, Henzler T, Trinkmann F, Nekolla E, Haubenreisser H, Brix G. COPD Imaging on a 3rd Generation Dual-Source CT: Acquisition of Paired Inspiratory-Expiratory Chest Scans at an Overall Reduced Radiation Risk. Diagnostics (Basel) 2020; 10:E1106. [PMID: 33352939 PMCID: PMC7765937 DOI: 10.3390/diagnostics10121106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
As stated by the Fleischner Society, an additional computed tomography (CT) scan in expiration is beneficial in patients with chronic obstructive pulmonary disease (COPD). It was thus the aim of this study to evaluate the radiation risk of a state-of-the-art paired inspiratory-expiratory chest scan compared to inspiration-only examinations. Radiation doses to 28 organs were determined for 824 COPD patients undergoing routine chest examinations at three different CT systems-a conventional multi-slice CT (MSCT), a 2nd generation (2nd-DSCT), and 3rd generation dual-source CT (3rd-DSCT). Patients examined at the 3rd-DSCT received a paired inspiratory-expiratory scan. Organ doses, effective doses, and lifetime attributable cancer risks (LAR) were calculated. All organ and effective doses were significantly lower for the paired inspiratory-expiratory protocol (effective doses: 4.3 ± 1.5 mSv (MSCT), 3.0 ± 1.2 mSv (2nd-DSCT), and 2.0 ± 0.8 mSv (3rd-DSCT)). Accordingly, LAR was lowest for the paired protocol with an estimate of 0.025 % and 0.013% for female and male patients (50 years) respectively. Image quality was not compromised. Paired inspiratory-expiratory scans can be acquired on 3rd-DSCT systems at substantially lower dose and risk levels when compared to inspiration-only scans at conventional CT systems, offering promising prospects for improved COPD diagnosis.
Collapse
Affiliation(s)
- Joshua Gawlitza
- Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, 68159 Mannheim, Germany;
| | - Frederik Trinkmann
- Pulmonology and Critical Care Medicine, Thoraxklinik at University Hospital Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69115 Heidelberg, Germany;
- Department of Biomedical Informatics of the Heinrich-Lanz-Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 69115 Heidelberg, Germany
| | - Elke Nekolla
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| | | | - Gunnar Brix
- Department of Medical and Occupational Radiation Protection, Federal Office for Radiation Protection, 91465 Neuherberg, Germany; (E.N.); (G.B.)
| |
Collapse
|
2
|
Sinogram-Affirmed Iterative Reconstruction Negatively Impacts the Risk Category Based on Agatston Score: A Study Combining Coronary Calcium Score Measurement and Coronary CT Angiography. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6909130. [PMID: 32733949 PMCID: PMC7376420 DOI: 10.1155/2020/6909130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/13/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022]
Abstract
Purpose To assess the impact of sinogram-affirmed iterative reconstruction (SAFIRE) on risk category for coronary artery disease by combining coronary calcium score measurement and coronary CT angiography (CCTA). Materials and Methods Eighty-nine patients (64.0% male) older than 18 years (64.4 ± 10.3 years) underwent coronary artery calcium scanning and prospectively ECG-triggered sequential CCTA examination. All raw data acquired in coronary artery calcium scanning were reconstructed by both filtered back projection (FBP) and SAFIRE algorithms with 5 different levels. Objective image quality and calcium quantification were evaluated and compared between FBP and all SAFIRE levels by the Sphericity Assumed test or Greenhouse-Geisser ε correction coefficient. Coronary artery stenosis was assessed in CCTA. Risk categories of all patients and of the patients with coronary artery stenosis in CCTA were compared between FBP and all SAFIRE levels by the Friedman test. Results The reconstruction protocol from traditional FBP to SAFIRE 5 was associated with a gradual reduction in CT value and image noise (P < 0.001) but associated with a gradual improvement in the signal-to-noise ratio (P < 0.001). There was a gradual reduction in coronary calcification quantification (Agatston score: from 73.5 in FBP to 38.1 in SAFIRE 5, P < 0.001) from traditional FBP to SAFIRE 5. There was a significant difference for the risk category between FBP and all levels of SAFIRE in all patients (from 3.5 in FBP to 3.2 in SAFIRE 5, P < 0.001) and in the patients with coronary artery stenosis in CCTA (from 4.0 in FBP to 3.6 in SAFIRE 5, P < 0.001). Conclusions SAFIRE significantly reduces coronary calcification quantification compared to FBP, resulting in the reduction of risk categories based on the Agatston score. The risk categories of the patients with coronary artery stenosis in CCTA may also decline. Thus, SAFIRE may lead risk categories to underestimate the existence of significant coronary artery stenosis.
Collapse
|
3
|
Yi Y, Zhao XM, Wu RZ, Wang Y, Vembar M, Jin ZY, Wang YN. Low Dose and Low Contrast Medium Coronary CT Angiography Using Dual-Layer Spectral Detector CT. Int Heart J 2019; 60:608-617. [PMID: 31105142 DOI: 10.1536/ihj.18-340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate the performance of low keV mono-energetic reconstructions in spectral coronary computed tomography angiography (CCTA) using spectral detector CT (SDCT) with reduced contrast media and radiation dose.Sixty patients were randomly assigned to Groups A and B (both n = 30) to undergo CCTA on a dual-layer SDCT with tube voltage 120 kVp and 100 kVp (average tube current: 108.5 and 73.8 mAs, respectively), with contrast media volume of 36 mL used in both groups. The mono-energetic 40-80 keV and conventional 120 kVp images in Group A and conventional 100 kVp images in Group B were reconstructed. Quantitative and qualitative image quality (IQ) were evaluated in the aortic root and distal segments of the coronary arteries.The patient characteristics were not significantly different between the two groups (all P≥ 0.47), nor was the effective radiation dose (1.5 ± 0.3 and 1.4 ± 0.3 mSv, P = 0.20). The quantitative IQ in aorta and coronary arteries of mono-energetic 40-60 keV was superior to conventional 120 kVp and 100 kVp images (all P < 0.05). The noise in spectral images was lower compared to conventional images (all P < 0.01). The subjective IQ score of 40-50 keV images was not significantly different from that of 100 kVp images (P > 0.8).The mono-energetic 40-50 keV reconstructions from spectral CCTA using SDCT provide improved IQ compared to conventional techniques while facilitating reduced radiation dose and contrast media.
Collapse
Affiliation(s)
- Yan Yi
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Xue-Mei Zhao
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Run-Ze Wu
- CT Clinical Science, Philips Healthcare, Cleveland
| | - Yun Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Mani Vembar
- CT Clinical Science, Philips Healthcare, Cleveland
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yi-Ning Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College
| |
Collapse
|
4
|
Tayal U, King L, Schofield R, Castellano I, Stirrup J, Pontana F, Earls J, Nicol E. Image reconstruction in cardiovascular CT: Part 2 - Iterative reconstruction; potential and pitfalls. J Cardiovasc Comput Tomogr 2019; 13:3-10. [PMID: 31014928 DOI: 10.1016/j.jcct.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
The use of IR in CT previously has been prohibitively complicated and time consuming, however improvements in computer processing power now make it possible on almost all CT scanners. Due to its potential to allow scanning at lower doses, IR has received a lot of attention in the medical literature and has become a successful commercial product. Its use in cardiovascular CT has been driven in part due to concerns about radiation dose and image quality. This manuscript discusses the various vendor permutations of iterative reconstruction (IR) in detail and critically appraises the current clinical research available on the various IR techniques used in cardiovascular CT.
