1
|
Pourvaziri A, Mroueh N, Cochran RL, Srinivas Rao S, Kambadakone A. Beyond Conventional CT: Role of Dual-Energy CT in Monitoring Response to Therapy in Abdominal Malignancies. Radiol Imaging Cancer 2025; 7:e240142. [PMID: 40249270 DOI: 10.1148/rycan.240142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In the era of precision medicine, imaging plays a critical role in evaluating treatment response to various oncologic therapies. For decades, conventional morphologic assessments using cross-sectional imaging have been the standard for monitoring the effectiveness of systemic and locoregional therapies in patients with cancer. However, the development of new functional imaging tools has widened the scope of imaging from mere response assessment to patient selection and outcome prediction. Dual-energy CT (DECT), known for its superior material differentiation capabilities, shows promise in enhancing treatment response evaluation. DECT-based iodine quantification methods are increasingly being investigated as surrogates for assessing tumor vascularity and physiology, which is particularly important in patients undergoing emerging targeted therapies. The purpose of this review article is to discuss the current and emerging role of DECT in assessing treatment response in patients with malignant abdominal tumors. Keywords: CT-Dual Energy, Transcatheter Tumor Therapy, Tumor Response, Iodine Uptake, Therapeutic Response © RSNA, 2025.
Collapse
Affiliation(s)
- Ali Pourvaziri
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Rory L Cochran
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Shravya Srinivas Rao
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114
| |
Collapse
|
2
|
Ichikawa S, Sofue K, Nakamura Y, Higaki T, Morisaka H, Hyodo T, Murakami T, Awai K, Jinzaki M, Goshima S. Single-Energy, Dual-Energy, and Photon-Counting Computed Tomography of the Liver: Current Development and Clinical Utility for the Assessment of Focal Liver Lesions. Invest Radiol 2025:00004424-990000000-00320. [PMID: 40203290 DOI: 10.1097/rli.0000000000001187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
ABSTRACT Advancements in computed tomography (CT) technology, particularly the emergence of dual-energy CT (DE-CT) and photon-counting detector CT (PCD-CT), can improve detection, characterization, and treatment monitoring of focal liver lesions. DE-CT, through its ability to differentiate tissues with similar densities and produce diverse datasets, has enhanced lesion visibility and diagnostic precision. PCD-CT further advances imaging with superior spatial resolution and material decomposition capabilities, offering potential for complex diagnostic scenarios. This review aimed to highlight the role of CT in hepatic imaging and its application to focal liver lesions.DE-CT improves lesion detectability using low-energy virtual monochromatic images, which enhance iodine contrast and reduce radiation and contrast agent doses. It also facilitates treatment response evaluation after locoregional therapies for hepatocellular carcinoma by quantifying biomarkers, such as the extracellular volume fraction. This review underscores the transformative impact of DE-CT and PCD-CT on liver imaging, emphasizing their complementary roles alongside magnetic resonance imaging. These innovations have paved the way for more precise diagnostics, improved treatment planning, and enhanced patient outcomes in the management of liver diseases.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine, Shizuoka, Japan (S.I., S.G.) Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan (K.S., T.M.) Department of Diagnostic Radiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (Y.N., T.H., K.A.) Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan (T.H.) Department of Radiology, University of Yamanashi, Yamanashi, Japan (H.M.) Department of Radiology, Kindai University Faculty of Medicine, Osaka, Japan (T.H.) Department of Radiology, Keio University School of Medicine, Tokyo, Japan (M.J.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Shrestha B, Stern NB, Zhou A, Dunn A, Porter T. Current trends in the characterization and monitoring of vascular response to cancer therapy. Cancer Imaging 2024; 24:143. [PMID: 39438891 PMCID: PMC11515715 DOI: 10.1186/s40644-024-00767-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/26/2024] [Indexed: 10/25/2024] Open
Abstract
Tumor vascular physiology is an important determinant of disease progression as well as the therapeutic outcome of cancer treatment. Angiogenesis or the lack of it provides crucial information about the tumor's blood supply and therefore can be used as an index for cancer growth and progression. While standalone anti-angiogenic therapy demonstrated limited therapeutic benefits, its combination with chemotherapeutic agents improved the overall survival of cancer patients. This could be attributed to the effect of vascular normalization, a dynamic process that temporarily reverts abnormal vasculature to the normal phenotype maximizing the delivery and intratumor distribution of chemotherapeutic agents. Longitudinal monitoring of vascular changes following antiangiogenic therapy can indicate an optimal window for drug administration and estimate the potential outcome of treatment. This review primarily focuses on the status of various imaging modalities used for the longitudinal characterization of vascular changes before and after anti-angiogenic therapies and their clinical prospects.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Noah B Stern
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Annie Zhou
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tyrone Porter
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
4
|
Hu L, Pan Y, Wang B, Han Z, Gao J. Application of CT functional imaging in the assessment of chemotherapy efficacy in lung cancer. Biotechnol Genet Eng Rev 2024; 40:1246-1261. [PMID: 36999686 DOI: 10.1080/02648725.2023.2193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
In this research, we aim to investigate the feasibility of a one-stop CT energy spectrum perfusion imaging technique for chemotherapy efficacy assessment of lung cancer patients by obtaining both functional imaging parameters of energy spectrum and perfusion in one scan. From November 2018 to February 2020, a group of 23 patients with pathologically confirmed lung cancer were chosen to undergo CT energy spectrum scans both before and after treatment. The post-treatment CT perfusion data was acquired one week after the second conventional chemotherapy session. Out of the 23 patients, 15 were in the chemotherapy effective group and the remaining 8 were in the ineffective group. The reason for this group was according to recist criteria. Arterial phase iodine concentration (icap) and intravenous phase iodine concentration (icpp) of the lesions were measured, and standardized iodine base values (nic) were calculated. The maximum diameter of the tumor before and after treatment was compared to the perfusion parameters and energy spectrum parameters before and after chemotherapy in the effective group and the invalid group was compared by two tests that p<0.05. The differences between the maximum diameter of the tumor before and after chemotherapy. 2 of the 15 patients in the effective group had liquefied necrotic areas in their lesions. One-stop ct energy-spectrum perfusion imaging can show the disease progression from a functional perspective and assess the efficacy early according to the changes in perfusion parameters and energy-spectrum parameters after lung cancer treatment.
Collapse
Affiliation(s)
- Lili Hu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanwei Pan
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhen Han
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Lennartz S, Cao J, Pisuchpen N, Srinivas-Rao S, Locascio JJ, Parakh A, Hahn PF, Mileto A, Sahani D, Kambadakone A. Intra-patient variability of iodine quantification across different dual-energy CT platforms: assessment of normalization techniques. Eur Radiol 2024; 34:5131-5141. [PMID: 38189979 DOI: 10.1007/s00330-023-10560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/18/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES To investigate intra-patient variability of iodine concentration (IC) between three different dual-energy CT (DECT) platforms and to test different normalization approaches. METHODS Forty-four patients who underwent portal venous phase abdominal DECT on a dual-source (dsDECT), a rapid kVp switching (rsDECT), and a dual-layer detector platform (dlDECT) during cancer follow-up were retrospectively included. IC in the liver, pancreas, and kidneys and different normalized ICs (NICPV:portal vein; NICAA:abdominal aorta; NICALL:overall iodine load) were compared between the three DECT scanners for each patient. A longitudinal mixed effects analysis was conducted to elucidate the effect of the scanner type, scan order, inter-scan time, and contrast media amount on normalized iodine concentration. RESULTS Variability of IC was highest in the liver (dsDECT vs. dlDECT 28.96 (14.28-46.87) %, dsDECT vs. rsDECT 29.08 (16.59-62.55) %, rsDECT vs. dlDECT 22.85 (7.52-33.49) %), and lowest in the kidneys (dsDECT vs. dlDECT 15.76 (7.03-26.1) %, dsDECT vs. rsDECT 15.67 (8.86-25.56) %, rsDECT vs. dlDECT 10.92 (4.92-22.79) %). NICALL yielded the best reduction of IC variability throughout all tissues and inter-scanner comparisons, yet did not reduce the variability between dsDECT vs. dlDECT and rsDECT, respectively, in the liver. The scanner type remained a significant determinant for NICALL in the pancreas and the liver (F-values, 12.26 and 23.78; both, p < 0.0001). CONCLUSIONS We found tissue-specific intra-patient variability of IC across different DECT scanner types. Normalization mitigated variability by reducing physiological fluctuations in iodine distribution. After normalization, the scanner type still had a significant effect on iodine variability in the pancreas and liver. CLINICAL RELEVANCE STATEMENT Differences in iodine quantification between dual-energy CT scanners can partly be mitigated by normalization, yet remain relevant for specific tissues and inter-scanner comparisons, which should be taken into account at clinical routine imaging. KEY POINTS • Iodine concentration showed the least variability between scanner types in the kidneys (range 10.92-15.76%) and highest variability in the liver (range 22.85-29.08%). • Normalizing tissue-specific iodine concentrations against the overall iodine load yielded the greatest reduction of variability between scanner types for 2/3 inter-scanner comparisons in the liver and for all (3/3) inter-scanner comparisons in the kidneys and pancreas, respectively. • However, even after normalization, the dual-energy CT scanner type was found to be the factor significantly influencing variability of iodine concentration in the liver and pancreas.
Collapse
Affiliation(s)
- Simon Lennartz
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jinjin Cao
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Nisanard Pisuchpen
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Shravya Srinivas-Rao
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Joseph J Locascio
- Harvard Catalyst Biostatistical Unit, Harvard Medical School/Massachusetts General Hospital, Boston, MA, USA
| | - Anushri Parakh
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Peter F Hahn
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Dushyant Sahani
- Department of Radiology, University of Washington, UWMC Radiology RR218, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Avinash Kambadakone
- Department of Radiology, Abdominal Radiology Division, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.
| |
Collapse
|
6
|
Nehra AK, Dane B, Yeh BM, Fletcher JG, Leng S, Mileto A. Dual-Energy, Spectral and Photon Counting Computed Tomography for Evaluation of the Gastrointestinal Tract. Radiol Clin North Am 2023; 61:1031-1049. [PMID: 37758355 DOI: 10.1016/j.rcl.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The use of dual-energy computed tomography (CT) allows for reconstruction of energy- and material-specific image series. The combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can improve lesion detection and disease characterization in the gastrointestinal tract in comparison with single-energy CT.
