1
|
D'hondt L, Franck C, Kellens PJ, Zanca F, Buytaert D, Van Hoyweghen A, Addouli HE, Carpentier K, Niekel M, Spinhoven M, Bacher K, Snoeckx A. Impact of deep learning image reconstruction on volumetric accuracy and image quality of pulmonary nodules with different morphologies in low-dose CT. Cancer Imaging 2024; 24:60. [PMID: 38720391 PMCID: PMC11080267 DOI: 10.1186/s40644-024-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND This study systematically compares the impact of innovative deep learning image reconstruction (DLIR, TrueFidelity) to conventionally used iterative reconstruction (IR) on nodule volumetry and subjective image quality (IQ) at highly reduced radiation doses. This is essential in the context of low-dose CT lung cancer screening where accurate volumetry and characterization of pulmonary nodules in repeated CT scanning are indispensable. MATERIALS AND METHODS A standardized CT dataset was established using an anthropomorphic chest phantom (Lungman, Kyoto Kaguku Inc., Kyoto, Japan) containing a set of 3D-printed lung nodules including six diameters (4 to 9 mm) and three morphology classes (lobular, spiculated, smooth), with an established ground truth. Images were acquired at varying radiation doses (6.04, 3.03, 1.54, 0.77, 0.41 and 0.20 mGy) and reconstructed with combinations of reconstruction kernels (soft and hard kernel) and reconstruction algorithms (ASIR-V and DLIR at low, medium and high strength). Semi-automatic volumetry measurements and subjective image quality scores recorded by five radiologists were analyzed with multiple linear regression and mixed-effect ordinal logistic regression models. RESULTS Volumetric errors of nodules imaged with DLIR are up to 50% lower compared to ASIR-V, especially at radiation doses below 1 mGy and when reconstructed with a hard kernel. Also, across all nodule diameters and morphologies, volumetric errors are commonly lower with DLIR. Furthermore, DLIR renders higher subjective IQ, especially at the sub-mGy doses. Radiologists were up to nine times more likely to score the highest IQ-score to these images compared to those reconstructed with ASIR-V. Lung nodules with irregular margins and small diameters also had an increased likelihood (up to five times more likely) to be ascribed the best IQ scores when reconstructed with DLIR. CONCLUSION We observed that DLIR performs as good as or even outperforms conventionally used reconstruction algorithms in terms of volumetric accuracy and subjective IQ of nodules in an anthropomorphic chest phantom. As such, DLIR potentially allows to lower the radiation dose to participants of lung cancer screening without compromising accurate measurement and characterization of lung nodules.
Collapse
Affiliation(s)
- L D'hondt
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium.
- Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | - C Franck
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - P-J Kellens
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - F Zanca
- Center of Medical Physics in Radiology, Leuven University, University Hospitals Leuven, Herestraat 49, Leuven, Belgium
| | - D Buytaert
- Cardiovascular Research Center, OLV Ziekenhuis Aalst, Moorselbaan 164, Aalst, Belgium
| | - A Van Hoyweghen
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - H El Addouli
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - K Carpentier
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - M Niekel
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - M Spinhoven
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - K Bacher
- Department of Human structure and repair, Faculty of Medicine and Health Sciences, Ghent University, Proeftuinstraat 86, 9000, Ghent, Belgium
| | - A Snoeckx
- Faculty of Medicine, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium
- Department of Radiology, Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| |
Collapse
|
2
|
Guedes Pinto E, Penha D, Ravara S, Monaghan C, Hochhegger B, Marchiori E, Taborda-Barata L, Irion K. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14:152. [PMID: 37741928 PMCID: PMC10517915 DOI: 10.1186/s13244-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 09/25/2023] Open
Abstract
Health systems worldwide are implementing lung cancer screening programmes to identify early-stage lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and outperforms other measurement methods. However, volumetry is known to be influenced by multiple factors. The objectives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding factors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of studies testing for clinical significance. CRITICAL RELEVANCE STATEMENT: Many studies have investigated the influencing factors of pulmonary nodule volumetry, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these studies presents a challenge in consolidating results and clinical application of the evidence. KEY POINTS: • Factors influencing the volumetry of pulmonary nodules have been extensively investigated. • Just 11% of studies test clinical significance (wrongly diagnosing growth). • Nodule size interacts with most other influencing factors (especially for smaller nodules). • Heterogeneity among studies makes comparison and consolidation of results challenging. • Future research should focus on clinical applicability, screening, and updated technology.
Collapse
Affiliation(s)
- Erique Guedes Pinto
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal.