Collapse
Affiliation(s)
- U Tayal
- Department of Cardiovascular CT, Royal Brompton Hospital, London, UK.
| | - L King
- Joint Department of Physics, The Royal Marsden, London, UK.
| | - R Schofield
- Department of Cardiovascular CT, Royal Brompton Hospital, London, UK.
| | - I Castellano
- Joint Department of Physics, The Royal Marsden, London, UK.
| | - J Stirrup
- Department of Cardiology, Royal Berkshire Hospital, Reading, UK.
| | - F Pontana
- Department of Cardiovascular Imaging, Lille University Hospital, France.
| | - J Earls
- George Washington University Hospital, Washington DC, USA.
| | - E Nicol
- Department of Cardiovascular CT, Royal Brompton Hospital, London, UK.
| |
Collapse
|
5
|
Tesche C, Duguay TM, Schoepf UJ, van Assen M, De Cecco CN, Albrecht MH, Varga-Szemes A, Bayer RR, Ebersberger U, Nance JW, Thilo C. Current and future applications of CT coronary calcium assessment. Expert Rev Cardiovasc Ther 2018; 16:441-453. [PMID: 29734858 DOI: 10.1080/14779072.2018.1474347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Computed tomographic (CT) coronary artery calcium scoring (CAC) has been validated as a well-established screening method for cardiovascular risk stratification and treatment management that is used in addition to traditional risk factors. The purpose of this review is to present an update on current and future applications of CAC. Areas covered: The topic of CAC is summarized from its introduction to current application with focus on the validation and clinical integration including cardiovascular risk prediction and outcome, cost-effectiveness, impact on downstream medical testing, and the technical advances in scanner and software technology that are shaping the future of CAC. Furthermore, this review aims to provide guidance for the appropriate clinical use of CAC. Expert commentary: CAC is a well-established screening test in preventive care that is underused in daily clinical practice. The widespread clinical implementation of CAC will be decided by future technical advances in CT image acquisition, cost-effectiveness, and reimbursement status.
Collapse
Affiliation(s)
- Christian Tesche
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,b Department of Cardiology and Intensive Care Medicine , Heart Center Munich-Bogenhausen , Munich , Germany
| | - Taylor M Duguay
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - U Joseph Schoepf
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,c Division of Cardiology, Department of Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Marly van Assen
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,d Center for Medical Imaging North East Netherlands , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Carlo N De Cecco
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Moritz H Albrecht
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,e Department of Diagnostic and Interventional Radiology , University Hospital Frankfurt , Frankfurt , Germany
| | - Akos Varga-Szemes
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Richard R Bayer
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,c Division of Cardiology, Department of Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Ullrich Ebersberger
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA.,b Department of Cardiology and Intensive Care Medicine , Heart Center Munich-Bogenhausen , Munich , Germany
| | - John W Nance
- a Division of Cardiovascular Imaging, Department of Radiology and Radiological Science , Medical University of South Carolina , Charleston , SC , USA
| | - Christian Thilo
- f Department of Internal Medicine I - Cardiology , Central Hospital of Augsburg , Augsburg , Germany
| |
Collapse
|
6
|
Smith TB, Solomon J, Samei E. Estimating detectability index in vivo: development and validation of an automated methodology. J Med Imaging (Bellingham) 2017; 5:031403. [PMID: 29250570 DOI: 10.1117/1.jmi.5.3.031403] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022] Open
Abstract
This study's purpose was to develop and validate a method to estimate patient-specific detectability indices directly from patients' CT images (i.e., in vivo). The method extracts noise power spectrum (NPS) and modulation transfer function (MTF) resolution properties from each patient's CT series based on previously validated techniques. These are combined with a reference task function (10-mm disk lesion with [Formula: see text] HU contrast) to estimate detectability indices for a nonprewhitening matched filter observer model. This method was applied to CT data from a previous study in which diagnostic performance of 16 readers was measured for the task of detecting subtle, hypoattenuating liver lesions ([Formula: see text]), using a two-alternative-forced-choice (2AFC) method, over six dose levels and two reconstruction algorithms. In vivo detectability indices were estimated and compared to the human readers' binary 2AFC outcomes using a generalized linear mixed-effects statistical model. The results of this modeling showed that the in vivo detectability indices were strongly related to 2AFC outcomes ([Formula: see text]). Linear comparison between human-detection accuracy and model-predicted detection accuracy (for like conditions) resulted in Pearson and Spearman correlation coefficients exceeding 0.84. These results suggest the potential utility of using in vivo estimates of a detectability index for an automated image quality tracking system that could be implemented clinically.
Collapse
Affiliation(s)
- Taylor Brunton Smith
- Duke University, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Durham, North Carolina, United States.,Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States.,Duke University Medical Center, Durham, North Carolina, United States
| | - Justin Solomon
- Duke University, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Durham, North Carolina, United States.,Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States.,Duke University Medical Center, Durham, North Carolina, United States
| | - Ehsan Samei
- Duke University, Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Durham, North Carolina, United States.,Duke University, Medical Physics Graduate Program, Durham, North Carolina, United States.,Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
7
|
Halliburton SS, Tanabe Y, Partovi S, Rajiah P. The role of advanced reconstruction algorithms in cardiac CT. Cardiovasc Diagn Ther 2017; 7:527-538. [PMID: 29255694 DOI: 10.21037/cdt.2017.08.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Non-linear iterative reconstruction (IR) algorithms have been increasingly incorporated into clinical cardiac CT protocols at institutions around the world. Multiple IR algorithms are available commercially from various vendors. IR algorithms decrease image noise and are primarily used to enable lower radiation dose protocols. IR can also be used to improve image quality for imaging of obese patients, coronary atherosclerotic plaques, coronary stents, and myocardial perfusion. In this article, we will review the various applications of IR algorithms in cardiac imaging and evaluate how they have changed practice.