Collapse
Affiliation(s)
- Avinash K Nehra
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | - Bari Dane
- Department of Radiology, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Achille Mileto
- Department of Radiology, Virginia Mason Medical Center, 1100 9th Avenue, Seattle, WA 98101, USA
| |
Collapse
|
7
|
Ting YL, Lin HY, Huang TT, Hwang YS, Chui CS, Li MR, Wu TH. Quantitative Assessment of Lipiodol-Related Artifact Reduction for Dual-Energy Computed Tomography After Transcatheter Arterial Chemoembolization: A Phantom Study Evaluating the Use of Metal Artifact Reduction Algorithms. J Comput Assist Tomogr 2023; 47:704-712. [PMID: 37707399 DOI: 10.1097/rct.0000000000001477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVE This study used metal artifact reduction (MAR) software to examine the computed tomography (CT) number of dual-energy CT (DECT) of hepatocellular carcinoma after transcatheter arterial chemoembolization. METHODS Hollow columnar acrylic phantoms were filled with lipiodol and inserts of 2 sizes (large and small) were used to simulate liver tumors on a Revolution GSI CT scanner. The CT numbers of a single test object were collected twice: once with and once without the MAR algorithm. Lipiodol beam-hardening artifacts were quantified by measuring CT numbers in a region of interest around the tumor-simulating insert. RESULTS The virtual monochromatic CT numbers of large and small tumors were closely related to energy. For small tumors, CT numbers increased with energy. For large tumors, CT numbers increased with energy at 1 cm from the margin but decreased with an increase in energy at 5 cm. Regardless of the size, distance, or location of the tumor, the CT numbers fluctuated more at low energy levels. CONCLUSIONS At 1 cm from the margin, the CT numbers with MAR were significantly different from those without MAR. Low-energy CT numbers with MAR were near reference values. Metal artifact reduction exhibited superior performance for small tumors. Tumor margin images are affected by artifacts caused by Lipiodol. However, with MAR, CT numbers can be effectively calibrated, thus enabling clinicians to more accurately evaluate hepatocellular carcinoma development and identify residual tumors and recurrent or metastatic lesions.
Collapse
Affiliation(s)
| | | | | | - Yi-Shuan Hwang
- Department of Medical Imaging and Intervention, New Taipei Municipal Tu Cheng Hospital, New Taipei, Taiwan
| | | | | | - Tung-Hsin Wu
- From the Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University
| |
Collapse
|
8
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
9
|
Deep learning image reconstruction to improve accuracy of iodine quantification and image quality in dual-energy CT of the abdomen: a phantom and clinical study. Eur Radiol 2023; 33:1388-1399. [PMID: 36114848 DOI: 10.1007/s00330-022-09127-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/21/2022] [Accepted: 08/19/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVES To investigate the effect of deep learning image reconstruction (DLIR) on the accuracy of iodine quantification and image quality of dual-energy CT (DECT) compared to that of other reconstruction algorithms in a phantom experiment and an abdominal clinical study. METHODS An elliptical phantom with five different iodine concentrations (1-12 mgI/mL) was imaged five times with fast-kilovoltage-switching DECT for three target volume CT dose indexes. All images were reconstructed using filtered back-projection, iterative reconstruction (two levels), and DLIR algorithms. Measured and nominal iodine concentrations were compared among the algorithms. Contrast-enhanced CT of the abdomen with the same scanner was acquired in clinical patients. In arterial and portal venous phase images, iodine concentration, image noise, and coefficients of variation for four locations were retrospectively compared among the algorithms. One-way repeated-measures analyses of variance were used to evaluate differences in the iodine concentrations, standard deviations, coefficients of variation, and percentages of error among the algorithms. RESULTS In the phantom study, the measured iodine concentrations were equivalent among the algorithms: within ± 8% of the nominal values, with root-mean-square deviations of 0.08-0.36 mgI/mL, regardless of radiation dose. In the clinical study (50 patients; 35 men; mean age, 68 ± 11 years), iodine concentrations were equivalent among the algorithms for each location (all p > .99). Image noise and coefficients of variation were lower with DLIR than with the other algorithms (all p < .01). CONCLUSIONS The DLIR algorithm reduced image noise and variability of iodine concentration values compared with other reconstruction algorithms in the fast-kilovoltage-switching dual-energy CT. KEY POINTS • In the phantom study, standard deviations and coefficients of variation in iodine quantification were lower on images with the deep learning image reconstruction algorithm than on those with other algorithms. • In the clinical study, iodine concentrations of measurement location in the upper abdomen were consistent across four reconstruction algorithms, while image noise and variability of iodine concentrations were lower on images with the deep learning image reconstruction algorithm.
Collapse
|
10
|
Ersahin D, Rasla J, Singh A. Dual energy CT applications in oncological imaging. Semin Ultrasound CT MR 2022; 43:344-351. [PMID: 35738819 DOI: 10.1053/j.sult.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer is the second leading cause of death in the United States, killing more than 600.000 people each year.1 Despite several screening programs available, cancer diagnosis is often made incidentally during imaging studies performed for other reasons. Once the diagnosis is made, treatment assessment and surveillance of these patients heavily rely on radiological tools. Computed tomography (CT) in particular is one of the most commonly ordered modalities due to wide availability even in the most remote locations, and fast results. However, conventional CT often cannot definitively characterize a neoplastic lesion unless it was tailored toward answering a specific question. Furthermore, characterizing small lesions can be difficult with CT. An innovative technique called dual-energy CT (DECT) offers solutions to some of the challenges of conventional CT in oncological imaging.
Collapse
|
11
|
Fan PL, Chu J, Wang Q, Wang C. The clinical value of dual-energy computed tomography and diffusion-weighted imaging in the context of liver cancer: A narrative review. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:862-868. [PMID: 35338779 DOI: 10.1002/jcu.23197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The dual-energy computed tomography (DECT) and diffusion-weighted magnetic resonance imaging (DWI-MRI) are used to diagnose liver cancer. The clinical value of these two examination methods needs to be further summarized. We collected and summarized relevant literature published from 2011 to 2021. The diagnostic performance of DECT was assessed between conventional computed tomography and DWI-MRI. DWI-MRI had a 69% sensitivity for detecting small hepatocellular carcinoma (HCC) lesions and a 60% diagnostic specificity for differentiating between types of HCC lesions. DECT had a sensitivity to small liver lesions (<1 cm) of 69%, and the diagnostic specificity for HCC and metastasis was about 60%. DWI was more sensitive (90.3% vs. 74.9%) and accurate (91.9% vs. 76.9%) in diagnosing HCC compared with conventional MRI sequencing. With the aid of contrast media, DWI-MRI had 90.0% specificity for detecting small HCCs (smaller than 1 cm). Furthermore, DWI-MRI not only provided physicians with valuable diagnostic information but also delivered histological grading information, with 78% accuracy for all benign lesions and 71% for solid lesions. DECT had relatively high sensitivity and required a lower contrast medium dose. With standardized quantitative parameters, it can be an extremely useful tool for HCC surveillance. DWI-MRI is the preferred imaging process as it produces high-contrast images for supporting an early diagnosis (high sensitivity and specificity) and provides histological information using non-ionizing radiation.
Collapse
Affiliation(s)
- Pei-Lin Fan
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Jun Chu
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Qing Wang
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| | - Chen Wang
- Discipline of Diagnostic Radiography, University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Hepatobiliary Dual-Energy Computed Tomography. Radiol Clin North Am 2022; 60:731-743. [DOI: 10.1016/j.rcl.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lewin M, Laurent-Bellue A, Desterke C, Radu A, Feghali JA, Farah J, Agostini H, Nault JC, Vibert E, Guettier C. Evaluation of perfusion CT and dual-energy CT for predicting microvascular invasion of hepatocellular carcinoma. Abdom Radiol (NY) 2022; 47:2115-2127. [PMID: 35419748 DOI: 10.1007/s00261-022-03511-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Evaluation of perfusion CT and dual-energy CT (DECT) quantitative parameters for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC) prior to surgery. METHODS This prospective single-center study included fifty-six patients (44 men; median age 67; range 31-84) who provided written informed consent. Inclusion criteria were (1) treatment-naïve patients with a diagnosis of HCC, (2) an indication for hepatic resection, and (3) available arterial DECT phase and perfusion CT (GE revolution HD-GSI). Iodine concentrations (IC), arterial density (AD), and 9 quantitative perfusion parameters for HCC were correlated to pathological results. Radiological parameters based principal component analysis (PCA), corroborated by unsupervised heatmap classification, was meant to deliver a model for predicting MVI in HCC. Survival analysis was performed using univariable log-rank test and multivariable Cox model, both censored at time of relapse. RESULTS 58 HCC lesions were analyzed (median size 42.3 mm; range of 20-140). PCA showed that the radiological model was predictive of tumor grade (p = 0.01), intratumoral MVI (p = 0.004), peritumoral MVI (p = 0.04), MTM (macrotrabecular-massive) subtype (p = 0.02), and capsular invasion (p = 0.02) in HCC. Heatmap classification of HCC showed tumor heterogeneity, stratified into three main clusters according to the risk of relapse. Survival analysis confirmed that permeability surface-area product (PS) was the only significant independent parameter, among all quantitative tumoral CT parameters, for predicting a risk of relapse (Cox p value = 0.004). CONCLUSION A perfusion CT and DECT-based quantitative imaging profile can provide a diagnosis of histological MVI in HCC. PS is an independent parameter for relapse. CLINICAL TRIALS ClinicalTrials.gov: NCT03754192.
Collapse
Affiliation(s)
- Maïté Lewin
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France.
- Faculté de Médecine, Université Paris Saclay, 94270, Le Kremlin-Bicêtre, France.