| | - Diana Penha
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | - Sofia Ravara
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | | | - Edson Marchiori
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Bloco K - Av. Carlos Chagas Filho, 373 - 2º Andar, Sala 49 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro - RJ, 21044-020, Brasil
- Faculdade de Medicina, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303 - Centro, Niterói - RJ, 24220-000, Brasil
| | - Luís Taborda-Barata
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| |
Collapse
|
3
|
Watanabe S, Sakaguchi K, Kitaguchi S, Ishii K. Pulmonary nodule volumetric accuracy of a deep learning-based reconstruction algorithm in low-dose computed tomography: A phantom study. Phys Med 2022; 104:1-9. [PMID: 36347080 DOI: 10.1016/j.ejmp.2022.10.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/14/2022] [Accepted: 10/29/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To compare the image properties and pulmonary nodule volumetric accuracies among deep learning-based reconstruction (DLR), filtered back projection (FBP), and hybrid iterative reconstruction (hybrid IR) in low-dose computed tomography (LDCT). METHODS A multipurpose chest phantom containing artificial spherical pulmonary nodules with 5-, 8-, 10-, and 12-mm diameters and Hounsfield units (HUs) of -630 and +100 HU was scanned 20 times at a standard dose, based on a low-dose screening CT trial, and at 1/2, 1/6, and 1/12 of the standard dose. To assess noise reduction performance and volumetric accuracy, the standard deviations (SDs) of the pixel values and volumetric percentage errors (PEs) were compared among FBP, hybrid IR, and DLR. The noise non-stationarity index (NNSI) was calculated from 20 image replicates and compared among FBP, hybrid IR, and DLR to evaluate noise stationarity. RESULTS The SD reduction rates for FBP in hybrid IR and DLR were 62 %-85 % and 79 %-90 %, respectively. For the four nodules with +100 HU, the PE of all reconstruction methods was <±25 % (not clinically relevant). For the four nodules with -630 HU, the PEs were equivalent or lower for hybrid IR and DLR than for FBP, and the PE difference between hybrid IR and DLR ranged from 0 % to 7%. The NNSI was significantly higher for DLR than for FBP and hybrid IR (p < 0.01). CONCLUSIONS Greater noise suppression was achieved with DLR than with hybrid IR without compromising nodule volumetric accuracy in LDCT despite the representative noise non-stationarity.
Collapse
Affiliation(s)
- Shota Watanabe
- Division of Positron Emission Tomography, Institute of Advanced Clinical Medicine, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan; Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan.
| | - Kenta Sakaguchi
- Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan.
| | - Shigetoshi Kitaguchi
- Radiology Center, Kindai University Hospital, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan.
| | - Kazunari Ishii
- Department of Radiology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
4
|
Kim C, Kwack T, Kim W, Cha J, Yang Z, Yong HS. Accuracy of two deep learning-based reconstruction methods compared with an adaptive statistical iterative reconstruction method for solid and ground-glass nodule volumetry on low-dose and ultra-low-dose chest computed tomography: A phantom study. PLoS One 2022; 17:e0270122. [PMID: 35737734 PMCID: PMC9223620 DOI: 10.1371/journal.pone.0270122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/04/2022] [Indexed: 11/19/2022] Open
Abstract
No published studies have evaluated the accuracy of volumetric measurement of solid nodules and ground-glass nodules on low-dose or ultra-low-dose chest computed tomography, reconstructed using deep learning-based algorithms. This is an important issue in lung cancer screening. Our study aimed to investigate the accuracy of semiautomatic volume measurement of solid nodules and ground-glass nodules, using two deep learning-based image reconstruction algorithms (Truefidelity and ClariCT.AI), compared with iterative reconstruction (ASiR-V) in low-dose and ultra-low-dose settings. We performed computed tomography scans of solid nodules and ground-glass nodules of different diameters placed in a phantom at four radiation doses (120 kVp/220 mA, 120 kVp/90 mA, 120 kVp/40 mA, and 80 kVp/40 mA). Each scan was reconstructed using Truefidelity, ClariCT.AI, and ASiR-V. The solid nodule and ground-glass nodule volumes were measured semiautomatically. The gold-standard volumes could be calculated using the diameter since all nodule phantoms are perfectly spherical. Subsequently, absolute percentage measurement errors of the measured volumes were calculated. Image noise was also calculated. Across all nodules at all dose settings, the absolute percentage measurement errors of Truefidelity and ClariCT.AI were less than 11%; they were significantly lower with Truefidelity or ClariCT.AI than with ASiR-V (all P<0.05). The absolute percentage measurement errors for the smallest solid nodule (3 mm) reconstructed by Truefidelity or ClariCT.AI at all dose settings were significantly lower than those of this nodule reconstructed by ASiR-V (all P<0.05). Furthermore, the lowest absolute percentage measurement errors for ground-glass nodules were observed with Truefidelity or ClariCT.AI at all dose settings. The absolute percentage measurement errors for ground-glass nodules reconstructed with Truefidelity at ultra-low-dose settings were significantly lower than those of all sizes of ground-glass nodules reconstructed with ASiR-V (all P<0.05). Image noise was lowest with Truefidelity (all P<0.05). In conclusion, the deep learning-based algorithms were more accurate for volume measurements of both solid nodules and ground-glass nodules than ASiR-V at both low-dose and ultra-low-dose settings.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, South Korea
| | - Thomas Kwack
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, South Korea
| | - Wooil Kim
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, United States of America
| | - Jaehyung Cha
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, South Korea
| | - Zepa Yang
- Biomedical Research Center, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hwan Seok Yong
- Department of Radiology, Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Au C, Reeves R, Li Z, Gingold E, Halpern E, Sundaram B. Impact of multidetector computed tomography scan parameters, novel reconstruction settings, and lung nodule characteristics on nodule diameter measurements: A Phantom Study. Med Phys 2022; 49:3936-3943. [PMID: 35358333 DOI: 10.1002/mp.15639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022] Open
Abstract