Collapse
Affiliation(s)
| | - Yuki Tanabe
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sasan Partovi
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Prabhakar Rajiah
- Cardiothoracic Imaging, Radiology Department, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
8
|
Iterative beam-hardening correction with advanced modeled iterative reconstruction in low voltage CT coronary calcium scoring with tin filtration: Impact on coronary artery calcium quantification and image quality. J Cardiovasc Comput Tomogr 2017; 11:354-359. [DOI: 10.1016/j.jcct.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/06/2017] [Accepted: 07/23/2017] [Indexed: 11/23/2022]
|
9
|
Tatsugami F, Higaki T, Sakane H, Fukumoto W, Kaichi Y, Iida M, Baba Y, Kiguchi M, Kihara Y, Tsushima S, Awai K. Coronary Artery Stent Evaluation with Model-based Iterative Reconstruction at Coronary CT Angiography. Acad Radiol 2017; 24:975-981. [PMID: 28214228 DOI: 10.1016/j.acra.2016.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/23/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES This study aims to compare the image quality of coronary artery stent scans on computed tomography images reconstructed with forward projected model-based iterative reconstruction solution (FIRST) and adaptive iterative dose reduction 3D (AIDR 3D). MATERIALS AND METHODS Coronary computed tomography angiography scans of 23 patients with 32 coronary stents were used. The images were reconstructed with AIDR 3D and FIRST. We generated computed tomography attenuation profiles across the stents and measured the width of the edge rise distance and the edge rise slope (ERS). We also calculated the stent lumen attenuation increase ratio (SAIR) and measured visible stent lumen diameters. Two radiologists visually evaluated the image quality of the stents using a 4-point scale (1 = poor, 4 = excellent). RESULTS There was no significant difference in the edge rise distance between the two reconstruction methods (P = 0.36). The ERS on FIRST images was greater than the ERS on AIDR 3D images (325.2 HU/mm vs 224.4 HU/mm; P <0.01). The rate of the visible stent lumen diameter compared to the true diameter on FIRST images was higher than that on AIDR 3D images (51.4% vs 47.3%, P <0.01). The SAIR on FIRST images was lower than the SAIR on AIDR 3D images (0.19 vs 0.30, P <0.01). The mean image quality scores for AIDR 3D and FIRST images were 3.18 and 3.63, respectively; the difference was also significant (P <0.01). CONCLUSION The image quality of coronary artery stent scans is better on FIRST than on AIDR 3D images.
Collapse
|
10
|
Baumann S, Kryeziu P, Rutsch M, Lossnitzer D. Coronary Computed Tomography Angiography. Interv Cardiol 2017. [DOI: 10.5772/67800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
11
|
Tesche C, De Cecco CN, Schoepf UJ, Duguay TM, Albrecht MH, De Santis D, Varga-Szemes A, Lesslie VW, Ebersberger U, Bayer RR, Canstein C, Hoffmann E, Allmendinger T, Nance JW. CT coronary calcium scoring with tin filtration using iterative beam-hardening calcium correction reconstruction. Eur J Radiol 2017. [DOI: 10.1016/j.ejrad.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Solomon J, Marin D, Roy Choudhury K, Patel B, Samei E. Effect of Radiation Dose Reduction and Reconstruction Algorithm on Image Noise, Contrast, Resolution, and Detectability of Subtle Hypoattenuating Liver Lesions at Multidetector CT: Filtered Back Projection versus a Commercial Model-based Iterative Reconstruction Algorithm. Radiology 2017; 284:777-787. [PMID: 28170300 DOI: 10.1148/radiol.2017161736] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To determine the effect of radiation dose and iterative reconstruction (IR) on noise, contrast, resolution, and observer-based detectability of subtle hypoattenuating liver lesions and to estimate the dose reduction potential of the IR algorithm in question. Materials and Methods This prospective, single-center, HIPAA-compliant study was approved by the institutional review board. A dual-source computed tomography (CT) system was used to reconstruct CT projection data from 21 patients into six radiation dose levels (12.5%, 25%, 37.5%, 50%, 75%, and 100%) on the basis of two CT acquisitions. A series of virtual liver lesions (five per patient, 105 total, lesion-to-liver prereconstruction contrast of -15 HU, 12-mm diameter) were inserted into the raw CT projection data and images were reconstructed with filtered back projection (FBP) (B31f kernel) and sinogram-affirmed IR (SAFIRE) (I31f-5 kernel). Image noise (pixel standard deviation), lesion contrast (after reconstruction), lesion boundary sharpness (average normalized gradient at lesion boundary), and contrast-to-noise ratio (CNR) were compared. Next, a two-alternative forced choice perception experiment was performed (16 readers [six radiologists, 10 medical physicists]). A linear mixed-effects statistical model was used to compare detection accuracy between FBP and SAFIRE and to estimate the radiation dose reduction potential of SAFIRE. Results Compared with FBP, SAFIRE reduced noise by a mean of 53% ± 5, lesion contrast by 12% ± 4, and lesion sharpness by 13% ± 10 but increased CNR by 89% ± 19. Detection accuracy was 2% higher on average with SAFIRE than with FBP (P = .03), which translated into an estimated radiation dose reduction potential (±95% confidence interval) of 16% ± 13. Conclusion SAFIRE increases detectability at a given radiation dose (approximately 2% increase in detection accuracy) and allows for imaging at reduced radiation dose (16% ± 13), while maintaining low-contrast detectability of subtle hypoattenuating focal liver lesions. This estimated dose reduction is somewhat smaller than that suggested by past studies. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Justin Solomon
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Daniele Marin
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Kingshuk Roy Choudhury
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Bhavik Patel
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| | - Ehsan Samei
- From the Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, 2424 Erwin Rd, Suite 302, Durham, NC 27705
| |
Collapse
|
13
|
Impact of Advanced Modeled Iterative Reconstruction on Coronary Artery Calcium Quantification. Acad Radiol 2016; 23:1506-1512. [PMID: 27742177 DOI: 10.1016/j.acra.2016.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the influence of advanced modeled iterative reconstruction (ADMIRE) on the coronary artery calcium (CAC) scores by computed tomography (CT). MATERIALS AND METHODS Sixty patients underwent CAC imaging with dual-source 192-slice CT. Agatston, volume and mass score were calculated from filtered back projection (FBP) and iterative reconstructions with different levels of ADMIRE. Friedman test and Wilcoxon rank sum test were used for multiple comparisons of CAC values and the difference ratio among different ADMIRE groups using FBP as reference. RESULTS The median Agatston score (range) using FBP was 115 (0.1-3047) and significantly decreased with incremental ADMIRE levels 1-5: 96 (0.1-2813), 91 (0-2764), 87 (0-2699), 80 (0-2590), 70 (0-2440); all P < 0.001. In comparison with FBP Agatston, volume and mass scores significantly decreased with increasing ADMIRE levels 1-5 (P < 0.001): from -12% to -39%, from -14% to -41%, and from -13% to -40%, respectively. In four patients with low calcium burden, the use of ADMIRE 2 or higher resulted in the disappearance of calcium that was detectable using FBP or ADMIRE 1. The decrease of CAC in high-level ADMIRE resulted in a reassignment to a lower Agatston risk group in 27%. CONCLUSIONS ADMIRE causes a substantial reduction of the CAC scores measured by cardiac CT, which leads to an underestimation of cardiovascular risk scores in some patients.