| | - Astrid Laurent-Bellue
- Faculté de Médecine, Université Paris Saclay, 94270, Le Kremlin-Bicêtre, France
- Service d'Anatomopathologie, AP-HP-Université Paris Saclay Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France
| | - Christophe Desterke
- Faculté de Médecine, Université Paris Saclay, 94270, Le Kremlin-Bicêtre, France
- Service de Bio-informatique, INSERM UA9, Hôpital Paul Brousse, 94800, Villejuif, France
| | - Adina Radu
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Joëlle Ann Feghali
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Jad Farah
- Service de Radiologie, AP-HP-Université Paris Saclay Hôpital Paul Brousse, 12-14 avenue Paul Vaillant Couturier, 94800, Villejuif, France
| | - Hélène Agostini
- Service d'Epidémiologie et de Santé Publique, AP-HP-Université Paris Saclay Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France
| | - Jean-Charles Nault
- Service d'Hépatologie, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Hôpital Avicenne, 93000, Bobigny, France
- Functional Genomics of Solid Tumors Laboratory, Centre de Recherche Des Cordeliers, Sorbonne Université, Inserm, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris 13, 75006, Paris, France
- Université Paris 13, Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, 93000, Bobigny, France
| | - Eric Vibert
- Faculté de Médecine, Université Paris Saclay, 94270, Le Kremlin-Bicêtre, France
- AP-HP-Université Paris Saclay, Hôpital Paul Brousse, 94800, Villejuif, France
- Centre Hépato-Biliaire, INSERM U1193 Hôpital Paul Brousse, 94800, Villejuif, France
| | - Catherine Guettier
- Faculté de Médecine, Université Paris Saclay, 94270, Le Kremlin-Bicêtre, France
- Service d'Anatomopathologie, AP-HP-Université Paris Saclay Hôpital Bicêtre, 94270, Le Kremlin-Bicêtre, France
- Centre Hépato-Biliaire, INSERM U1193 Hôpital Paul Brousse, 94800, Villejuif, France
| |
Collapse
|
14
|
Gehling K, Mokry T, Do TD, Giesel FL, Dietrich S, Haberkorn U, Kauczor HU, Weber TF. Dual-Layer Spectral Detector CT in Comparison with FDG-PET/CT for the Assessment of Lymphoma Activity. ROFO-FORTSCHR RONTG 2022; 194:747-754. [PMID: 35211927 DOI: 10.1055/a-1735-3477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE In patients with malignant lymphoma, disease activity is recommended to be assessed by FDG-PET/CT and the Deauville five-point scale (5-PS). The purpose of this study was to explore the potential of iodine concentration measured in contrast-enhanced dual-layer spectral detector CT (SDCT) as an alternative surrogate parameter for lymphoma disease activity by investigating its correlation with maximum standardized uptake values (SUVmax) and 5-PS. MATERIALS AND METHODS 25 patients were retrospectively analyzed. Contrast-enhanced SDCT and FDG-PET/CT were performed in the same treatment interval within at most 3 months. CT attenuation values (AV), absolute iodine concentrations (aIC), and normalized iodine concentrations (nIC) of lymphoma lesions were correlated with SUVmax using Spearman's rank correlation coefficient. The performance of aIC and nIC to detect lymphoma activity (defined as 5-PS > 3) was determined using ROC curves. RESULTS 60 lesions were analyzed, and 31 lesions were considered active. AV, aIC, and nIC all correlated significantly with SUVmax. The strongest correlation (Spearman ρ = 0.71; p < 0.001) and highest area under the ROC curve (AUROC) for detecting lymphoma activity were observed for nIC normalized to inferior vena cava enhancement (AUROC = 0.866). The latter provided sensitivity, specificity, and diagnostic accuracy of 87 %, 75 %, and 80 %, respectively, at a threshold of 0.20. ROC analysis for AV (AUROC = 0.834) and aIC (AUROC = 0.853) yielded similar results. CONCLUSION In malignant lymphomas, there is a significant correlation between metabolic activity as assessed by FDG-PET/CT and iodine concentration as assessed by SDCT. Iodine concentration shows promising diagnostic performance for detecting lymphoma activity and may represent a potential imaging biomarker. KEY POINTS · Iodine concentration correlates significantly with SUVmax in lymphoma patients. · Iodine concentration may represent a potential imaging biomarker for detecting lymphoma activity. · Normalization of iodine concentration improves diagnostic performance of iodine concentration. CITATION FORMAT · Gehling K, Mokry T, Do TD et al. Dual-Layer Spectral Detector CT in Comparison with FDG-PET/CT for the Assessment of Lymphoma Activity. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1735-3477.
Collapse
Affiliation(s)
- Kim Gehling
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
| | - Theresa Mokry
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,German Cancer Research Center (DKFZ) Division of Radiology, Heidelberg, Germany
| | - Thuy Duong Do
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
| | - Frederik Lars Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany.,Department of Nuclear Medicine, University Hospital of Düsseldorf, Dusseldorf, Germany
| | - Sascha Dietrich
- Clinic for Haematology, Oncology and Rheumatology, University Hospital Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Tim Frederik Weber
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Germany
| |
Collapse
|
15
|
Dual-Energy CT Vital Iodine Tumor Burden for Response Assessment in Patients With Metastatic GIST Undergoing TKI Therapy: Comparison to Standard CT and FDG PET/CT Criteria. AJR Am J Roentgenol 2021; 218:659-669. [PMID: 34668385 DOI: 10.2214/ajr.21.26636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: CT-based criteria for assessing gastroinstestinal stromal tumor (GIST) response to tyroskine kinase inhibitor (TKI) therapy are limited partly because tumor attenuation is influenced by treatment-related changes including hemorrhage and calcification. Iodine concentration may be less impacted by such changes. Objective: To determine whether DECT vital iodine tumor burden (TB) provides improved differentiation between responders and non-responders in patients with metastatic GIST undergoing TKI therapy compared to established CT and PET/CT criteria. Methods: An anthropomorphic phantom with spherical inserts mimicking GIST lesions of varying iodine concentrations and having non-enhancing central necrotic cores underwent DECT to determine a threshold iodine concentration. Forty patients (median age 57 years; 25 women, 15 men) treated with TKI for metaststic GIST were retrospectively evaluated. Patients underwent baseline and follow-up DECT and FDG PET/CT. Response assessment was performed using RECIST 1.1, modified Choi (mChoi), vascular tumor burden (VTB), DECT vital iodine TB, and European Organization for Research and Treatment of Cancer (EORTC PET) criteria. DECT vital iodine TB used the same percentage changes as RECIST 1.1 response categories. Progression-free survival (PFS) was compared between responders and non-responders for each response criteria using Cox proportional hazard ratios and Harrell's c-indices. Results: The phantom experiment identified a 0.5 mg/mL threshold to differentiate vital from non-vital tissue. Using DECT vital iodine TB, median PFS was significantly different between non-responders and responders (587 vs 167 days, respectively; p=.02). Hazard ratio for progression for DECT vital iodine TB non-responders versus responders was 6.9, versus 7.6 for EORTC PET, 3.3 for VTB, 2.3 for RECIST 1.1, and 2.1 for mChoi. C-index was 0.74 for EORTC PET, 0.73 for DECT vital iodine TB, 0.67 for VTB, 0.61 for RECIST 1.1, and 0.58 for mChoi. C-index was significantly greater for DECT vital iodine TB than RECIST 1.1 (p=.02) and mChoi (p=.002), but not different than VTB and EORTC PET (p>.05). Conclusion: DECT vital iodine TB criteria showed comparable performance as EORTC PET and outperformed RECIST 1.1 and mChoi for response assessment of metastatic GIST under TKI therapy. Clinical Impact: DECT vital iodine TB could help guide early management decisions in patients on TKI therapy.
Collapse
|
16
|
Majeed NF, Braschi Amirfarzan M, Wald C, Wortman JR. Spectral detector CT applications in advanced liver imaging. Br J Radiol 2021; 94:20201290. [PMID: 34048285 PMCID: PMC8248211 DOI: 10.1259/bjr.20201290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Spectral detector CT (SDCT) has many applications in advanced liver imaging. If appropriately utilized, this technology has the potential to improve image quality, provide new diagnostic information, and allow for decreased radiation dose. The purpose of this review is to familiarize radiologists with the uses of SDCT in liver imaging. CONCLUSION SDCT has a variety of post-processing techniques, which can be used in advanced liver imaging and can significantly add value in clinical practice.
Collapse
Affiliation(s)
- Noor Fatima Majeed
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Marta Braschi Amirfarzan
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Christoph Wald
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| | - Jeremy R Wortman
- Department of Radiology, Lahey Hospital and Medical Center, 41 Burlington Mall Road, Burlington, United States
| |
Collapse
|
17
|
Noda Y, Kawai N, Nagata S, Nakamura F, Mori T, Miyoshi T, Suzuki R, Kitahara F, Kato H, Hyodo F, Matsuo M. Deep learning image reconstruction algorithm for pancreatic protocol dual-energy computed tomography: image quality and quantification of iodine concentration. Eur Radiol 2021; 32:384-394. [PMID: 34131785 DOI: 10.1007/s00330-021-08121-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate the image quality and iodine concentration (IC) measurements in pancreatic protocol dual-energy computed tomography (DECT) reconstructed using deep learning image reconstruction (DLIR) and compare them with those of images reconstructed using hybrid iterative reconstruction (IR). METHODS The local institutional review board approved this prospective study. Written informed consent was obtained from all participants. Thirty consecutive participants with pancreatic cancer (PC) underwent pancreatic protocol DECT for initial evaluation. DECT data were reconstructed at 70 keV using 40% adaptive statistical iterative reconstruction-Veo (hybrid-IR) and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The diagnostic acceptability and conspicuity of PC were qualitatively assessed using a 5-point scale. IC values of the abdominal aorta, pancreas, PC, liver, and portal vein; standard deviation (SD); and coefficient of variation (CV) were calculated. Qualitative and quantitative parameters were compared between the hybrid-IR, DLIR-M, and DLIR-H groups. RESULTS The diagnostic acceptability and conspicuity of PC were significantly better in the DLIR-M group compared with those in the other groups (p < .001-.001). The IC values of the anatomical structures were almost comparable between the three groups (p = .001-.9). The SD of IC values was significantly lower in the DLIR-H group (p < .001) and resulted in the lowest CV (p < .001-.002) compared with those in the hybrid-IR and DLIR-M groups. CONCLUSIONS DLIR could significantly improve image quality and reduce the variability of IC values than could hybrid-IR. KEY POINTS Image quality and conspicuity of pancreatic cancer were the best in DLIR-M. DLIR significantly reduced background noise and improved SNR and CNR. The variability of iodine concentration was reduced in DLIR.
Collapse
Affiliation(s)
- Yoshifumi Noda
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Nobuyuki Kawai
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Shoma Nagata
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fumihiko Nakamura
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takayuki Mori
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toshiharu Miyoshi
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Ryosuke Suzuki
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fumiya Kitahara
- Department of Radiology Services, Gifu University Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroki Kato
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Fuminori Hyodo
- Department of Radiology, Frontier Science for Imaging, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
18
|
Schmidt C, Baessler B, Nakhostin D, Das A, Eberhard M, Alkadhi H, Euler A. Dual-Energy CT-Based Iodine Quantification in Liver Tumors - Impact of Scan-, Patient-, and Position-Related Factors. Acad Radiol 2021; 28:783-789. [PMID: 32418783 DOI: 10.1016/j.acra.2020.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 01/09/2023]
Abstract
RATIONALE AND OBJECTIVES To quantify the contribution of lesion location and patient positioning, dual-energy approach, patient size, and radiation dose to the error of dual-energy CT-based iodine quantification (DECT-IQ) in liver tumors. MATERIALS AND METHODS A phantom with four liver lesions (diameter 15 mm; iodine concentration 0-5 mgI/mL) and two sizes was used. One lesion emulated a subdiaphragmatic lesion. Both sizes were imaged in dual-energy mode on (1) a dual-source DECT (DS-DE) at 100/Sn150 kV and (2) a single-source split-filter DECT (SF-DE) at AuSn120 kV at two radiation doses (8 and 12 mGy). Scans were performed at seven different vertical table positions (from -6 to + 6 cm from the gantry isocenter). Iodine concentration was repeatedly measured and absolute errors (errorabs) were calculated. Errors were compared using robust repeated-measures ANOVAs with post-hoc comparisons. A linear mixed effect model was used to determine the factors influencing the error of DECT-IQ. RESULTS The linear mixed effect models showed that errors were significantly influenced by DECT approach, phantom size, and lesion location (all p < 0.001). The impact of lesion location on the error was stronger in SF-DE compared to DS-DE. Radiation dose did not significantly influence error (p = 0.22). When averaged across all setups, errorabs was significantly higher for SF-DE (2.08 ± 1.92 mgI/mL) compared to DS-DE (0.37 ± 0.29 mgI/mL) (all p < 0.001). Artefacts were found in the subdiaphragmatic lesion for SF-DE with significantly increased errorabs compared to DS-DE (p < 0.001). Errorabs was significantly higher in the large compared to the medium phantom for DS-DE (0.30 ± 0.23 mgI/mL vs. 0.43 ± 0.33 mgI/mL) and SF-DE (1.68 ± 1.99 vs. 2.36 ± 1.81 mgI/mL) (p < 0.001). CONCLUSION The dual-energy approach, patient size, and lesion location modified by patient position significantly impacted DECT-IQ in simulated liver tumors.