PURPOSE Novel CT reconstruction techniques strive to maintain image quality and processing efficiency. The purpose of this study is to investigate the impact of a newer hybrid iterative reconstruction technique, Adaptive Statistical Iterative Reconstruction-V (ASIR-V) in combination with various CT scan parameters on the semi-automated quantification using various lung nodules. METHODS A chest phantom embedded with eight spherical objects was scanned using varying CT parameters such as tube current and ASIR-V levels. We calculated absolute percentage error (APE) and mean APE (MAPE) using differences between the semi-automated measured diameters and known dimensions. Predictive variables were assessed using a multivariable general linear model. The linear regression slope coefficients (β) were reported to demonstrate effect size and directionality. RESULTS The APE of the semi-automated measured diameters was higher in ground-glass than solid nodules (β = 9.000, p<0.001). APE had an inverse relationship with nodule diameter (mm; β = -3.499, p<0.001) and tube current (mA; β = -0.006, p<0.001). MAPE did not vary based on the ASIR-V level (range: 5.7-13.1%). CONCLUSION Error is dominated by nodule characteristics with a small effect of tube current. Regardless of phantom size, nodule size accuracy is not affected by tube voltage or ASIR-V level, maintaining accuracy while maximizing radiation dose reduction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cherry Au
- Department of Internal Medicine, Rush University Medical Center, 1620 W Harrison St, Chicago, IL, 60612
| | - Russell Reeves
- Department of Radiology, Thomas Jefferson University Hospital, 111 S 11th St, Philadelphia, PA, 19107
| | - Zhenteng Li
- Department of Radiology, Thomas Jefferson University Hospital, 111 S 11th St, Philadelphia, PA, 19107.,The Vascular Center, St. Luke's Anderson Campus - Medical Office Building, 1700 St. Luke's Boulevard, Suite 301, Easton, PA
| | - Eric Gingold
- Department of Radiology, Thomas Jefferson University Hospital, 111 S 11th St, Philadelphia, PA, 19107
| | - Ethan Halpern
- Department of Radiology, Thomas Jefferson University Hospital, 111 S 11th St, Philadelphia, PA, 19107
| | - Baskaran Sundaram
- Department of Radiology, Thomas Jefferson University Hospital, 111 S 11th St, Philadelphia, PA, 19107
| |
Collapse
|
6
|
Mikayama R, Shirasaka T, Kojima T, Sakai Y, Yabuuchi H, Kondo M, Kato T. Deep-learning reconstruction for ultra-low-dose lung CT: Volumetric measurement accuracy and reproducibility of artificial ground-glass nodules in a phantom study. Br J Radiol 2022; 95:20210915. [PMID: 34908478 PMCID: PMC8822562 DOI: 10.1259/bjr.20210915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES The lung nodule volume determined by CT is used for nodule diagnoses and monitoring tumor responses to therapy. Increased image noise on low-dose CT degrades the measurement accuracy of the lung nodule volume. We compared the volumetric accuracy among deep-learning reconstruction (DLR), model-based iterative reconstruction (MBIR), and hybrid iterative reconstruction (HIR) at an ultra-low-dose setting. METHODS Artificial ground-glass nodules (6 mm and 10 mm diameters, -660 HU) placed at the lung-apex and the middle-lung field in chest phantom were scanned by 320-row CT with the ultra-low-dose setting of 6.3 mAs. Each scan data set was reconstructed by DLR, MBIR, and HIR. The volumes of nodules were measured semi-automatically, and the absolute percent volumetric error (APEvol) was calculated. The APEvol provided by each reconstruction were compared by the Tukey-Kramer method. Inter- and intraobserver variabilities were evaluated by a Bland-Altman analysis with limits of agreements. RESULTS DLR provided a lower APEvol compared to MBIR and HIR. The APEvol of DLR (1.36%) was significantly lower than those of the HIR (8.01%, p = 0.0022) and MBIR (7.30%, p = 0.0053) on a 10-mm-diameter middle-lung nodule. DLR showed narrower limits of agreement compared to MBIR and HIR in the inter- and intraobserver agreement of the volumetric measurement. CONCLUSIONS DLR showed higher accuracy compared to MBIR and HIR for the volumetric measurement of artificial ground-glass nodules by ultra-low-dose CT. ADVANCES IN KNOWLEDGE DLR with ultra-low-dose setting allows a reduction of dose exposure, maintaining accuracy for the volumetry of lung nodule, especially in patients which deserve a long-term follow-up.
Collapse
Affiliation(s)
- Ryoji Mikayama
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Takashi Shirasaka
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | | | - Yuki Sakai
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Kondo
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| | - Toyoyuki Kato
- Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
7
|
Jungblut L, Blüthgen C, Polacin M, Messerli M, Schmidt B, Euler A, Alkadhi H, Frauenfelder T, Martini K. First Performance Evaluation of an Artificial Intelligence-Based Computer-Aided Detection System for Pulmonary Nodule Evaluation in Dual-Source Photon-Counting Detector CT at Different Low-Dose Levels. Invest Radiol 2022; 57:108-114. [PMID: 34324462 DOI: 10.1097/rli.0000000000000814] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the image quality (IQ) and performance of an artificial intelligence (AI)-based computer-aided detection (CAD) system in photon-counting detector computed tomography (PCD-CT) for pulmonary nodule evaluation at different low-dose levels. MATERIALS AND METHODS An anthropomorphic chest-phantom containing 14 pulmonary nodules of different sizes (range, 3-12 mm) was imaged on a PCD-CT and on a conventional energy-integrating detector CT (EID-CT). Scans were performed with each of the 3 vendor-specific scanning modes (QuantumPlus [Q+], Quantum [Q], and High Resolution [HR]) at decreasing matched radiation dose levels (volume computed tomography dose index ranging from 1.79 to 0.31 mGy) by adapting IQ levels from 30 to 5. Image noise was measured manually in the chest wall at 8 different locations. Subjective IQ was evaluated by 2 readers in consensus. Nodule detection and volumetry were performed using a commercially available AI-CAD system. RESULTS Subjective IQ was superior in PCD-CT compared with EID-CT (P < 0.001), and objective image noise was similar in the Q+ and Q-mode (P > 0.05) and superior in the HR-mode (PCD 55.8 ± 11.7 HU vs EID 74.8 ± 5.4 HU; P = 0.01). High resolution showed the lowest image noise values among PCD modes (P = 0.01). Overall, the AI-CAD system delivered comparable results for lung nodule detection and volumetry between PCD- and dose-matched EID-CT (P = 0.08-1.00), with a mean sensitivity of 95% for PCD-CT and of 86% for dose-matched EID-CT in the lowest evaluated dose level (IQ5). Q+ and Q-mode showed higher false-positive rates than EID-CT at lower-dose levels (IQ10 and IQ5). The HR-mode showed a sensitivity of 100% with a false-positive rate of 1 even at the lowest evaluated dose level (IQ5; CDTIvol, 0.41 mGy). CONCLUSIONS Photon-counting detector CT was superior to dose-matched EID-CT in subjective IQ while showing comparable to lower objective image noise. Fully automatized AI-aided nodule detection and volumetry are feasible in PCD-CT, but attention has to be paid to false-positive findings.