Collapse
|
14
|
Omotayo A, Elbakri I. Objective performance assessment of five computed tomography iterative reconstruction algorithms. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2016; 24:913-930. [PMID: 27612054 DOI: 10.3233/xst-160601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVE Iterative algorithms are gaining clinical acceptance in CT. We performed objective phantom-based image quality evaluation of five commercial iterative reconstruction algorithms available on four different multi-detector CT (MDCT) scanners at different dose levels as well as the conventional filtered back-projection (FBP) reconstruction. METHODS Using the Catphan500 phantom, we evaluated image noise, contrast-to-noise ratio (CNR), modulation transfer function (MTF) and noise-power spectrum (NPS). The algorithms were evaluated over a CTDIvol range of 0.75-18.7 mGy on four major MDCT scanners: GE DiscoveryCT750HD (algorithms: ASIR™ and VEO™); Siemens Somatom Definition AS+ (algorithm: SAFIRE™); Toshiba Aquilion64 (algorithm: AIDR3D™); and Philips Ingenuity iCT256 (algorithm: iDose4™). Images were reconstructed using FBP and the respective iterative algorithms on the four scanners. RESULTS Use of iterative algorithms decreased image noise and increased CNR, relative to FBP. In the dose range of 1.3-1.5 mGy, noise reduction using iterative algorithms was in the range of 11%-51% on GE DiscoveryCT750HD, 10%-52% on Siemens Somatom Definition AS+, 49%-62% on Toshiba Aquilion64, and 13%-44% on Philips Ingenuity iCT256. The corresponding CNR increase was in the range 11%-105% on GE, 11%-106% on Siemens, 85%-145% on Toshiba and 13%-77% on Philips respectively. Most algorithms did not affect the MTF, except for VEO™ which produced an increase in the limiting resolution of up to 30%. A shift in the peak of the NPS curve towards lower frequencies and a decrease in NPS amplitude were obtained with all iterative algorithms. VEO™ required long reconstruction times, while all other algorithms produced reconstructions in real time. Compared to FBP, iterative algorithms reduced image noise and increased CNR. CONCLUSIONS The iterative algorithms available on different scanners achieved different levels of noise reduction and CNR increase while spatial resolution improvements were obtained only with VEO™. This study is useful in that it provides performance assessment of the iterative algorithms available from several mainstream CT manufacturers.
Collapse
Affiliation(s)
- Azeez Omotayo
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
| | - Idris Elbakri
- Division of Medical Physics, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Radiology, University of Manitoba, Winnipeg, MB, Canada
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Wenz H, Maros ME, Meyer M, Gawlitza J, Förster A, Haubenreisser H, Kurth S, Schoenberg SO, Groden C, Henzler T. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT. Eur J Radiol Open 2016; 3:182-90. [PMID: 27504476 PMCID: PMC4969238 DOI: 10.1016/j.ejro.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques.
Objectives To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. Methods 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Results Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Conclusions Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.
Collapse
Key Words
- ASPECTS, Alberta Stroke Program Early CT score
- ATCM, automated tube current modulation
- Automatic tube current modulation
- DSCT, dual-source computed tomography
- FBP, filtered back projection
- HU, hounsfield units
- ICRP, International Commission on Radiological Protection
- IR, iterative image reconstruction
- Iterative reconstruction
- MDCT, multi-detector computed tomography
- NC, caudate nucleus
- ND, normally distributed data
- NI, non-inferiority analysis
- Organ-specific-radiation dose
- SNR, signal-to-noise ratios
- Sequential cranial CT
- Spiral cranial CT
- WM, white matter
- cCT, cranial CT
- cCT, cranial computed tomography
Collapse
Affiliation(s)
- Holger Wenz
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Máté E Maros
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Joshua Gawlitza
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Alex Förster
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan Kurth
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
16
|
Dewes P, Frellesen C, Scholtz JE, Fischer S, Vogl TJ, Bauer RW, Schulz B. Low-dose abdominal computed tomography for detection of urinary stone disease - Impact of additional spectral shaping of the X-ray beam on image quality and dose parameters. Eur J Radiol 2016; 85:1058-62. [PMID: 27161052 DOI: 10.1016/j.ejrad.2016.03.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To evaluate a novel tin filter-based abdominal CT protocol for urolithiasis in terms of image quality and CT dose parameters. METHODS 130 consecutive patients with suspected urolithiasis underwent non-enhanced CT with three different protocols: 48 patients (group 1) were examined at tin-filtered 150kV (150kV Sn) on a third-generation dual-source-CT, 33 patients were examined with automated kV-selection (110-140kV) based on the scout view on the same CT-device (group 2), and 49 patients were examined on a second-generation dual-source-CT (group 3) with automated kV-selection (100-140kV). Automated exposure control was active in all groups. Image quality was subjectively evaluated on a 5-point-likert-scale by two radiologists and interobserver agreement as well as signal-to-noise-ratio (SNR) was calculated. Dose-length-product (DLP) and volume CT dose index (CTDIvol) were compared. RESULTS Image quality was rated in favour for the tin filter protocol with excellent interobserver agreement (ICC=0.86-0.91) and the difference reached statistical significance (p<0.001). SNR was significantly higher in group 1 and 2 compared to second-generation DSCT (p<0.001). On third-generation dual-source CT, there was no significant difference in SNR between the 150kV Sn and the automated kV selection protocol (p=0.5). The DLP of group 1 was 23% and 21% (p<0.002) lower in comparison to group 2 and 3, respectively. So was the CTDIvol of group 1 compared to group 2 (-36%) and 3 (-32%) (p<0.001). CONCLUSION Additional shaping of a 150kV source spectrum by a tin filter substantially lowers patient exposure while improving image quality on un-enhanced abdominal computed tomography for urinary stone disease.
Collapse
Affiliation(s)
- Patricia Dewes
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Claudia Frellesen
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Jan-Erik Scholtz
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Sebastian Fischer
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Thomas J Vogl
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| | - Ralf W Bauer
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - Boris Schulz
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany
| |
Collapse
|
17
|
Haubenreisser H, Bigdeli A, Meyer M, Kremer T, Riester T, Kneser U, Schoenberg SO, Henzler T. From 3D to 4D: Integration of temporal information into CT angiography studies. Eur J Radiol 2015; 84:2421-4. [DOI: 10.1016/j.ejrad.2015.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
|
18
|
Iterative Reconstruction Leads to Increased Subjective and Objective Image Quality in Cranial CT in Patients With Stroke. AJR Am J Roentgenol 2015; 205:618-22. [PMID: 26295650 DOI: 10.2214/ajr.15.14389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether iterative reconstruction improves the quality of cranial CT (CCT) images of stroke patients. MATERIALS AND METHODS Fifty-one CCT studies of patients with infarction performed with either a low (260 mAs; n = 21) or standard (340 mAs; n = 30) dose were reconstructed with both filtered back projection (FBP) and sinogram-affirmed iterative reconstruction (SAFIRE) with five strength levels (S1-S5). The resulting six image sets (one FBP and one each for SAFIRE levels S1-S5) were rated separately by two blinded radiologists in terms of conspicuity of infarcted areas on a 5-point scale. Noise and infarct-to-normal brain as well as medullary-to-cortical contrast-to-noise ratios (CNRs) were measured. Ratings, noise, and CNRs were intraindividually compared within the same dose group (Fisher exact test) and interindividually between the different dose groups (Wilcoxon-Mann-Whitney U test). RESULTS The strength level S4 showed the best conspicuity of infarcted areas. Compared with FBP, SAFIRE S4 statistically significantly (p < 0.01) reduced noise and improved CNRs without statistically significant differences in all subjective and objective criteria (p > 0.01) when the dose was reduced. Patients examined with a 260-mAs low-dose were exposed to a statistically significantly lower dose (1.77 vs 2.33 mSv; p < 0.01). CONCLUSION Iterative reconstruction (SAFIRE at strength level S4) leads to increased subjective and objective image quality in CCT and allows dose reduction (-24%) without losses in the demarcation of ischemic lesions.