Collapse
|
19
|
Nakamura Y, Higaki T, Honda Y, Tatsugami F, Tani C, Fukumoto W, Narita K, Kondo S, Akagi M, Awai K. Advanced CT techniques for assessing hepatocellular carcinoma. Radiol Med 2021; 126:925-935. [PMID: 33954894 DOI: 10.1007/s11547-021-01366-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth-most common cancer in the world, and hepatic dynamic CT studies are routinely performed for its evaluation. Ongoing studies are examining advanced imaging techniques that may yield better findings than are obtained with conventional hepatic dynamic CT scanning. Dual-energy CT-, perfusion CT-, and artificial intelligence-based methods can be used for the precise characterization of liver tumors, the quantification of treatment responses, and for predicting the overall survival rate of patients. In this review, the advantages and disadvantages of conventional hepatic dynamic CT imaging are reviewed and the general principles of dual-energy- and perfusion CT, and the clinical applications and limitations of these technologies are discussed with respect to HCC. Finally, we address the utility of artificial intelligence-based methods for diagnosing HCC.
Collapse
Affiliation(s)
- Yuko Nakamura
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Toru Higaki
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yukiko Honda
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Fuminari Tatsugami
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Chihiro Tani
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Wataru Fukumoto
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keigo Narita
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shota Kondo
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Motonori Akagi
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuo Awai
- Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
20
|
Zopfs D, Reimer RP, Sonnabend K, Rinneburger M, Hentschke CM, Persigehl T, Lennartz S, Große Hokamp N. Intraindividual Consistency of Iodine Concentration in Dual-Energy Computed Tomography of the Chest and Abdomen. Invest Radiol 2021; 56:181-187. [PMID: 32932376 DOI: 10.1097/rli.0000000000000724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Dual-energy computed tomography (DECT)-derived quantification of iodine concentration (IC) is increasingly used in oncologic imaging to characterize lesions and evaluate treatment response. However, only limited data are available on intraindividual consistency of IC and its variation. This study investigates the longitudinal reproducibility of IC in organs, vessels, and lymph nodes in a large cohort of healthy patients who underwent repetitive DECT imaging. MATERIALS AND METHODS A total of 159 patients, who underwent a total of 469 repetitive (range, 2-4), clinically indicated portal-venous phase DECT examinations of the chest and abdomen, were retrospectively included. At time of imaging, macroscopic tumor burden was excluded by follow-up imaging (≥3 months). Iodine concentration was measured region of interest-based (N = 43) in parenchymatous organs, vessels, lymph nodes, and connective tissue. Normalization of IC to the aorta and to the trigger delay as obtained from bolus tracking was performed. For statistical analysis, intraclass correlation coefficient and modified variation coefficient (MVC) were used to assess intraindividual agreement of IC and its variation between different time points, respectively. Furthermore, t tests and analysis of variance with Tukey-Kramer post hoc test were used. RESULTS The mean intraclass correlation coefficient over all regions of interest was good to excellent (0.642-0.936), irrespective of application of normalization or the normalization technique. Overall, MVC ranged from 1.8% to 25.4%, with significantly lower MVC in data normalized to the aorta (5.8% [1.8%-15.8%]) in comparison with the MVC of not normalized data and data normalized to the trigger delay (P < 0.01 and P = 0.04, respectively). CONCLUSIONS Our study confirms intraindividual, longitudinal variation of DECT-derived IC, which varies among vessels, lymph nodes, organs, and connective tissue, following different perfusion characteristics; normalizing to the aorta seems to improve reproducibility when using a constant contrast media injection protocol.
Collapse
Affiliation(s)
- David Zopfs
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Robert Peter Reimer
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Kristina Sonnabend
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Miriam Rinneburger
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | | | - Thorsten Persigehl
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | | | - Nils Große Hokamp
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| |
Collapse
|
21
|
Colagrande S, Calistri L, Campani C, Dragoni G, Lorini C, Nardi C, Castellani A, Marra F. CT volume of enhancement of disease (VED) can predict the early response to treatment and overall survival in patients with advanced HCC treated with sorafenib. Eur Radiol 2021; 31:1608-1619. [PMID: 32827266 PMCID: PMC7880966 DOI: 10.1007/s00330-020-07171-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To analyse the predictive value of the volume of enhancement of disease (VED), based on the CT arterial enhancement coefficient (ΔArt%), in the evaluation of the sorafenib response in patients with advanced hepatocellular carcinoma (HCC). METHODS Patients with sorafenib-treated advanced HCC, who underwent a multiphase contrast-enhanced CT before (T0) and after 60-70 days of starting therapy (T1), were included. The same target lesions utilised for the response evaluation according to modified Response Evaluation Criteria in Solid Tumors criteria were retrospectively used for the ΔArt% calculation ([(HUarterial phase - HUunenhanced phase) / HUunenhanced phase] × 100). ΔArt% was weighted for the lesion volume to obtain the VED. We compared VEDT0 and VEDT1 values in patients with clinical benefit (CB) or progressive disease (PD). The impact of VED, ancillary imaging findings, and blood chemistries on survival probability was evaluated. RESULTS Thirty-two patients (25 men, mean age 65.8 years) analysed between 2012 and 2016 were selected. At T1, 8 patients had CB and 24 had PD. VEDT0 was > 70% in 8/8 CB patients compared with 12/24 PD patients (p = 0.011). Patients with VEDT0 > 70% showed a significantly higher median survival than those with lower VEDT0 (451.5 days vs. 209.5 days, p = 0.032). Patients with VEDT0 > 70% and alpha-fetoproteinT0 ≤ 400 ng/ml had significantly longer survival than all other three combinations. In multivariate analysis, VEDT0 > 70% emerged as the only factor independently associated with survival (p = 0.037). CONCLUSION In patients with advanced HCC treated with sorafenib, VED is a novel radiologic parameter obtained by contrast-enhanced CT, which could be helpful in selecting patients who are more likely to respond to sorafenib, and with a longer survival. KEY POINTS • To achieve the best results of treatment with sorafenib in advanced HCC, a strict selection of patients is needed. • New radiologic parameters predictive of the response to sorafenib would be essential. • Volume of enhancement of disease (VED) is a novel radiologic parameter obtained by contrast-enhanced CT, which could be helpful in selecting patients who are more likely to respond to therapy, and with a longer survival.
Collapse
Affiliation(s)
- S Colagrande
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy.
| | - L Calistri
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - C Campani
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - G Dragoni
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
| | - C Lorini
- Department of Health Science, University of Florence, Viale Morgagni 48, 50134, Florence, Italy
| | - C Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - A Castellani
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence - Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134, Florence, Italy
| | - F Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50134, Florence, Italy
- Research Centre Denothe, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Abstract
Dual-energy CT (DECT) overcomes several limitations of conventional single-energy CT (SECT) for the evaluation of gastrointestinal diseases. This article provides an overview of practical aspects of the DECT technology and acquisition protocols, reviews existing clinical applications, discusses current challenges, and describes future directions, with a focus on gastrointestinal imaging. A head-to-head comparison of technical specifications among DECT scanner implementations is provided. Energy- and material-specific DECT image reconstructions enable retrospective (i.e., after examination acquisition) image quality adjustments that are not possible using SECT. Such adjustments may, for example, correct insufficient contrast bolus or metal artifacts, thereby potentially avoiding patient recalls. A combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can be included in protocols to improve lesion detection and disease characterization. Relevant literature is reviewed regarding use of DECT for evaluation of the liver, gallbladder, pancreas, and bowel. Challenges involving cost, workflow, body habitus, and variability in DECT measurements are considered. Artificial intelligence and machine-learning image reconstruction algorithms, PACS integration, photon-counting hardware, and novel contrast agents are expected to expand the multienergy capability of DECT and further augment its value.
Collapse
|
23
|
Dual-energy CT in diffuse liver disease: is there a role? Abdom Radiol (NY) 2020; 45:3413-3424. [PMID: 32772121 DOI: 10.1007/s00261-020-02702-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Dual-energy CT (DECT) can be defined as the use of two different energy levels to identify and quantify material composition. Since its inception, DECT has benefited from remarkable improvements in hardware and clinical applications. DECT enables accurate identification and quantification of multiple materials, including fat, iron, and iodine. As a consequence, multiple studies have investigated the potential role of DECT in the assessment of diffuse liver diseases. While this role is evolving, this article aims to review the most relevant literature on use of DECT for assessment of diffuse liver diseases. Moreover, the basic concepts on DECT techniques, types of image reconstruction, and DECT-dedicated software will be described, focusing on the areas that are most relevant for the evaluation of diffuse liver diseases. Also, we will review the evidence of added value of DECT in detection and assessment of hepatocellular carcinoma which is a known risk in patients with diffuse liver disease.
Collapse
|
24
|
Cruz M, Ferreira AA, Papanikolaou N, Banerjee R, Alves FC. New boundaries of liver imaging: from morphology to function. Eur J Intern Med 2020; 79:12-22. [PMID: 32571581 DOI: 10.1016/j.ejim.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
From an invisible organ to one of the most explored non-invasively, the liver is, today, one of the cornerstones for current cross-sectional imaging techniques and minimally invasive procedures. After the achievements of US, CT and, most recently, MRI in providing highly accurate morphological and structural information about the organ, a significant scientific development has gained momentum for the last decades, coupling morphology to liver function and contributing far most to what we know today as precision medicine. In fact, dedicated tailor-made investigations are now possible in order to detect and, most of all, quantify physiopathological processes with unprecedented certitude. It is the intention of this review to provide a better insight to the reader of several functional imaging techniques applied to liver imaging. Contrast enhanced imaging, diffusion weighted imaging, elastography, spectral computed tomography and fat and iron assessment techniques are commonly performed clinically. Diffusion kurtosis imaging, magnetic resonance spectroscopy, T1 relaxometry and radiomics remain largely limited to advanced clinical research. Each of them has its own value and place on the diagnostic armamentarium and provide unique qualitative and quantitative information regarding the pathophysiology of diseases, contributing at a large scale to model therapeutic decisions and patient follow-up. Therefore, state-of-the-art liver imaging acts today as a non-invasive surrogate biomarker of many focal and diffuse liver diseases.