Collapse
Affiliation(s)
- Lisa Jungblut
- From the Institute of Diagnostic and Interventional Radiology
| | | | | | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Andre Euler
- From the Institute of Diagnostic and Interventional Radiology
| | - Hatem Alkadhi
- From the Institute of Diagnostic and Interventional Radiology
| | | | | |
Collapse
|
8
|
Blazis SP, Dickerscheid DBM, Linsen PVM, Martins Jarnalo CO. Effect of CT reconstruction settings on the performance of a deep learning based lung nodule CAD system. Eur J Radiol 2021; 136:109526. [PMID: 33453573 DOI: 10.1016/j.ejrad.2021.109526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE To study the effect of different reconstruction parameter settings on the performance of a commercially available deep learning based pulmonary nodule CAD system. MATERIALS AND METHODS We performed a retrospective analysis of 24 chest CT scans, reconstructed at 16 different reconstruction settings for two different iterative reconstruction algorithms (SAFIRE and ADMIRE) varying in slice thickness, kernel size and iterative reconstruction level strength using a commercially available deep learning pulmonary nodule CAD system. The DL-CAD software was evaluated at 25 different sensitivity threshold settings and nodules detected by the DL-CAD software were matched against a reference standard based on the consensus reading of three radiologists. RESULTS A total of 384 CT reconstructions was analysed from 24 patients, resulting in a total of 5786 found nodules. We matched the detected nodules against the reference standard, defined by a team of thoracic radiologists, and showed a gradual drop in recall, and an improvement in precision when the iterative strength levels were increased for a constant kernel size. The optimal DL-CAD threshold setting for use in our clinical workflow was found to be 0.88 with an F2 of 0.73 ± 0.053. CONCLUSIONS The DL-CAD system behaves differently on IR data than on FBP data, there is a gradual drop in recall, and growth in precision when the iterative strength levels are increased. As a result, caution should be taken when implementing deep learning software in a hospital with multiple CT scanners and different reconstruction protocols. To the best of our knowledge, this is the first study that demonstrates this result from a DL-CAD system on clinical data.
Collapse
Affiliation(s)
- Stephan P Blazis
- Department of Clinical Physics, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands.
| | | | - Philip V M Linsen
- Department of Radiology, Albert Schweitzer Ziekenhuis, Dordrecht, the Netherlands
| | | |
Collapse
|
9
|
Niu Y, Huang S, Zhang H, Li S, Li X, Lv Z, Yan S, Fan W, Zhai Y, Wong E, Wang K, Zhang Z, Chen B, Xie R, Xian J. Optimization of imaging parameters in chest CT for COVID-19 patients: an experimental phantom study. Quant Imaging Med Surg 2021; 11:380-391. [PMID: 33392037 DOI: 10.21037/qims-20-603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background With the global outbreak of coronavirus disease 2019 (COVID-19), chest computed tomography (CT) is vital for diagnosis and follow-up. The increasing contribution of CT to the population-collected dose has become a topic of interest. Radiation dose optimization for chest CT of COVID-19 patients is of importance in clinical practice. The present study aimed to investigate the factors affecting the detection of ground-glass nodules and exudative lesions in chest CT among COVID-19 patients and to find an appropriate combination of imaging parameters that optimize detection while effectively reducing the radiation dose. Methods The anthropomorphic thorax phantom, with 9 spherical nodules of different diameters and CT values of -800, -630, and 100 HU, was used to simulate the lesions of COVID-19 patients. Four custom-simulated lesions of porcine fat and ethanol were also scanned at 3 tube potentials (120, 100, and 80 kV) and corresponding milliampere-seconds (mAs) (ranging from 10 to 100). Separate scans were performed at pitches of 0.6, 0.8, 1.0, 1.15, and 1.49, and at collimations of 10, 20, 40, and 80 mm at 80 kV and 100 mAs. CT values and standard deviations of simulated nodules and lesions were measured, and radiation dose quantity (volume CT dose index; CTDIvol) was collected. Contrast-to-noise ratio (CNR) and figure of merit (FOM) were calculated. All images were subjectively evaluated by 2 radiologists to determine whether the nodules were detectable and if the overall image quality met diagnostic requirements. Results All simulated lesions, except -800 HU nodules, were detected at all scanning conditions. At a fixed voltage of 120 or 100 kV, with increasing mAs, image noise tended to decrease, and the CNR tended to increase (F=9.694 and P=0.033 for 120 kV; F=9.028 and P=0.034 for 100 kV). The FOM trend was the same as that of CNR (F=2.768 and P=0.174 for 120 kV; F=1.915 and P=0.255 for 100 kV). At 80 kV, the CNRs and FOMs had no significant change with increasing mAs (F=4.522 and P=0.114 for CNRs; F=1.212 and P=0.351 for FOMs). For the 4 nodules of -800 and -630 HU, CNRs had no statistical differences at each of the 5 pitches (F=0.673, P=0.476). The CNRs and FOMs at each of the 4 collimations had no statistical differences (F=2.509 and P=0.125 for CNRs; F=1.485 and P=0.309 for FOMs) for each nodule. CNRs and subjective evaluation scores increased with increasing parameter values for each imaging iteration. The CNRs of 4 -800 HU nodules in the qualified images at the thresholds of scanning parameters of 120 kV/20 mAs, 100 kV/40 mAs, and 80 kV/80 mAs, had statistical differences (P=0.038), but the FOMs had no statistical differences (P=0.085). Under the 3 threshold conditions, the CNRs and FOMs of the 4 nodules were highest at 100 kV and 40 mAs (1.6 mGy CTDIvol). Conclusions For chest CT among COVID-19 patients, it is recommended that 100 kV/40 mAs is used for average patients; the radiation dose can be reduced to 1.6 mGy with qualified images to detect ground-glass nodules and exudation lesions.