Collapse
|
19
|
Den Harder AM, Willemink MJ, De Ruiter QMB, De Jong PA, Schilham AMR, Krestin GP, Leiner T, Budde RPJ. Dose reduction with iterative reconstruction for coronary CT angiography: a systematic review and meta-analysis. Br J Radiol 2015; 89:20150068. [PMID: 26562096 DOI: 10.1259/bjr.20150068] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the achievable radiation dose reduction for coronary CT angiography (CCTA) with iterative reconstruction (IR) in adults and the effects on image quality. METHODS PubMed and EMBASE were searched, and original articles concerning IR for CCTA in adults using prospective electrocardiogram triggering were included. Primary outcome was the effective dose using filtered back projection (FBP) and IR. Secondary outcome was the effect of IR on objective and subjective image quality. RESULTS The search yielded 1616 unique articles, of which 10 studies (1042 patients) were included. The pooled routine effective dose with FBP was 4.2 mSv [95% confidence interval (CI) 3.5-5.0]. A dose reduction of 48% to a pooled effective dose of 2.2 mSv (95% CI 1.3-3.1) using IR was reported. Noise, contrast-to-noise ratio and subjective image quality were equal or improved in all but one study, whereas signal-to-noise ratio was decreased in two studies with IR at reduced dose. CONCLUSION IR allows for CCTA acquisition with an effective dose of 2.2 mSv with preserved objective and subjective image quality.
Collapse
Affiliation(s)
| | - Martin J Willemink
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Quirina M B De Ruiter
- 2 Department of Vascular Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Pim A De Jong
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Arnold M R Schilham
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gabriel P Krestin
- 3 Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Tim Leiner
- 1 Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ricardo P J Budde
- 3 Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Bodelle B, Isler S, Scholtz JE, Frellesen C, Luboldt W, Vogl TJ, Beeres M. Benefits of sinogram-affirmed iterative reconstruction in 0.4 mSv ultra-low-dose CT of the upper abdomen following transarterial chemoembolisation: comparison to low-dose and standard-dose CT and filtered back projection technique. Clin Radiol 2015; 71:e11-5. [PMID: 26521185 DOI: 10.1016/j.crad.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
AIM To evaluate the advantage of sinogram-affirmed iterative reconstruction (SIR) compared to filtered back projection (FBP) in upper abdomen computed tomography (CT) after transarterial chemoembolisation (TACE) at different tube currents. MATERIALS AND METHODS The study was approved by the institutional review board. Written informed consent was obtained from all patients. Post-TACE CT was performed with different tube currents successively varied in four steps (180, 90, 45 and 23 mAs) with 40 patients per group (mean age: 60±12 years, range: 23-85 years, sex: 70 female, 90 male). The data were reconstructed with standard FBP and five different SIR strengths. Image quality was independently rated by two readers on a five-point scale. High (Lipiodol-to-liver) as well as low (liver-to-fat) contrast-to-noise ratios (CNRs) were intra-individually compared within one dose to determine the optimal strength (S1-S5) and inter-individually between different doses to determine the possibility of dose reduction using the Kruskal-Wallis test. RESULTS Subjective image quality and objective CNR analysis were concordant: intra-individually, SIR was significantly (p<0.001) superior to FBP. Inter-individually, regarding different doses (180 versus 23 ref mAs), there was no significant (p=1.00) difference when using S5 SIR at 23 mAs instead of FBP. CONCLUSION SIR allows for an 88% dose reduction from 3.43 to 0.4 mSv in unenhanced CT of the liver following TACE without subjective or objective loss in image quality.
Collapse
Affiliation(s)
- B Bodelle
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - S Isler
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - J-E Scholtz
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - C Frellesen
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - W Luboldt
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - T J Vogl
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - M Beeres
- Department of Diagnostic and Interventional Radiology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
21
|
Eck BL, Fahmi R, Brown KM, Zabic S, Raihani N, Miao J, Wilson DL. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Med Phys 2015; 42:6098-111. [PMID: 26429285 PMCID: PMC4592430 DOI: 10.1118/1.4929973] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 06/22/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. METHODS Detectability (d') was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre-Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, PC. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. RESULTS Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit and model complexity according to AICc. With parameters fixed, the model reasonably predicted detectability of human observers in blended FBP-IMR images. Semianalytic internal noise computation gave results equivalent to Monte Carlo, greatly speeding parameter estimation. Using Model-k4, the authors found an average detectability improvement of 2.7 ± 0.4 times that of FBP. IMR showed greater improvements in detectability with larger signals and relatively consistent improvements across signal contrast and x-ray dose. In the phantom tested, Model-k4 predicted an 82% dose reduction compared to FBP, verified with physical CT scans at 80% reduced dose. CONCLUSIONS IMR improves detectability over FBP and may enable significant dose reductions. A channelized Hotelling observer with internal noise proportional to channel output standard deviation agreed well with human observers across a wide range of variables, even across reconstructions with drastically different image characteristics. Utility of the model observer was demonstrated by predicting the effect of image processing (blending), analyzing detectability improvements with IMR across dose, size, and contrast, and in guiding real CT scan dose reduction experiments. Such a model observer can be applied in optimizing parameters in advanced iterative reconstruction algorithms as well as guiding dose reduction protocols in physical CT experiments.