Collapse
Affiliation(s)
- Manuel Cruz
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal.
| | - Ana Aguiar Ferreira
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal
| | - Nikolaos Papanikolaou
- Computational Clinical Imaging Group, Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Rajarshi Banerjee
- Department of Acute Medicine, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Filipe Caseiro Alves
- Department of Radiology, Faculty of Medicine, University Hospital Coimbra and CIBIT/ICNAS research center, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
25
|
Dual-Energy CT of Pediatric Abdominal Oncology Imaging: Private Tour of New Applications of CT Technology. AJR Am J Roentgenol 2020; 214:967-975. [DOI: 10.2214/ajr.19.22242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Agostini A, Borgheresi A, Mari A, Floridi C, Bruno F, Carotti M, Schicchi N, Barile A, Maggi S, Giovagnoni A. Dual-energy CT: theoretical principles and clinical applications. LA RADIOLOGIA MEDICA 2019; 124:1281-1295. [PMID: 31792703 DOI: 10.1007/s11547-019-01107-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
The physical principles of dual-energy computed tomography (DECT) are as old as computed tomography (CT) itself. To understand the strengths and the limits of this technology, a brief overview of theoretical basis of DECT will be provided. Specific attention will be focused on the interaction of X-rays with matter, on the principles of attenuation of X-rays in CT toward the intrinsic limits of conventional CT, on the material decomposition algorithms (two- and three-basis-material decomposition algorithms) and on effective Rho-Z methods. The progresses in material decomposition algorithms, in computational power of computers and in CT hardware, lead to the development of different technological solutions for DECT in clinical practice. The clinical applications of DECT are briefly reviewed in relation to the specific algorithms.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy.
- Department of Radiology - Division of Special and Pediatric Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy.
| | - Alessandra Borgheresi
- Department of Radiology - Division of Special and Pediatric Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Alberto Mari
- Department of Radiology - Division of Medical Physics, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Chiara Floridi
- Department of Health Sciences, Diagnostic and Interventional Radiology, Hospital "San Paolo", University of Milan, Milan, Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Marina Carotti
- Department of Radiology - Division of Special and Pediatric Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Nicolò Schicchi
- Department of Radiology - Division of Special and Pediatric Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Stefania Maggi
- Department of Radiology - Division of Medical Physics, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona, Italy
- Department of Radiology - Division of Special and Pediatric Radiology, University Hospital "Umberto I - Lancisi - Salesi", Via Conca 71, 60126, Ancona, AN, Italy
| |
Collapse
|
27
|
Dose Optimization of Perfusion-derived Response Assessment in Hepatocellular Carcinoma Treated with Transarterial Chemoembolization: Comparison of Volume Perfusion CT and Iodine Concentration. Acad Radiol 2019; 26:1154-1163. [PMID: 30482626 DOI: 10.1016/j.acra.2018.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES We assessed the value of iodine concentration (IC) as a perfusion-derived response marker for hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE) in comparison with volume perfusion computed tomography (VPCT) parameters. MATERIALS AND METHODS Forty-one HCC lesions in 32 patients examined before and after TACE were analyzed retrospectively. VPCT-parameters were calculated and lesion iodine-maps were computed using subtraction of the baseline and the scan 7 seconds after aortic peak enhancement from the corresponding 80 kVp-VPCT data set. Modified RECIST was used as standard response criteria. Comparisons were performed using Student's t test for normal distributed data and Mann-Whitney U test for non-normal distributed data. Additionally, correlation analysis, receiver operating characteristics (ROC) and interreader agreement were assessed. RESULTS In responding lesions, mean pre-TACE IC and blood flow (BF) were 131.2 mg/100 mL and 96.7 mL/100 mL/min, decreasing to IC 25.6 mg/100 mL (P < 0.001) and BF 28.5 mL/100 mL/min (P < 0.001) post-TACE. In nonresponding lesions, the values remained almost unchanged: pre-TACE: mean BF 79.3 mL/100 mL/min and mean IC 90.4 mg/100 mL; post-TACE: mean BF 71.3 mL/100 mL/min (n.s.) and mean IC 105.4 mg/100 mL (n.s.). Differences in IC-values revealed a high sensitivity/specificity of 96.7%/81.8%. IC and VPCT-parameters showed strong, positive correlations. Mean volume CT dose index for VPCT was 63.4 mGy and 4.9 mGy for iodine maps. CONCLUSION Thus, IC is a meaningful perfusion marker for local therapy response monitoring in HCC that can be acquired with low radiation dose. This information is important for further therapy response applications using dual and single energy CT.
Collapse
|
28
|
Correlation Between Dual-Energy Computed Tomography Single Scan and Computed Tomography Perfusion for Pancreatic Cancer Patients: Initial Experience. J Comput Assist Tomogr 2019; 43:599-604. [PMID: 31162238 DOI: 10.1097/rct.0000000000000878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objective of this study was to evaluate the role and limit of iodine maps by dual-energy computed tomography (CT) single scan for pancreatic cancer. METHODS Thirty patients with suspected solitary pancreatic cancer were enrolled in this study and underwent CT perfusion and iodine maps. The parameters of pancreatic cancer and normal pancreatic tissue were calculated. Pearson correlation and paired t test were used for evaluating 2 techniques. RESULTS Iodine concentration had a moderate positive correlation with blood flow or blood volume (P < 0.05 for both). All values of iodine concentration and blood flow, iodine concentration, and blood volume had significant positive correlations (P < 0.001 for both). The mean effective dose for CT perfusion and iodine maps had significant difference (8.61 ± 0.00 mSv vs 1.13 ± 0.14 mSv, P < 0.001). CONCLUSIONS Iodine maps had the potential to replace routine CT perfusion for pancreatic cancer with low radiation dose.
Collapse
|
29
|
Yang L, Li Y, Shi GF, Zhou T, Tan BB. The Concentration of Iodine in Perigastric Adipose Tissue: A Novel Index for the Assessment of Serosal Invasion in Patients with Gastric Cancer after Neoadjuvant Chemotherapy. Digestion 2018; 98:87-94. [PMID: 29698943 DOI: 10.1159/000487709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aims to explore the association between iodine concentration (IC) in perigastric adipose tissue (PAT), quantified by dual-energy computed tomography (DECT) and serosal invasion (SI) in patients with gastric cancer post-neoadjuvant chemotherapy (NAC). METHODS Forty-three patients with T4-staged gastric cancer were enrolled. IC and standardized IC in PAT (ICPAT and SICPAT) were quantified by DECT pre and post NAC. A postoperative pathologic examination was performed to stage gastric cancer. RESULTS After NAC, a total of 43 participants were assigned to group A with 13 patients and group B with 30 patients according to the results of the postoperative pathologic examination. The accuracy of conventional CT in identifying SI was 74.42%. Differences of variations between pre- and post- NAC ICPAT, SICPAT, ∆ICPAT, and ∆SICPAT were observed respectively (p < 0.05). Intragroup ICPAT and SICPAT also changed significantly after NAC (p < 0.05). The area under the ROC curve was 0.929, with the threshold of ∆SICPAT reaching 0.095. The sensitivity, specificity, and accuracy of SICPAT in identifying post-NAC SI were 92.30, 86.70, and 88.37% respectively. Moreover, the 2 measurements in the same patient maintain a high level of consistency. CONCLUSION These results showed that SICPAT is a reliable index for identifying post-NAC SI.
Collapse
Affiliation(s)
- Li Yang
- Department of CT, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gao-Feng Shi
- Department of CT, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tao Zhou
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bi-Bo Tan
- Department of General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
30
|
Gao X, Zhang Y, Yuan F, Ding B, Ma Q, Yang W, Yan J, Du L, Wang B, Yan F, Sedlmair M, Pan Z, Zhang H. Locally advanced gastric cancer: total iodine uptake to predict the response of primary lesion to neoadjuvant chemotherapy. J Cancer Res Clin Oncol 2018; 144:2207-2218. [PMID: 30094537 DOI: 10.1007/s00432-018-2728-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/30/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Pathologic response to neoadjuvant chemotherapy is a prognostic factor in many cancer types. However, the existing evaluative criteria are deficient. We sought to prospectively evaluate the total iodine uptake derived from dual-energy computed tomography (DECT) in predicting treatment efficacy and progression-free survival (PFS) time in gastric cancer after neoadjuvant chemotherapy. METHODS From October 2012 to December 2015, 44 patients with locally advanced gastric cancer were examined with DECT 1 week before and three cycles after neoadjuvant chemotherapy. The percentage changes in tumor area (%ΔS), diameter (%ΔD), and density (%ΔHU) were calculated to evaluate the WHO, RESCIST, and Choi criteria. The percentage changes in tumor volume (%ΔV) and total iodine uptake of portal phase (%ΔTIU-p) were also calculated to determine cut-off values by ROC curves. The correlation between the different criteria and histopathologic tumor regression grade (Becker score) or PFS were statistically analyzed. RESULTS Forty-four patients were divided into responders and non-responders according to 43.34% volume reduction (P = 0.002) and 63.87% (P = 0.002) TIU-p reduction, respectively. The %ΔTIU-p showed strong (r = 0.602, P = 0.000) and %ΔV showed moderate (r = 0.416, P = 0.005), while the WHO (r = 0.075, P = 0.627), RECIST (r = 0.270, P = 0.077) and Choi criteria (r = 0.238, P = 0.120) showed no correlation with the Becker score. The differences in PFS time between the responder and non-responder groups were significant according to %ΔTIU-p and Choi criteria (P = 0.001 and P = 0.013, respectively). CONCLUSIONS The TIU-p can help predict pathological regression in advanced gastric cancer patients after neoadjuvant chemotherapy. In addition, the %ΔTIU-p could be one of the potentially valuable predictive parameters of the PFS time.
Collapse
Affiliation(s)
- Xiaoyuan Gao
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yang Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Fei Yuan
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Qianchen Ma
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenjie Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Jing Yan
- Siemens Medical System, Shanghai, 201318, China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Baisong Wang
- Department of Biological Statistics, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Martin Sedlmair
- Computed Tomography Research and Development, Siemens Healthcare GmbH, Forchheim, Germany
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Road, Shanghai, 200025, China.
| |
Collapse
|
31
|
How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol 2018; 29:2069-2078. [DOI: 10.1007/s00330-018-5736-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|
32
|
Liu H, Ji X, Ma Y, Du G, Fu Y, Abudureheman Y, Liu W. Quantitative characterization and diagnosis via hard X-ray phase-contrast microtomography. Microsc Res Tech 2018; 81:1173-1181. [PMID: 30238563 DOI: 10.1002/jemt.23114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/19/2018] [Indexed: 11/08/2022]
Abstract
Nondestructive three-dimensional (3D) micromorphological imaging technique is essential for hepatic alveolar echinococcosis (HAE) disease to determine its damage level and early diagnosis, assess relative drug therapy and optimize treatment strategies. However, the existing morphological researches of HAE mainly depend on the conventional CT, MRI, or ultrasound in hospitals, unfortunately confronting with the common limit of imaging resolution and sensitivity, especially for tiny or early HAE lesions. Now we presented a phase-retrieval-based synchrotron X-ray phase computed tomography (PR-XPCT) with striking contrast-to-noise ratio and high-density resolution to visualize the HAE nondestructive 3D structures and quantitatively segment different pathological characteristics of HAE lesions without staining process at the micrometer scale. Our experimental results of the HAE rat models at early and developed pathological stages and albendazole liposome (L-ABZ) therapeutic feeding models successfully exhibited the different HAE pathological 3D morphological and microstructural characteristics with excellent contrast and high resolution, demonstrating its availability and superiority. Moreover, we achieved the quantitative statistics and analysis of the pathological changes of HAE lesions at different stages and L-ABZ therapeutic evaluation, helpful to understanding the development and drug treatment of HAE disease. The PR-XPCT-based quantitative segmentation and characterization has a great potential in detection and analysis of soft tissue pathological changes, such as different tumors.