Collapse
Affiliation(s)
- Yantao Niu
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shunxing Huang
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huan Zhang
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuo Li
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoting Li
- Department of Radiology, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing, China
| | - Zhibin Lv
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shuo Yan
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Fan
- Department of Radiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yanlong Zhai
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Eddy Wong
- Philips CT Global Clinical Science, Philips Healthcare, Cleveland, OH, USA
| | - Kexin Wang
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zongrui Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Budong Chen
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruming Xie
- Department of Radiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Hering DA, Kröger K, Bauer RW, Eich HT, Haverkamp U. Comparison of virtual non-contrast dual-energy CT and a true non-contrast CT for contouring in radiotherapy of 3D printed lung tumour models in motion: a phantom study. Br J Radiol 2020; 93:20200152. [PMID: 33002387 DOI: 10.1259/bjr.20200152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES This work aims to investigate whether virtual non-contrast (VNC) dual-energy CT(DECT) of contrasted lung tumours can be used as an alternative for true non-contrast (TNC) images in radiotherapy. Two DECT techniques and a TNC CT were compared and influences on gross tumour volume (GTV) volume and CT number from motion artefacts in three-dimensional printed lung tumour models (LTM) in amotion phantom were examined. METHODS Two spherical LTMs (diameter 3.0 cm) with different inner shapes were created in a three-dimensional printer. The inner shapes contained water or iodine (concentration 5 mg ml-1) and were scanned with a dual-source DECT (ds-DECT), single-source sequential DECT (ss-DECT) and TNC CT in a respiratory motion phantom (15 breaths/min, amplitude 1.5 cm). CT number and volume of LTMs were measured. Therefore, two GTVs were contoured. RESULTS Deviations in GTV volume (outer shape) of LTMs in motion for contrast-enhanced ss-DECT and ds-DECT VNC images compared to TNC images are not significant (p > 0.05). Relative GTV volume and CT number deviations (inner shapes) of LTMs in motion were 6.6 ± 0.6% and 104.4 ± 71.2 HU between ss-DECT and TNC CT and -8.4 ± 10.6% and 25.5 ± 58.5 HU between ds-DECT and TNC, respectively. CONCLUSION ss-DECT VNC images could not sufficiently subtract iodine from water in LTMs inmotion, whereas ds-DECT VNC images might be a valid alternative to a TNC CT. ADVANCES IN KNOWLEDGE ds-DECT provides a contrasted image for contouring and a non-contrasted image for radiotherapy treatment planning for LTM in motion.
Collapse
Affiliation(s)
| | - Kai Kröger
- Department of Radiation Oncology, University Hospital of Muenster, Muenster, Germany
| | - Ralf W Bauer
- RNS, Private Radiology and Radiation Therapy Group, Wiesbaden, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital of Muenster, Muenster, Germany
| | - Uwe Haverkamp
- Department of Radiation Oncology, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
11
|
Lee HN, Kim JI, Shin SY. Measurement accuracy of lung nodule volumetry in a phantom study: Effect of axial-volume scan and iterative reconstruction algorithm. Medicine (Baltimore) 2020; 99:e20543. [PMID: 32502015 PMCID: PMC7306330 DOI: 10.1097/md.0000000000020543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
An axial-volume scan with adaptive statistical iterative reconstruction-V (ASIR-V) is newly developed. Our goal was to identify the influence of axial-volume scan and ASIR-V on accuracy of automated nodule volumetry.An "adult' chest phantom containing various nodules was scanned using both helical and axial-volume modes at different dose settings using 256-slice CT. All CT scans were reconstructed using 30% and 50% blending of ASIR-V and filtered back projection. Automated nodule volumetry was performed using commercial software. The image noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were measured.The axial-volume scan reduced radiation dose by 19.7% compared with helical scan at all radiation dose settings without affecting the accuracy of nodule volumetric measurement (P = .375). Image noise, CNR, and SNR were not significantly different between two scan modes (all, P > .05).The use of axial-volume scan with ASIR-V achieved effective radiation dose reduction while preserving the accuracy of nodule volumetry.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Im Kim
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So Youn Shin
- Department of Radiology, Kyung Hee University Hospital, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Fu B, Wang G, Wu M, Li W, Zheng Y, Chu Z, Lv F. Influence of CT effective dose and convolution kernel on the detection of pulmonary nodules in different artificial intelligence software systems: A phantom study. Eur J Radiol 2020; 126:108928. [DOI: 10.1016/j.ejrad.2020.108928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/05/2020] [Accepted: 02/28/2020] [Indexed: 12/29/2022]
|
13
|
Coronary computed tomography angiography using model-based iterative reconstruction algorithms in the detection of significant coronary stenosis: how the plaque type influences the diagnostic performance. Pol J Radiol 2019; 84:e522-e529. [PMID: 32082450 PMCID: PMC7016499 DOI: 10.5114/pjr.2019.91259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
Purpose To evaluate the ability of coronary computed tomography angiography (CCTA) with model-based iterative reconstruction (MBIR) algorithm in detecting significant coronary artery stenosis compared with invasive coronary angiography (ICA). Material and methods We retrospectively identified 55 patients who underwent CCTA using the MBIR algorithm with evidence of at least one significant stenosis (≥ 50%) and an ICA within three months. Patients were stratified based on calcium score; stenoses were classified by type and by coronary segment involved. Dose-length-product was compared with the literature data obtained with previous reconstruction algorithms. Coronary artery stenosis was estimated on ICAs based on a qualitative method. Results CCTA data were confirmed by ICA in 89% of subjects, and in 73% and 94% of patients with CS < 400 and ≥ 400, respectively. ICA confirmed 81% of calcific stenoses, 91% of mixed, and 67% of soft plaques. Both the dose exposure of patients with prospective acquisition (34) and the exposure of the whole population were significantly lower than the standard of reference (p < 0.001 and p = 0.007). Conclusions CCTA with MBIR is valuable in detecting significant coronary artery stenosis with a solid reduction of radiation dose. Diagnostic performance was influenced by plaque composition, being lower compared with ICA for patients with lower CAC score and soft plaques; the visualisation of an intraluminal hypodensity could cause false positives, particularly in D1 and MO segments.