Collapse
Affiliation(s)
- Brendan L Eck
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - Rachid Fahmi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | | | | | | | - Jun Miao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106 and Department of Radiology, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
22
|
Moorin RE, Gibson DAJ, Forsyth RK, Fox R. The Impact of Iterative Reconstruction on Computed Tomography Radiation Dosimetry: Evaluation in a Routine Clinical Setting. PLoS One 2015; 10:e0138329. [PMID: 26381145 PMCID: PMC4575140 DOI: 10.1371/journal.pone.0138329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 08/28/2015] [Indexed: 01/31/2023] Open
Abstract
Purpose To evaluate the effect of introduction of iterative reconstruction as a mandated software upgrade on radiation dosimetry in routine clinical practice over a range of computed tomography examinations. Methods Random samples of scanning data were extracted from a centralised Picture Archiving Communication System pertaining to 10 commonly performed computed tomography examination types undertaken at two hospitals in Western Australia, before and after the introduction of iterative reconstruction. Changes in the mean dose length product and effective dose were evaluated along with estimations of associated changes to annual cancer incidence. Results We observed statistically significant reductions in the effective radiation dose for head computed tomography (22–27%) consistent with those reported in the literature. In contrast the reductions observed for non-contrast chest (37–47%); chest pulmonary embolism study (28%), chest/abdominal/pelvic study (16%) and thoracic spine (39%) computed tomography. Statistically significant reductions in radiation dose were not identified in angiographic computed tomography. Dose reductions translated to substantial lowering of the lifetime attributable risk, especially for younger females, and estimated numbers of incident cancers. Conclusion Reduction of CT dose is a priority Iterative reconstruction algorithms have the potential to significantly assist with dose reduction across a range of protocols. However, this reduction in dose is achieved via reductions in image noise. Fully realising the potential dose reduction of iterative reconstruction requires the adjustment of image factors and forgoing the noise reduction potential of the iterative algorithm. Our study has demonstrated a reduction in radiation dose for some scanning protocols, but not to the extent experimental studies had previously shown or in all protocols expected, raising questions about the extent to which iterative reconstruction achieves dose reduction in real world clinical practice.
Collapse
Affiliation(s)
- Rachael E. Moorin
- School of Public Health, Curtin University, GPO Box U1987, Perth Western Australia, 6845, Australia
- School of Population Health, University of Western Australia, 35 Stirling Highway, Crawley, Perth Western Australia, 6009, Australia
- * E-mail:
| | - David A. J. Gibson
- School of Public Health, Curtin University, GPO Box U1987, Perth Western Australia, 6845, Australia
| | - Rene K. Forsyth
- Department of Medical Imaging Science, Curtin University, GPO Box U1987, Perth, Western Australia, 6845, Australia
| | - Richard Fox
- School of Physics, University of Western Australia, 35 Stirling Highway, Crawley, Perth Western Australia, 6009, Australia
| |
Collapse
|
23
|
Lu H, Zhuo W, Xu B, Wang M. Organ and effective dose evaluation in coronary angiography by using a 320 MDCT based on in-phantom dose measurements with TLDs. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:597-609. [PMID: 26180015 DOI: 10.1088/0952-4746/35/3/597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The purpose of this study is to estimate the organ and effective dose (E) from computed tomography coronary angiography (CTCA) on a 320-MDCT scanner. Radiation dose was estimated for the prospectively ECG-gated CTCA in a male phantom. A total of 451 chips of thermoluminescent dosimeter were implanted in the phantom for measuring the organ doses. The effective doses were calculated using measured organ doses and the tissue-weighting factors. The dose length product (DLP) values were recorded and used to develop the conversion coefficient k = 0.017 mSv•(mGy•cm)(-1) (E/DLP). In a 3-beat acquisition, the organ doses ranged from 0.24 to 71.55 mGy, and the doses in breast, bone surface, oesophagus, and lung were higher than 20 mGy. The effective doses in 2-beat and 3-beat acquisition were estimated to be 14.3 and 24.3 mSv. More beats of acquisition led to higher radiation dose. The reported k values for chest CT scan can be used to roughly estimate the E value from CTCA for 320 MDCT.
Collapse
Affiliation(s)
- Heqing Lu
- Department of Radiation Protection, Institute of Radiation Medicine, Fudan University, Shanghai 200032, People's Republic of China. Department of Medical Equipment, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Geyer LL, Schoepf UJ, Meinel FG, Nance JW, Bastarrika G, Leipsic JA, Paul NS, Rengo M, Laghi A, De Cecco CN. State of the Art: Iterative CT Reconstruction Techniques. Radiology 2015. [PMID: 26203706 DOI: 10.1148/radiol.2015132766] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lucas L Geyer
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - U Joseph Schoepf
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Felix G Meinel
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - John W Nance
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Gorka Bastarrika
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Jonathon A Leipsic
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Narinder S Paul
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Marco Rengo
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Andrea Laghi
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| | - Carlo N De Cecco
- From the Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, MSC 226, 25 Courtenay Dr, Charleston, SC 29425 (L.L.G., U.J.S., F.G.M., J.W.N., C.N.D.); Department of Radiology, Sunnybrook Health Sciences Centre, Toronto, Ont, Canada (G.B.); Department of Radiology, University of British Columbia, Vancouver, BC, Canada (J.A.L.); Department of Radiology, Toronto General Hospital, University of Toronto, Toronto, Ont, Canada (N.S.P.); and Department of Radiological Sciences, Oncology and Pathology, University of Rome Sapienza-Polo Pontino, Latina, Italy (M.R., A.L., C.N.D.)
| |
Collapse
|
25
|
Zhao L, Plank F, Kummann M, Burghard P, Klauser A, Dichtl W, Feuchtner G. Improved non-calcified plaque delineation on coronary CT angiography by sonogram-affirmed iterative reconstruction with different filter strength and relationship with BMI. Cardiovasc Diagn Ther 2015; 5:104-12. [PMID: 25984450 DOI: 10.3978/j.issn.2223-3652.2015.03.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 01/25/2023]
Abstract
PURPOSE To prospectively compare non-calcified plaque delineation and image quality of coronary computed tomography angiography (CCTA) obtained with sinogram-affirmed iterative reconstruction (IR) with different filter strengths and filtered back projection (FBP). METHODS A total of 57 patients [28.1% females; body mass index (BMI) 29.2±6.5 kg/m(2)] were investigated. CCTA was performed using 128-slice dual-source CT. Images were reconstructed with standard FBP and sinogram-affirmed IR using different filter strength (IR-2, IR-3, IR-4) (SAFIRE, Siemens, Germany). Image quality of CCTA and a non-calcified plaque outer border delineation score were evaluated by using a 5-scale score: from 1= poor to 5= excellent. Image noise, contrast-to-noise ratio (CNR) of aortic root, left main (LM) and right coronary artery, and the non-calcified plaque delineation were quantified and compared among the 4 image reconstructions, and were compared between different BMI groups (BMI <28 and ≥28). Statistical analyses included one-way analysis of variance (ANOVA), least significant difference (LSD) and Kruskal-Wallis test. RESULTS There were 71.9% patients in FBP, 96.5% in IR-2, 96.5% in IR-3 and 98.2% in IR-4 who had overall CCTA image quality ≥3, and there were statistical differences in CCTA exam image quality score among those groups, respectively (P<0.001). Sixty-one non-calcified plaques were detected by IR-2 to IR-4, out of those 11 (18%) were missed by FBP. Plaque delineation score increased constantly from FBP (2.7±0.4) to IR-2 (3.2±0.3), to IR-3 (3.5±0.3) up to IR-4 (4.0±0.4), while CNRs of the non-calcifying plaque increased and image noise decreased, respectively. Similarly, CNR of aortic root, LM and right coronary artery improved and image noise declined from FBP to IR-2, IR-3 and IR-4. There were no significant differences of image quality and plaque delineation score between low and high BMI groups within same reconstruction (all P>0.05). Significant differences in image quality and plaque delineation scores among different image reconstructions both in low and high BMI groups (all P<0.001) were found. I4f revealed the highest image quality and plaque delineation score. CONCLUSIONS IR offers improved image quality and non-calcified plaque delineation as compared with FBP, especially if BMI is increasing. Importantly, 18% of non-calcified plaques were missed with FBP. IR-4 shows the best image quality score and plaque delineation score among the different IR-filter strength.