Collapse
Affiliation(s)
- Huiqiang Liu
- College of Medical Engineering and Technology, Xinjiang Medical University, China
| | - Xuewen Ji
- Hepatobiliary Surgery, First Affiliated Hospital, Xinjiang Medical University, China
| | - Yan Ma
- College of Medical Engineering and Technology, Xinjiang Medical University, China
| | - Guohao Du
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yanan Fu
- SSRF, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yibanu Abudureheman
- Imaging Center, First Affiliated Hospital, Xinjiang Medical University, China
| | - Wenya Liu
- Imaging Center, First Affiliated Hospital, Xinjiang Medical University, China
| |
Collapse
|
33
|
Zhang L, Wang N, Mao J, Liu X, Gao Z, Dai X, Feng B. Dual-Energy CT-Derived Volumetric Iodine Concentration for the Assessment of Therapeutic Response after Microwave Ablation in a Rabbit Model with Intrahepatic VX2 Tumor. J Vasc Interv Radiol 2018; 29:1455-1461. [PMID: 30217747 DOI: 10.1016/j.jvir.2018.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To evaluate whether changes in volumetric iodine concentration (VIC) could serve as a suitable predictor of therapeutic response to microwave (MW) ablation in a rabbit intrahepatic VX2 tumor model. MATERIALS AND METHODS Sixteen intrahepatic VX2 tumors were transplanted in 8 New Zealand White rabbits treated with MW ablation. Contrast-enhanced dual-energy CT scans were obtained at baseline and follow-up. Therapeutic response assessment by modified Response Evaluation Criteria In Solid Tumors (mRECIST), Choi criteria, and VIC changes was performed. An intraclass correlation coefficient (ICC) was used to characterize consistency of assessment results among the criteria used. Technical success was evaluated with explant pathologic findings as a reference. Correlations between technical success and variations in diameter, CT density, and VIC were analyzed. RESULTS Disease control was observed in 4, 8, and 10 of the 16 tumors per mRECIST, Choi criteria, and VIC changes, respectively. VIC exhibited strong consistency (ICC = 0.807, P < .0001) with Choi criteria. According to explant pathology, technical success was achieved in 10 of the 16 tumors. There was a moderate correlation between VIC changes and technical success (r = 0.532, P = .034), and no correlation was found between technical success and variations in diameter or CT density. CONCLUSIONS Compared with mRECIST and Choi criteria, dual-energy CT-derived VIC allowed for better prediction of therapeutic response after MW ablation and could provide a potential imaging biomarker of tumor response to MW ablation in patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China
| | - Na Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China
| | - Jingsong Mao
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China
| | - Xiaofei Liu
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China
| | - Zhichun Gao
- Department of Biological Technology, China Medical University-The Queen's University of Belfast Joint College, Shenyang, P.R. China
| | - Xu Dai
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China
| | - Bo Feng
- Department of Radiology, The First Affiliated Hospital of China Medical University, 155 Nanjingbei St., Shenyang, Liaoning 110001, P.R. China.
| |
Collapse
|
34
|
Vande Lune P, Abdel Aal AK, Klimkowski S, Zarzour JG, Gunn AJ. Hepatocellular Carcinoma: Diagnosis, Treatment Algorithms, and Imaging Appearance after Transarterial Chemoembolization. J Clin Transl Hepatol 2018; 6:175-188. [PMID: 29951363 PMCID: PMC6018317 DOI: 10.14218/jcth.2017.00045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/02/2017] [Accepted: 12/02/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death, with incidence increasing worldwide. Unfortunately, the overall prognosis for patients with HCC is poor and many patients present with advanced stages of disease that preclude curative therapies. Diagnostic and interventional radiologists play a key role in the management of patients with HCC. Diagnostic radiologists can use contrast-enhanced computed tomography (CT), magnetic resonance imaging, and ultrasound to diagnose and stage HCC, without the need for pathologic confirmation, by following established criteria. Once staged, the interventional radiologist can treat the appropriate patients with percutaneous ablation, transarterial chemoembolization, or radioembolization. Follow-up imaging after these liver-directed therapies for HCC can be characterized according to various radiologic response criteria; although, enhancement-based criteria, such as European Association for the Study of the Liver and modified Response Evaluation Criteria in Solid Tumors, are more reflective of treatment effect in HCC. Newer imaging technologies like volumetric analysis, dual-energy CT, cone beam CT and perfusion CT may provide additional benefits for patients with HCC.
Collapse
Affiliation(s)
- Patrick Vande Lune
- University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Ahmed K. Abdel Aal
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Klimkowski
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica G. Zarzour
- Division of Abdominal Imaging, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew J. Gunn
- Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
- *Correspondence to: Andrew J. Gunn, Division of Vascular and Interventional Radiology, Department of Radiology, University of Alabama at Birmingham, 619 19 St S, NHB 623, Birmingham, AL 35249, USA. Tel: +1-205-975-4850, Fax: +1-205-975-5257, E-mail:
| |
Collapse
|
35
|
Comparison of Iodine Density Measurement Among Dual-Energy Computed Tomography Scanners From 3 Vendors. Invest Radiol 2018; 53:321-327. [DOI: 10.1097/rli.0000000000000446] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
36
|
Accuracy of electron density, effective atomic number, and iodine concentration determination with a dual-layer dual-energy computed tomography system. Med Phys 2018; 45:2486-2497. [DOI: 10.1002/mp.12903] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/26/2018] [Accepted: 03/09/2018] [Indexed: 01/30/2023] Open
|
37
|
Bargellini I, Crocetti L, Turini FM, Lorenzoni G, Boni G, Traino AC, Caramella D, Cioni R. Response Assessment by Volumetric Iodine Uptake Measurement: Preliminary Experience in Patients with Intermediate-Advanced Hepatocellular Carcinoma Treated with Yttrium-90 Radioembolization. Cardiovasc Intervent Radiol 2018; 41:1373-1383. [PMID: 29654507 DOI: 10.1007/s00270-018-1962-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To retrospectively compare early response to yttrium-90 radioembolization (Y90) according to volumetric iodine uptake (VIU) changes, Response Evaluation Criteria In Solid Tumor 1.1 (RECIST 1.1) and modified RECIST (mRECIST) in patients with intermediate-advanced hepatocellular carcinoma (HCC) and to explore their association with survival. MATERIALS AND METHODS Twenty-four patients treated with Y90 and evaluated with dual-energy computed tomography before and 6 weeks after treatment were included. VIU was measured on late arterial phase spectral images; 6-week VIU response was defined as: complete response (CR, absence of enhancing tumor), partial response (PR, ≥ 15% VIU reduction), progressive disease (PD, ≥ 10% VIU increase) and stable disease (criteria of CR/PR/PD not met). RECIST 1.1 and mRECIST were evaluated at 6 weeks and 6 months. Responders included CR and PR. Overall survival (OS) was evaluated by Kaplan-Meier analysis and compared by Cox regression analysis. RESULTS High intraobserver and interobserver agreements were observed in VIU measurements (k > 0.98). VIU identified a higher number of responders (18 patients, 75%), compared to RECIST 1.1 (12.5% at 6 weeks and 23.8% at 6 months) and mRECIST (29.2% at 6 weeks and 61.9% at 6 months). There was no significant correlation between OS and RECIST 1.1 (P = 0.45 at 6 weeks; P = 0.21 at 6 months) or mRECIST (P = 0.38 at 6 weeks; P = 0.79 at 6 months); median OS was significantly higher in VIU responders (17.2 months) compared to non-responders (7.4 months) (P = 0.0022; HR 8.85; 95% CI 1.29-88.1). CONCLUSION VIU is highly reproducible; as opposite to mRECIST and RECIST 1.1, early VIU response correlates with OS after Y90 in intermediate-advanced HCC patients.
Collapse
Affiliation(s)
- Irene Bargellini
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy.
| | - Laura Crocetti
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy
| | - Francesca Maria Turini
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy
| | - Giulia Lorenzoni
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy
| | - Giuseppe Boni
- Department of Nuclear Medicine, Pisa University Hospital, Via Roma 55, 56126, Pisa, Italy
| | | | - Davide Caramella
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy
| | - Roberto Cioni
- Department of Diagnostic and Interventional Radiology, Pisa University Hospital, Via Paradisa 2, 56126, Pisa, Italy
| |
Collapse
|
38
|
Agostini A, Mahmood U, Erdi Y, Borgheresi A, Ragucci M, Sawan P, Ryan D, Laino ME, Corrias G, Mannelli L. Quantification of Iodine Concentration Using Single-Source Dual-Energy Computed Tomography in a Calf Liver. J Comput Assist Tomogr 2018; 42:222-229. [PMID: 29489589 PMCID: PMC5847415 DOI: 10.1097/rct.0000000000000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To evaluate the accuracy of single-source dual-energy computed tomography (ssDECT) in iodine quantification using various segmentation methods in an ex vivo model. METHODS Ten sausages, injected with variable quantities of iodinated contrast, were inserted into 2 livers and scanned with ssDECT. Material density iodine images were reconstructed. Three radiologists segmented each sausage. Iodine concentration, volume, and absolute quantity were measured. Agreement between the measured and injected iodine was assessed with the concordance correlation coefficient (CCC). Intrareader agreement was assessed using the intraclass correlation coefficient (ICC). RESULTS Air bubbles were observed in sausage (IX). Sausage (X) was within the same view as hyper-attenuating markers used for localization. With IX and X excluded, CCC and ICC were greater than 0.98 and greater than 0.88. When included, CCC and ICC were greater than 0.94 and greater than 0.79. CONCLUSIONS Iodine quantification was reproducible and precise. However, accuracy reduced in sausages consisting of air filled cavities and within the same view as hyperattenuating markers.