Collapse
|
14
|
Ultra-low-dose multiphase CT angiography derived from CT perfusion data in patients with middle cerebral artery stenosis. Neuroradiology 2019; 62:167-174. [PMID: 31673747 DOI: 10.1007/s00234-019-02313-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE Computed tomography (CT) perfusion (CTP) source images contain both brain perfusion and cerebrovascular information, and may allow a dynamic assessment of collaterals. The purpose of the study was to compare the image quality and the collaterals identified on multiphase CT angiography (CTA) derived from CTP datasets (hereafter called CTPA) reconstructed with iterative model reconstruction (IMR) algorithm in patients with middle cerebral artery (MCA) steno-occlusion with those of routine CTA. METHODS Consecutive patients with a unilateral MCA steno-occlusion underwent non-contrast CT (NCCT), CTP, and CTA. CTPA images were reconstructed from CTP datasets. The vascular attenuation, image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) of routine CTA and CTPA were measured and analyzed by Student's t test. Subjective image quality and collaterals were scored and compared using the Wilcoxon signed-rank test. RESULTS Fifty-eight patients (mean age 61.7 years, 78% males, median National Institutes of Health Stroke Scale score = 12) were included. The effective radiation dose of CTP was 1.28 mSv. The vascular attenuation, SNR, CNR, and the image quality of CTPA were considerably higher than that of CTA (all, p < 0.001). Collaterals were rated higher on CTPA compared with CTA (1.79 ± 0.64 vs. 1.22 ± 0.84, p < 0.001). Fifty-three percent of patients with poor collaterals assessed on single-phase CTA had good collaterals on CTPA. CONCLUSION CTPA derived from CTP datasets reconstructed with IMR algorithm offers image quality comparable to routine CTA and provides time-resolved evaluation of collaterals in patients with MCA ischemic disease.
Collapse
|
15
|
Kim SK, Kim C, Lee KY, Cha J, Lim HJ, Kang EY, Oh YW. Accuracy of Model-Based Iterative Reconstruction for CT Volumetry of Part-Solid Nodules and Solid Nodules in Comparison with Filtered Back Projection and Hybrid Iterative Reconstruction at Various Dose Settings: An Anthropomorphic Chest Phantom Study. Korean J Radiol 2019; 20:1195-1206. [PMID: 31270983 PMCID: PMC6609437 DOI: 10.3348/kjr.2018.0893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/31/2019] [Indexed: 12/30/2022] Open
Abstract
Objective To investigate the accuracy of model-based iterative reconstruction (MIR) for volume measurement of part-solid nodules (PSNs) and solid nodules (SNs) in comparison with filtered back projection (FBP) or hybrid iterative reconstruction (HIR) at various radiation dose settings. Materials and Methods CT scanning was performed for eight different diameters of PSNs and SNs placed in the phantom at five radiation dose levels (120 kVp/100 mAs, 120 kVp/50 mAs, 120 kVp/20 mAs, 120 kVp/10 mAs, and 80 kVp/10 mAs). Each CT scan was reconstructed using FBP, HIR, or MIR with three different image definitions (body routine level 1 [IMR-R1], body soft tissue level 1 [IMR-ST1], and sharp plus level 1 [IMR-SP1]; Philips Healthcare). The SN and PSN volumes including each solid/ground-glass opacity portion were measured semi-automatically, after which absolute percentage measurement errors (APEs) of the measured volumes were calculated. Image noise was calculated to assess the image quality. Results Across all nodules and dose settings, the APEs were significantly lower in MIR than in FBP and HIR (all p < 0.01). The APEs of the smallest inner solid portion of the PSNs (3 mm) and SNs (3 mm) were the lowest when MIR (IMR-R1 and IMR-ST1) was used for reconstruction for all radiation dose settings. (IMR-R1 and IMR-ST1 at 120 kVp/100 mAs, 1.06 ± 1.36 and 8.75 ± 3.96, p < 0.001; at 120 kVp/50 mAs, 1.95 ± 1.56 and 5.61 ± 0.85, p = 0.002; at 120 kVp/20 mAs, 2.88 ± 3.68 and 5.75 ± 1.95, p = 0.001; at 120 kVp/10 mAs, 5.57 ± 6.26 and 6.32 ± 2.91, p = 0.091; at 80 kVp/10 mAs, 5.84 ± 1.96 and 6.90 ± 3.31, p = 0.632). Image noise was significantly lower in MIR than in FBP and HIR for all radiation dose settings (120 kVp/100 mAs, 3.22 ± 0.66; 120 kVp/50 mAs, 4.19 ± 1.37; 120 kVp/20 mAs, 5.49 ± 1.16; 120 kVp/10 mAs, 6.88 ± 1.91; 80 kVp/10 mAs, 12.49 ± 6.14; all p < 0.001). Conclusion MIR was the most accurate algorithm for volume measurements of both PSNs and SNs in comparison with FBP and HIR at low-dose as well as standard-dose settings. Specifically, MIR was effective in the volume measurement of the smallest PSNs and SNs.