Collapse
Affiliation(s)
- Lei Zhao
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Fabian Plank
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Moritz Kummann
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Philipp Burghard
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Andrea Klauser
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Wolfgang Dichtl
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| | - Gudrun Feuchtner
- 1 Beijing Anzhen Hospital, Capital Medical University, Department of Radiology, Chaoyang District, Beijing 100029, China ; 2 Innsbruck Medical University, Department of Radiology, 3 Innsbruck Medical University, Department of Cardiology, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Tyrol, Austria
| |
Collapse
|
26
|
Haubenreisser H, Meyer M, Sudarski S, Allmendinger T, Schoenberg SO, Henzler T. Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100kVp. Eur J Radiol 2015; 84:1608-1613. [PMID: 26001437 DOI: 10.1016/j.ejrad.2015.04.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To prospectively investigate image quality and radiation dose of 100kVp spectral shaping chest CT using a dedicated tin filter on a 3rd generation dual-source CT (DSCT) in comparison to standard 100kVp chest CT. METHODS Sixty patients referred for a non-contrast chest on a 3rd generation DSCT were prospectively included and examined at 100kVp with a dedicated tin filter. These patients were retrospectively matched with patients that were examined on a 2nd generation DSCT at 100kVp without tin filter. Objective and subjective image quality was assessed in various anatomic regions and radiation dose was compared. RESULTS Radiation dose was decreased by 90% using the tin filter (3.0 vs 0.32mSv). Soft tissue attenuation and image noise was not statistically different for both examination techniques (p>0.05), however image noise was found to be significantly higher in the trachea when using the additional tin filter (p=0.002). SNR was found to be statistically similar in pulmonary tissue, significantly lower when measured in air and significantly higher in the aorta for the scans on the 3rd generation DSCT. Subjective image quality with regard to overall quality and image noise and sharpness was not statistically significantly different (p>0.05). CONCLUSION 100kVp spectral shaping chest CT by means of a tube-based tin-filter on a 3rd generation DSCT allows 90% dose reduction when compared to 100kVp chest CT on a 2nd generation DSCT without spectral shaping.
Collapse
Affiliation(s)
- Holger Haubenreisser
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Sonja Sudarski
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | | | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Thomas Henzler
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
27
|
Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomogr 2015; 9:255-63. [PMID: 26088375 DOI: 10.1016/j.jcct.2015.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022]
Abstract
Iterative reconstruction (IR) has the ability to reduce image noise in CT without compromising diagnostic quality, which permits a significant reduction in effective radiation dose. This been increasingly integrated into clinical CT practice over the past 7 years and has been particularly important in the field of cardiac CT with multiple vendors introducing cardiac CT-compatible IR algorithms. The following review will summarize the principles of IR algorithms, studies validating their noise- and dose-reducing abilities, and the specific applications of IR in cardiac CT.
Collapse
|
28
|
Affiliation(s)
- Tim Leiner
- Utrecht University Medical Center, Center for Image Sciences, Department of Radiology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Suhny Abbara
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390-9316, USA.
| |
Collapse
|
29
|
Gibson DAJ, Moorin RE, Holman CDJ. Cohort study of Western Australia computed tomography utilisation patterns and their policy implications. BMC Health Serv Res 2014; 14:526. [PMID: 25370909 PMCID: PMC4226860 DOI: 10.1186/s12913-014-0526-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 10/13/2014] [Indexed: 11/28/2022] Open
Abstract
Background Computed tomography (CT) scanning is a relatively high radiation dose diagnostic imaging modality with increasing concerns about radiation exposure burden at the population level in scientific literature. This study examined the epidemiology of adult CT utilisation in Western Australia (WA) in both the public hospital and private practice settings, and the policy implications. Methods Retrospective cohort design using aggregate adult CT data from WA public hospitals and Medical Benefits Schedule (MBS) (mid-2006 to mid-2012). CT scanning trends by sex, age, provider setting and anatomical areas were explored using crude CT scanning rates, age-standardised CT scanning rates and Poisson regression modelling. Results From mid-2006 to mid-2012 the WA adult CT scanning rate was 129 scans per 1,000 person-years (PY). Females were consistently scanned at a higher rate than males. Patients over 65 years presented the highest scanning rates (over 300 scans per 1,000 PY). Private practice accounted for 73% of adult CT scans, comprising the majority in every anatomical area. In the private setting females predominately held higher age-standardised CT scanning rates than males. This trend reversed in the public hospital setting. Patients over 85 years in the public hospital setting were the most likely age group CT scanned in nine of ten anatomical areas. Patients in the private practice setting aged 85+ years were relatively less prominent across every anatomical area, and the least likely age group scanned in facial bones and multiple areas CT scans. Conclusion In comparison to the public hospital setting, the MBS subsidised private sector tended to service females and relatively younger patients with a more diverse range of anatomical areas, constituting the majority of CT scans performed in WA. Patient risk and subsequent burden is greater for females, lower ages and some anatomical areas. In the context of a national health system, Australia has various avenues to monitor radiation exposure levels, improve physician training and modify funding mechanisms to ensure individual and population medical radiation exposure is as low as reasonably achievable.
Collapse
Affiliation(s)
- David A J Gibson
- School of Population Health, University of Western Australia, Perth, Australia. .,Faculty of Health Sciences, Curtin University, Perth, Australia. .,Centre for Health Services Research, School of Population Health (M431), The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.
| | - Rachael E Moorin
- School of Population Health, University of Western Australia, Perth, Australia. .,Faculty of Health Sciences, Curtin University, Perth, Australia.
| | - C D'Arcy J Holman
- School of Population Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
30
|
Klink T, Obmann V, Heverhagen J, Stork A, Adam G, Begemann P. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol 2014; 83:1645-54. [PMID: 25037931 DOI: 10.1016/j.ejrad.2014.05.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES In this phantom CT study, we investigated whether images reconstructed using filtered back projection (FBP) and iterative reconstruction (IR) with reduced tube voltage and current have equivalent quality. We evaluated the effects of different acquisition and reconstruction parameter settings on image quality and radiation doses. Additionally, patient CT studies were evaluated to confirm our phantom results. METHODS Helical and axial 256 multi-slice computed tomography scans of the phantom (Catphan(®)) were performed with varying tube voltages (80-140kV) and currents (30-200mAs). 198 phantom data sets were reconstructed applying FBP and IR with increasing iterations, and soft and sharp kernels. Further, 25 chest and abdomen CT scans, performed with high and low exposure per patient, were reconstructed with IR and FBP. Two independent observers evaluated image quality and radiation doses of both phantom and patient scans. RESULTS In phantom scans, noise reduction was significantly improved using IR with increasing iterations, independent from tissue, scan-mode, tube-voltage, current, and kernel. IR did not affect high-contrast resolution. Low-contrast resolution was also not negatively affected, but improved in scans with doses <5mGy, although object detectability generally decreased with the lowering of exposure. At comparable image quality levels, CTDIvol was reduced by 26-50% using IR. In patients, applying IR vs. FBP resulted in good to excellent image quality, while tube voltage and current settings could be significantly decreased. CONCLUSIONS Our phantom experiments demonstrate that image quality levels of FBP reconstructions can also be achieved at lower tube voltages and tube currents when applying IR. Our findings could be confirmed in patients revealing the potential of IR to significantly reduce CT radiation doses.