Collapse
Affiliation(s)
- Andreas Agostini
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Usman Mahmood
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Yusuf Erdi
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | | | | | - Peter Sawan
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Davinia Ryan
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Maria Elena Laino
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
- IRCCS SDN, Naples, Italy
| | - Giuseppe Corrias
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Radiology, University of Cagliari, via università 40, 09100 Cagliari Italy
| | - Lorenzo Mannelli
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
39
|
Mulé S, Pigneur F, Quelever R, Tenenhaus A, Baranes L, Richard P, Tacher V, Herin E, Pasquier H, Ronot M, Rahmouni A, Vilgrain V, Luciani A. Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma? Eur Radiol 2017; 28:1977-1985. [PMID: 29168007 DOI: 10.1007/s00330-017-5151-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To determine the degree of relationship between iodine concentrations derived from dual-energy CT (DECT) and perfusion CT parameters in patients with advanced HCC under treatment. METHODS In this single-centre IRB approved study, 16 patients with advanced HCC treated with sorafenib or radioembolization who underwent concurrent dynamic perfusion CT and multiphase DECT using a single source, fast kV switching DECT scanner were included. Written informed consent was obtained for all patients. HCC late-arterial and portal iodine concentrations, blood flow (BF)-related and blood volume (BV)-related perfusion parameters maps were calculated. Mixed-effects models of the relationship between iodine concentrations and perfusion parameters were computed. An adjusted p value (Bonferroni method) < 0.05 was considered significant. RESULTS Mean HCC late-arterial and portal iodine concentrations were 22.7±12.7 mg/mL and 18.7±8.3 mg/mL, respectively. Late-arterial iodine concentration was significantly related to BV (mixed-effects model F statistic (F)=28.52, p<0.0001), arterial BF (aBF, F=17.62, p<0.0001), hepatic perfusion index (F=28.24, p<0.0001), positive enhancement integral (PEI, F=66.75, p<0.0001) and mean slope of increase (F=32.96, p<0.0001), while portal-venous iodine concentration was mainly related to BV (F=29.68, p<0.0001) and PEI (F=66.75, p<0.0001). CONCLUSIONS In advanced HCC lesions, DECT-derived late-arterial iodine concentration is strongly related to both aBF and BV, while portal iodine concentration mainly reflects BV, offering DECT the ability to evaluate both morphological and perfusion changes. KEY POINTS • Late-arterial iodine concentration is highly related to arterial BF and BV. • Portal iodine concentration mainly reflects tumour blood volume. • Dual-energy CT offers significantly decreased radiation dose compared with perfusion CT.
Collapse
Affiliation(s)
- Sébastien Mulé
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.
| | - Frédéric Pigneur
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Ronan Quelever
- GE Healthcare, 283 rue de la Minière, 78530, Buc, France
| | - Arthur Tenenhaus
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, Orsay, France.,Biostatistics and bioinformatics core facility, Brain and Spine Institute, Paris, France
| | - Laurence Baranes
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | | | - Vania Tacher
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| | - Edouard Herin
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France
| | - Hugo Pasquier
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Maxime Ronot
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Rahmouni
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France
| | - Valérie Vilgrain
- Service de Radiologie, AP-HP, Hôpitaux Universitaires Paris Nord Val de Seine, Beaujon, 100 boulevard General Leclerc, 92118, Clichy, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,INSERM U1149, centre de recherche biomédicale Bichat-Beaujon, CRB3, Paris, France
| | - Alain Luciani
- Service d'Imagerie Médicale, AP-HP, Hôpitaux Universitaires Henri Mondor, 51 Avenue du Marechal de Lattre de Tassigny, 94010, Creteil Cedex, France.,Faculté de Médecine, Université Paris Est Creteil, Creteil, France.,, INSERM IMRB, U 955, Equipe 18, Creteil, France
| |
Collapse
|
40
|
Systematic radiation dose optimization of abdominal dual-energy CT on a second-generation dual-source CT scanner: assessment of the accuracy of iodine uptake measurement and image quality in an in vitro and in vivo investigations. Abdom Radiol (NY) 2017; 42:2562-2570. [PMID: 28470402 DOI: 10.1007/s00261-017-1160-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To assess the accuracy of iodine quantification in a phantom study at different radiation dose levels with dual-energy dual-source CT and to evaluate image quality and radiation doses in patients undergoing a single-energy and two dual-energy abdominal CT protocols. METHODS In a phantom study, the accuracy of iodine quantification (4.5-23.5 mgI/mL) was evaluated using the manufacturer-recommended and three dose-optimized dual-energy protocols. In a patient study, 75 abdomino-pelvic CT examinations were acquired as follows: 25 CT scans with the manufacturer-recommended dual-energy protocol (protocol A); 25 CT scans with a dose-optimized dual-energy protocol (protocol B); and 25 CT scans with a single-energy CT protocol (protocol C). CTDIvol and objective noise were measured. Five readers scored each scan according to six subjective image quality parameters (noise, contrast, artifacts, visibility of small structures, sharpness, overall diagnostic confidence). RESULTS In the phantom study, differences between the real and measured iodine concentrations ranged from -8.8% to 17.0% for the manufacturer-recommended protocol and from -1.6% to 20.5% for three dose-optimized protocols. In the patient study, the CTDIvol of protocol A, B, and C were 12.5 ± 1.9, 7.5 ± 1.2, and 6.5 ± 1.7 mGycm, respectively (p < 0.001), and the average image noise values were 6.6 ± 1.2, 7.8 ± 1.4, and 9.6 ± 2.2 HU, respectively (p < 0.001). No significant differences in the six subjective image quality parameters were observed between the dose-optimized dual-energy and the single-energy protocol. CONCLUSION A dose reduction of 41% is feasible for the manufacturer-recommended, abdominal dual-energy CT protocol, as it maintained the accuracy of iodine measurements and subjective image quality compared to a single-energy protocol.
Collapse
|
41
|
Chen X, Ren K, Liang P, Li J, Chen K, Gao J. Association between spectral computed tomography images and clinicopathological features in advanced gastric adenocarcinoma. Oncol Lett 2017; 14:6664-6670. [PMID: 29163693 PMCID: PMC5686525 DOI: 10.3892/ol.2017.7064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
To investigate the role of spectral computed tomography (CT)-generated iodine concentration (IC) in the evaluation of clinicopathological features of advanced gastric adenocarcinoma (AGC), 42 patients who underwent abdominal enhanced CT with spectral imaging mode were selected for the present study. The IC of the primary lesion in the arterial phase (ICAP) and portal venous phase (ICVP) was measured and the IC of the aorta was used for a normalized iodine concentration (nIC). Micro-vessel density (MVD) and lymphatic vessel density (LVD) were detected using immunohistochemical assays against cluster of differentiation 34 and D2-40, respectively. Other clinicopathological characteristics were also documented. The IC parameters were revealed to be significantly increased in the high-MVD group, particularly for the nICVP (P=0.002). Additionally, the nICAP revealed a significant difference (P=0.041) between the high- and low-LVD group. The nICAP and nICVP were increased in the poorly differentiated group compared with the moderately differentiated group (P=0.040 and P=0.011, respectively). The ICs and MVD demonstrated a statistically significant positive linear correlation. nICVP was able to be used to discriminate between the moderately and poorly differentiated carcinomas, with an area under the receiver operating characteristic curve of 0.759. However, IC demonstrated no correlation with serosal involvement, lymph node metastasis, LVD, and nodular or metastatic tumors. The results of the present study suggest that the nICVP value may serve as a non-invasive marker for the angiogenesis of, and the differentiations between, patients with AGC.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ke Ren
- Department of Gastroenterological Surgery, Luohe Central Hospital, Luohe, Henan 462000, P.R. China
| | - Pan Liang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jiayin Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
42
|
Parakh A, Baliyan V, Sahani DV. Dual-Energy CT in Focal and Diffuse Liver Disease. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Uhrig M, Simons D, Bonekamp D, Schlemmer HP. Improved detection of melanoma metastases by iodine maps from dual energy CT. Eur J Radiol 2017; 90:27-33. [PMID: 28583644 DOI: 10.1016/j.ejrad.2017.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/29/2016] [Accepted: 02/15/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Metastatic disease in melanoma has an unpredictable nature with deposits in rare locations such as musculature. Dual energy CT (DECT) provides high contrast-visualization of enhancement by using spectral properties of iodine. Purpose of this study was to evaluate whether iodine maps from DECT improve lesion detection in staging examinations of melanoma patients. METHODS This retrospective study was approved by IRB and written informed consent was obtained from all patients. 75 contrast-enhanced DECT scans (thorax and abdomen) from 75 melanoma patients (n=69 stage IV; n=6 stage III) were analysed. For each patient, conventional CT and iodine maps were reviewed independently by two radiologists. The number of lesions detected by reviewing the iodine maps following conventional CT was recorded. Unweighted Cohens Kappa coefficient (κ) was used for concordance analysis, Wilcoxon test for comparing lesion detection rates. RESULTS In 26 patients, at least one reader found additional lesions on iodine maps (inter-reader agreement 89%, κ=0.74 (0.742-0.747)). Compared to grey-scale images, mean detection rate for metastases improved from 86% (range 82-90) to 94% (90-99%) (p≤0.01), for muscle metastases from 8% (8-8%) to 99% (98-100%) (p≤0.06). Findings included 2 pulmonary emboli. CONCLUSION Iodine maps from DECT improve detection of metastases, especially muscle metastases, and relevant findings in staging examinations of melanoma patients.
Collapse
Affiliation(s)
- Monika Uhrig
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.
| | - David Simons
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - David Bonekamp
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- German Cancer Research Center (DKFZ), Department of Radiology, Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany
| |
Collapse
|
44
|
White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 4: Abdominal and Pelvic Applications. J Comput Assist Tomogr 2017; 41:8-14. [PMID: 27824670 DOI: 10.1097/rct.0000000000000546] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This is the fourth of a series of 4 white papers that represent expert consensus documents developed by the Society of Computed Body Tomography and Magnetic Resonance through its task force on dual-energy computed tomography. This article, part 4, discusses DECT for abdominal and pelvic applications and, at the end of each, will offer our consensus opinions on the current clinical utility of the application and opportunities for further research.
Collapse
|
45
|
Altenbernd J, Wetter A, Forsting M, Umutlu L. Dual-energy CT of liver metastases in patients with uveal melanoma. Eur J Radiol Open 2016; 3:254-258. [PMID: 27830163 PMCID: PMC5094679 DOI: 10.1016/j.ejro.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/22/2016] [Indexed: 01/08/2023] Open
Abstract
Objective To investigate the value of different kVp images of dual-energy CT (DECT) for the detection of liver metastases. Methods 20 Patients with uveal melanoma were investigated with DECT of the liver. In each patient contrast-enhanced DECT imaging with arterial delay was performed. Number and size of metastases were documented on arterial phase 80-kVp images, virtual 120-kVp images and following angiographic images (DSA) as part of hepatic chemoperfusion. Attenuation of metastases and several anatomic regions, subjective (image noise, image quality) and objective (SNR, CNR) parameters were documented. Results The mean number of liver metastases detected was significant higher on 80-kVp images than on virtual 120-kVp/DSA images (5.6 ± 2.1 vs. 4.1 ± 1.8/4.3 ± 1.6); (p < 0.001). All lesions sizes were significant better detected with 80 kVp images than with virtual 120 kVp and DSA-Images (80 kVp vs. 120 kVp: <10 mm: 34 vs. 19, p < 0.05; 10–20 mm:, 33 vs. 25, p < 0.05; >20 mm: 56 vs. 42, p < 0.05/80 kVp vs. DSA: <10 mm: 34 vs. 18 p < 0.05; 10–20 mm: 33 vs. 24, p < 0.05; >20 mm: 56 vs. 41, p < 0.05). Number of detected small lesions <10 mm with 120 kVp compared to DSA-images were significant higher (19 vs. 13; p < 0.05), lesions 10–20 mm and >20 mm were measured statistically equally. Noise, SNR and CNR of 80 kVp images were higher compared to 120 kVp images. Image quality of 120 kVp images was higher compared to 80 kVp images. Conclusion Low-kVp images of DECT datasets are more sensitive in detecting liver metastases of patients with uveal melanoma than virtual 120 kVp- and DSA images.