Collapse
Affiliation(s)
- Seung Kwan Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Ki Yeol Lee
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| | - Jaehyung Cha
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Hyun Ju Lim
- Department of Radiology, National Cancer Center, Goyang, Korea
| | - Eun Young Kang
- Department of Radiology, Korea University Guro Hospital, College of Medicine Korea University, Seoul, Korea
| | - Yu Whan Oh
- Department of Radiology, Anam Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Gavrielides MA, Li Q, Zeng R, Berman BP, Sahiner B, Gong Q, Myers KJ, DeFilippo G, Petrick N. Discrimination of Pulmonary Nodule Volume Change for Low- and High-contrast Tasks in a Phantom CT Study with Low-dose Protocols. Acad Radiol 2019; 26:937-948. [PMID: 30292564 DOI: 10.1016/j.acra.2018.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES The quantitative assessment of volumetric CT for discriminating small changes in nodule size has been under-examined. This phantom study examined the effect of imaging protocol, nodule size, and measurement method on volume-based change discrimination across low and high object to background contrast tasks. MATERIALS AND METHODS Eight spherical objects ranging in diameter from 5.0 mm to 5.75 mm and 8.0 mm to 8.75 mm with 0.25 mm increments were scanned within an anthropomorphic phantom with either foam-background (high-contrast task, ∼1000 HU object to background difference)) or gelatin-background (low-contrast task, ∼50 to 100 HU difference). Ten repeat acquisitions were collected for each protocol with varying exposures, reconstructed slice thicknesses and reconstruction kernels. Volume measurements were obtained using a matched-filter approach (MF) and a publicly available 3D segmentation-based tool (SB). Discrimination of nodule sizes was assessed using the area under the ROC curve (AUC). RESULTS Using a low-dose (1.3 mGy), thin-slice (≤1.5 mm) protocol, changes of 0.25 mm in diameter were detected with AU = 1.0 for all baseline sizes for the high-contrast task regardless of measurement method. For the more challenging low-contrast task and same protocol, MF detected changes of 0.25 mm from baseline sizes ≥5.25 mm and volume changes ≥9.4% with AUC≥0.81 whereas corresponding results for SB were poor (AUC within 0.49-0.60). Performance for SB was improved, but still inconsistent, when exposure was increased to 4.4 mGy. CONCLUSION The reliable discrimination of small changes in pulmonary nodule size with low-dose, thin-slice CT protocols suitable for lung cancer screening was dependent on the inter-related effects of nodule to background contrast and measurement method.
Collapse
|
17
|
Effect of Reconstruction Parameters on the Quantitative Analysis of Chest Computed Tomography. J Thorac Imaging 2019; 34:92-102. [DOI: 10.1097/rti.0000000000000389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Effect of CT Reconstruction Algorithm on the Diagnostic Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules. AJR Am J Roentgenol 2019; 212:505-512. [DOI: 10.2214/ajr.18.20018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Weber NM, Koo CW, Yu L, Bartholmai BJ, Halaweish AF, McCollough CH, Fletcher JG. Breathe New Life Into Your Chest CT Exams: Using Advanced Acquisition and Postprocessing Techniques. Curr Probl Diagn Radiol 2019; 48:152-160. [DOI: 10.1067/j.cpradiol.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/06/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022]
|
20
|
Kim J, Lee KH, Kim J, Shin YJ, Lee KW. Improved repeatability of subsolid nodule measurement in low-dose lung screening with monoenergetic images: a phantom study. Quant Imaging Med Surg 2019; 9:171-179. [PMID: 30976541 DOI: 10.21037/qims.2018.10.06] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background To investigate whether monoenergetic images captured with dual-layer spectral computed tomography (CT) can improve the repeatability of subsolid nodule measurement, and whether this approach can further reduce the radiation dose of CT while maintaining its measurement repeatability. Methods An anthropomorphic phantom with simulated subsolid nodules at three different levels was repeatedly scanned with both conventional single-energy CT and dual-layer spectral CT. A proxy for the measurement repeatability in the National Lung Screening Trial (proxy for NLST) was calculated with the typical CT protocol used in NLST. Using the dual-layer spectral CT, monoenergetic images of 40 to 110 keV, with an interval of 10 keV, were generated. The average diameter and volume of a total of 15,120 nodules in 840 CT images were measured by using a commercially-available computer-aided detection (CAD) system. The repeatability coefficient (RC), %RC, and 95% confidence intervals (CIs) of each image set were calculated and compared. Results At the same tube voltage and tube current-time product, monoenergetic images resulted in significantly lower RC than the proxy for NLST, indicating that measurement repeatability was enhanced. When the radiation dose was lowered by 30% or 55%, monoenergetic images showed significantly lower RC at high-energy keV than the proxy for NLST. The estimated measurement repeatability from monoenergetic images with 30% or 55% lower radiation dose was comparable to the repeatability from conventional single-energy CT images with standard radiation dose and iterative reconstruction. Conclusions Monoenergetic images captured by using dual-layer spectral CT can improve the repeatability of subsolid nodule measurement. The use of monoenergetic images would allow lung cancer screening with a lower radiation dose, while maintaining comparable measurement repeatability.