Collapse
Affiliation(s)
- Thorsten Klink
- Inselspital - Bern University Hospital, University Institute of Diagnostic, Interventional, and Pediatric Radiology, Freiburgstrasse 10, 3010 Bern, Switzerland; University of Würzburg, Insitute of Diagnostic and Interventional Radiology, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| | - Verena Obmann
- Inselspital - Bern University Hospital, University Institute of Diagnostic, Interventional, and Pediatric Radiology, Freiburgstrasse 10, 3010 Bern, Switzerland.
| | - Johannes Heverhagen
- Inselspital - Bern University Hospital, University Institute of Diagnostic, Interventional, and Pediatric Radiology, Freiburgstrasse 10, 3010 Bern, Switzerland.
| | - Alexander Stork
- Roentgeninstitut Duesseldorf, Kaiserswerterstrasse 89, 40476 Duesseldorf, Germany.
| | - Gerhard Adam
- University Medical Center Hamburg Eppendorf, Department of Diagnostic and Interventional Radiology, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Philipp Begemann
- Roentgeninstitut Duesseldorf, Kaiserswerterstrasse 89, 40476 Duesseldorf, Germany.
| |
Collapse
|
31
|
Drees R, François CJ, Saunders JH. INVITED REVIEW-COMPUTED TOMOGRAPHIC ANGIOGRAPHY (CTA) OF THE THORACIC CARDIOVASCULAR SYSTEM IN COMPANION ANIMALS. Vet Radiol Ultrasound 2014; 55:229-40. [DOI: 10.1111/vru.12149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/06/2013] [Indexed: 12/18/2022] Open
|
32
|
Renker M, Geyer LL, Krazinski AW, Silverman JR, Ebersberger U, Schoepf UJ. Iterative image reconstruction: a realistic dose-saving method in cardiac CT imaging? Expert Rev Cardiovasc Ther 2014; 11:403-9. [DOI: 10.1586/erc.12.178] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Winklehner A, Blume I, Winklhofer S, Eberli D, Gnannt R, Frauenfelder T, Alkadhi H. Iterative reconstructions versus filtered back-projection for urinary stone detection in low-dose CT. Acad Radiol 2013; 20:1429-35. [PMID: 24119356 DOI: 10.1016/j.acra.2013.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/15/2013] [Accepted: 08/15/2013] [Indexed: 11/25/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate prospectively, in patients with suspected or known urinary stone disease, the image quality and diagnostic confidence of nonenhanced abdominal low-dose computed tomography (CT) with iterative reconstruction (IR) compared to filtered back-projection (FBP). MATERIALS AND METHODS Fifty consecutive patients with suspected (n = 33) or known (n = 17) urinary stone disease underwent nonenhanced abdominal low-dose CT (120 kVp, 30 effective mAs, 1.6 ± 0.5 mSv). Reconstructions were performed with sinogram-affirmed IR and with FBP. Attenuation (in Hounsfield units) was measured in subcutaneous fat and urinary bladder; image noise was determined. Two readers assessed image quality, number and location of urinary calculi were recorded, and diagnostic confidence was assessed. Statistical analyses included Mann-Whitney, Friedman's two-way, Wilcoxon signed rank, Pearson's, and Spearman's rank order correction tests. RESULTS Attenuation of urinary bladder (P = .208, reader 1; P = .123, reader 2) and fat (P = .568, reader 1; P = .834, reader 2) was similar among FBP and IR datasets. Image noise was reduced in IR datasets by 40.1% (P < .001). IR improved image quality (P < .01), and obesity as factor impairing image quality was noted in FBP but not in IR images (P < .05). There was no significant difference in number of calculi in datasets reconstructed with IR and FBP (P = .102, reader 1; P = .059, reader 2). Diagnostic confidence regarding identification of urinary calculi improved with IR (P < .05, reader 1; P < .01, reader 2). CONCLUSION IR improves image quality and confidence for diagnosing urinary stone disease in abdominal low-dose CT.
Collapse
|
34
|
Nance JW, Schoepf UJ, Ebersberger U. The Role of Iterative Reconstruction Techniques in Cardiovascular CT. CURRENT RADIOLOGY REPORTS 2013. [DOI: 10.1007/s40134-013-0023-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Ghetti C, Palleri F, Serreli G, Ortenzia O, Ruffini L. Physical characterization of a new CT iterative reconstruction method operating in sinogram space. J Appl Clin Med Phys 2013; 14:4347. [PMID: 23835395 PMCID: PMC5714520 DOI: 10.1120/jacmp.v14i4.4347] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/13/2013] [Accepted: 03/04/2013] [Indexed: 11/23/2022] Open
Abstract
Recently a new iterative reconstruction algorithm named Sinogram Affirmed Iterative Reconstruction (SAFIRE) has been released by Siemens. This algorithm works in the raw data domain with noise reduction as main purpose, providing five different strengths. In this study, the effect of SAFIRE on image quality has been investigated using selected phantoms and a comparison with standard filtered back projection (FBP) has been carried out. The following quantitative parameters have been evaluated: image noise, impact of different reconstruction kernels on noise reduction, noise power spectrum (NPS), contrast‐to‐noise ratio (CNR), spatial resolution, and linearity and accuracy of CT numbers. The influence of strengths on image quality parameters has also been examined. Results show that image noise reduction is independent of reconstruction kernel and strongly related to the strength of SAFIRE applied. The peak of NPS curve for SAFIRE reconstructions is shifted towards low frequencies; this effect is more marked at higher levels of strength. Contrast‐to‐noise ratio is always improved in SAFIRE reconstruction and increases with higher strength. At different dose levels SAFIRE preserves CT number accuracy, linearity, and spatial resolution, both in transversal and coronal planes. These results confirm that SAFIRE allows for image noise reduction with preserved image quality. First clinical data to validate this phantom analysis and confirm that commercially available iterative algorithms can play an effective role in dose containment. PACS number: 87.57.Q
Collapse
Affiliation(s)
- Caterina Ghetti
- Servizio di Fisica Sanitaria, Azienda Ospedaliero-Universitaria, Parma, Italy.
| | | | | | | | | |
Collapse
|