Collapse
Affiliation(s)
- Jens Altenbernd
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Axel Wetter
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| |
Collapse
|
46
|
Hellbach K, Sterzik A, Sommer W, Karpitschka M, Hummel N, Casuscelli J, Ingrisch M, Schlemmer M, Graser A, Staehler M. Dual energy CT allows for improved characterization of response to antiangiogenic treatment in patients with metastatic renal cell cancer. Eur Radiol 2016; 27:2532-2537. [PMID: 27678131 DOI: 10.1007/s00330-016-4597-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To evaluate the potential role of dual energy CT (DECT) to visualize antiangiogenic treatment effects in patients with metastatic renal cell cancer (mRCC) while treated with tyrosine-kinase inhibitors (TKI). METHODS 26 patients with mRCC underwent baseline and follow-up single-phase abdominal contrast enhanced DECT scans. Scans were performed immediately before and 10 weeks after start of treatment with TKI. Virtual non-enhanced (VNE) and colour coded iodine images were generated. 44 metastases were measured at the two time points. Hounsfield unit (HU) values for VNE and iodine density (ID) as well as iodine content (IC) in mg/ml of tissue were derived. These values were compared to the venous phase DECT density (CTD) of the lesions. Values before and after treatment were compared using a paired Student's t test. RESULTS Between baseline and follow up, mean CTD and DECT-derived ID both showed a significant reduction (p < 0.005). The relative reduction measured in percent was significantly greater for ID than for CTD (49.8 ± 36,3 % vs. 29.5 ± 20.8 %, p < 0.005). IC was also significantly reduced under antiangiogenic treatment (p < 0.0001). CONCLUSIONS Dual energy CT-based quantification of iodine content of mRCC metastases allows for significantly more sensitive and reproducible detection of antiangiogenic treatment effects. KEY POINTS • A sign of tumour response to antiangiogenic treatment is reduced tumour perfusion. • DECT allows visualizing iodine uptake, which serves as a marker for vascularization. • More sensitive detection of antiangiogenic treatment effects in mRCC is possible.
Collapse
Affiliation(s)
- K Hellbach
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - A Sterzik
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - W Sommer
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - M Karpitschka
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - N Hummel
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - J Casuscelli
- Department of Urology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - M Ingrisch
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - M Schlemmer
- Department of Palliative Care, Krankenhaus Barmherzige Brüder München, Romanstr. 93, 80639, München, Germany
| | - A Graser
- Department of Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany
| | - Michael Staehler
- Department of Urology, Ludwig-Maximilians-University Hospital Munich, Marchioninistr. 15, 81377, München, Germany.
| |
Collapse
|
47
|
Altenbernd J, Wetter A, Forsting M, Umutlu L. Treatment response after radioembolisation in patients with hepatocellular carcinoma-An evaluation with dual energy computed-tomography. Eur J Radiol Open 2016; 3:230-5. [PMID: 27622200 PMCID: PMC5009187 DOI: 10.1016/j.ejro.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of this prospective study was to examine the diagnostic value of dual-energy CT (DECT) in the assessment of response of HCC after radioembolisation (RE). MATERIAL AND METHODS 40 HCC patients with 82 measurable target lesions were included in this study. At baseline and follow-up examination target lesions were evaluated with (IU), AASLD and Choi measurement criteria. Disease control was defined as the sum of complete response (CR), partial response (PR), progression disease (PD) and stable disease (SD). RESULTS With Choi and IU more patients were considered than PR and less than PD and SD. According to AASLD more patients were measured as SD and PD than PR. 26/40 patients were classified as PR with IU. In contrast measurements with AASLD in only 8/26 patients were also classified as PR. 6/12 SD patients measured with IU were measured as PD with AASLD. 4/26 patients classified with IU as PR were described as SD with CHOI, 10/14 SD patients measured with CHOI were SD according to IU, the other 4 patients were PR with IU. 2/4 PD patients according to CHOI were SD with IU. CONCLUSION More patients by IU were classified as SD versus PD and PR versus SD. We attribute this to the more detailed consideration of the HU differences between the virtual native and contrast-enhanced series generated by DECT. Iodine uptake (IU) in HCC measured and visualized with DECT is a promising imaging method for the assessment of treatment response after radioembolisations. KEY POINTS -dual energy CT of hypervascular tumors such as HCC allows to quantify contrast enhancement without native imaging. -this can be used to evaluate the therapy response after Radioembolization.
Collapse
Affiliation(s)
- Jens Altenbernd
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | | | | | | |
Collapse
|
48
|
Applications of dual energy computed tomography in abdominal imaging. Diagn Interv Imaging 2016; 97:593-603. [DOI: 10.1016/j.diii.2015.11.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/03/2015] [Accepted: 11/14/2015] [Indexed: 11/17/2022]
|
49
|
Jiang Y, Li J, Wang J, Xiao H, Li T, Liu H, Liu W. Assessment of Vascularity in Hepatic Alveolar Echinococcosis: Comparison of Quantified Dual-Energy CT with Histopathologic Parameters. PLoS One 2016; 11:e0149440. [PMID: 26901164 PMCID: PMC4762698 DOI: 10.1371/journal.pone.0149440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/31/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate whether dual-energy computer tomography(DECT) could determine the angiographic vascularity of alveolar echinococcosis lesions by comparing the quantitative iodine concentration (IC) with the microvascular density (MVD). Material and Methods Twenty-five patients (16 men, 9 women; mean age, 40.9 ± 13.8 years) with confirmed hepatic alveolar echinococcosis (HAE) underwent DECT of the abdomen, consisting of arterial phase (AP), portal venous phase (PVP), and delayed phase (DP) scanning, in dual-source mode (100 kV/140 kV). Image data were processed with a DECT software algorithm that was designed for the evaluation of iodine distribution in the different layers (marginal zone, solid and cystic) of the lesions. The CT patterns of HAE lesions were classified into three types: solid type, pseudocystic type and ‘geographic map’ (mixed) type. The IC measurements in different layers and different types of lesions were statistically compared. MVD was examined using CD34 immunohistochemical staining of the resected HAE tissue and scored based on the percentage of positively stained cells and their intensity. Pearson’s correlation analysis was used to evaluate the potential correlation between DECT parameters and MVD. Results A total of 27 HAE lesions were evaluated, of which 9 were solid type, 3 were pseudocystic type and 15 were mixed type. The mean lesion size was 100.7 ± 47.3 mm. There was a significant difference in the IC measurements between different layers of HAE lesions during each scan phase (p < 0.001). The IC in the marginal zone was significantly higher than in the solid and cystic components in AP (2.15 mg/mL vs. 0.17 or 0.01 mg/mL), PVP (3.08 mg/mL vs. 0.1 or 0.02 mg/mL), and DP (2.93 mg/mL vs. 0.04 or 0.02 mg/mL). No significant difference was found among the different CT patterns of HAE lesions. Positive expression of CD34 in the marginal zones surrounding HAE lesions was found in 92.5% (25/27) of lesions, of which 18.5% (5/27) were strongly positive, 62.7% (17/27) were moderately positive, and 11.1% (3/27) were weakly positive. In contrast, 7.4% (2/27) of the lesions were negative for CD34. There was a positive correlation between IC measurements and MVD in the marginal zone of HAE lesions (r = 0.73, p < 0.05). Conclusions The DECT quantitative iodine concentration was significantly correlated with MVD in the marginal zones surrounding HAE lesions. Dual-energy CT using a quantitative analytic methodology can be used to evaluate the vascularity of AE.
Collapse
Affiliation(s)
- Yi Jiang
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jiaqi Li
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Wang
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hu Xiao
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Li
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Liu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenya Liu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
50
|
Gordic S, Puippe GD, Krauss B, Klotz E, Desbiolles L, Lesurtel M, Müllhaupt B, Pfammatter T, Alkadhi H. Correlation between Dual-Energy and Perfusion CT in Patients with Hepatocellular Carcinoma. Radiology 2016; 280:78-87. [PMID: 26824712 DOI: 10.1148/radiol.2015151560] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose To develop a dual-energy contrast media-enhanced computed tomographic (CT) protocol by using time-attenuation curves from previously acquired perfusion CT data and to evaluate prospectively the relationship between iodine enhancement metrics at dual-energy CT and perfusion CT parameters in patients with hepatocellular carcinoma (HCC). Materials and Methods Institutional review board and local ethics committee approval and written informed consent were obtained. The retrospective part of this study included the development of a dual-energy CT contrast-enhanced protocol to evaluate peak arterial enhancement of HCC in the liver on the basis of time-attenuation curves from previously acquired perfusion CT data in 20 patients. The prospective part of the study consisted of an intraindividual comparison of dual-energy CT and perfusion CT data in another 20 consecutive patients with HCC. Iodine density and iodine ratio (iodine attenuation of the lesion divided by iodine attenuation in the aorta) from dual-energy CT and arterial perfusion (AP), portal venous perfusion, and total perfusion (TP) from perfusion CT were compared. Pearson R and linear correlation coefficients were calculated for AP and iodine density, AP and iodine ratio, TP and iodine density, and TP and iodine ratio. Results The dual-energy CT protocol consisted of bolus tracking in the abdominal aorta (threshold, 150 HU; scan delay, 9 seconds). The strongest intraindividual correlations in HCCs were found between iodine density and AP (r = 0.75, P = .0001). Moderate correlations were found between iodine ratio and AP (r = 0.50, P = .023) and between iodine density and TP (r = 0.56, P = .011). No further significant correlations were found. The volume CT dose index (11.4 mGy) and dose-length product (228.0 mGy · cm) of dual-energy CT was lower than those of the arterial phase of perfusion CT (36.1 mGy and 682.3 mGy · cm, respectively). Conclusion A contrast-enhanced dual-energy CT protocol developed by using time-attenuation curves from previously acquired perfusion CT data sets in patients with HCC could show good correlation between iodine density from dual-energy CT with AP from perfusion CT. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Sonja Gordic
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Gilbert D Puippe
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Bernhard Krauss
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Ernst Klotz
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Lotus Desbiolles
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Mickaël Lesurtel
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Beat Müllhaupt
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Thomas Pfammatter
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology (S.G., G.P., T.P., H.A.), Department of Surgery, Swiss Hepato-Pancreatico-Biliary and Transplantation Center (M.L.), and Department of Hepatology and Gastroenterology (B.M.), University Hospital Zurich, University of Zurich, Raemistrasse 100, Zurich 8091, Switzerland; Computed Tomography Division, Siemens Healthcare, Forchheim, Germany (B.K., E.K.); and Division of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland (L.D.)
| |
Collapse
|