Collapse
Affiliation(s)
- Jihang Kim
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Junghoon Kim
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Yoon Joo Shin
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| | - Kyung Won Lee
- Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea
| |
Collapse
|
21
|
Kaasalainen T, Mäkelä T, Kelaranta A, Kortesniemi M. The Use of Model-based Iterative Reconstruction to Optimize Chest CT Examinations for Diagnosing Lung Metastases in Patients with Sarcoma: A Phantom Study. Acad Radiol 2019; 26:50-61. [PMID: 29724675 DOI: 10.1016/j.acra.2018.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES This phantom study aimed to evaluate low-dose (LD) chest computed tomography (CT) protocols using model-based iterative reconstruction (MBIR) for diagnosing lung metastases in patients with sarcoma. MATERIALS AND METHODS An adult female anthropomorphic phantom was scanned with a 64-slice CT using four LD protocols and a standard-dose protocol. Absorbed organ doses were measured with 10 metal-oxide-semiconductor field-effect transistor dosimeters. Furthermore, Monte Carlo simulations were performed to estimate organ and effective doses. Image quality in terms of image noise, contrast, and resolution was measured from the CT images reconstructed with conventional filtered back projection, adaptive statistical iterative reconstruction, and MBIR algorithms. All the results were compared to the performance of the standard-dose protocol. RESULTS Mean absorbed organ and effective doses were reduced by approximately 95% with the LD protocol (100-kVp tube voltage and a fixed 10-mA tube current) compared to the standard-dose protocol (120-kVp tube voltage and tube current modulation) while yielding an acceptable image quality for diagnosing round-shaped lung metastases. The effective doses ranged from 0.16 to 2.83 mSv in the studied protocols. The image noise, contrast, and resolution were maintained or improved when comparing the image quality of LD protocols using MBIR to the performance of the standard-dose chest CT protocol using filtered back projection. The small round-shaped lung metastases were delineated at levels comparable to the used protocols. CONCLUSIONS Radiation exposure in patients can be reduced significantly by using LD chest CT protocols and MBIR algorithm while maintaining image quality for detecting round-shaped lung metastases.
Collapse
|
22
|
Nagatani Y, Moriya H, Noma S, Sato S, Tsukagoshi S, Yamashiro T, Koyama M, Tomiyama N, Ono Y, Murayama S, Murata K, Koyama M, Narumi Y, Yanagawa M, Honda O, Tomiyama N, Ohno Y, Sugimura K, Sakuma K, Moriya H, Tada A, Kanazawa S, Sakai F, Nishimoto Y, Noma S, Tsuchiya N, Tsubakimoto M, Yamashiro T, Murayama S, Sato S, Nagatani Y, Nitta N, Murata K. Association of Focal Radiation Dose Adjusted on Cross Sections with Subsolid Nodule Visibility and Quantification on Computed Tomography Images Using AIDR 3D: Comparison Among Scanning at 84, 42, and 7 mAs. Acad Radiol 2018; 25:1156-1166. [PMID: 29735355 DOI: 10.1016/j.acra.2018.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE AND OBJECTIVES The objectives of this study were to compare the visibility and quantification of subsolid nodules (SSNs) on computed tomography (CT) using adaptive iterative dose reduction using three-dimensional processing between 7 and 42 mAs and to assess the association of size-specific dose estimate (SSDE) with relative measured value change between 7 and 84 mAs (RMVC7-84) and relative measured value change between 42 and 84 mAs (RMVC42-84). MATERIALS AND METHODS As a Japanese multicenter research project (Area-detector Computed Tomography for the Investigation of Thoracic Diseases [ACTIve] study), 50 subjects underwent chest CT with 120 kV, 0.35 second per location and three tube currents: 240 mA (84 mAs), 120 mA (42 mAs), and 20 mA (7 mAs). Axial CT images were reconstructed using adaptive iterative dose reduction using three-dimensional processing. SSN visibility was assessed with three grades (1, obscure, to 3, definitely visible) using CT at 84 mAs as reference standard and compared between 7 and 42 mAs using t test. Dimension, mean CT density, and particular SSDE to the nodular center of 71 SSNs and volume of 58 SSNs (diameter >5 mm) were measured. Measured values (MVs) were compared using Wilcoxon signed-rank tests among CTs at three doses. Pearson correlation analyses were performed to assess the association of SSDE with RMVC7-84: 100 × (MV at 7 mAs - MV at 84 mAs)/MV at 84 mAs and RMVC42-84. RESULTS SSN visibilities were similar between 7 and 42 mAs (2.76 ± 0.45 vs 2.78 ± 0.40) (P = .67). For larger SSNs (>8 mm), MVs were similar among CTs at three doses (P > .05). For smaller SSNs (<8 mm), dimensions and volumes on CT at 7 mAs were larger and the mean CT density was smaller than 42 and 84 mAs, and SSDE had mild negative correlations with RMVC7-84 (P < .05). CONCLUSIONS Comparable quantification was demonstrated irrespective of doses for larger SSNs. For smaller SSNs, nodular exaggerating effect associated with decreased SSDE on CT at 7 mAs compared to 84 mAs could result in comparable visibilities to CT at 42 mAs.
Collapse
|
23
|
Hou P, Feng X, Liu J, Wang X, Jiang Y, Dong L, Gao J. Low Tube Voltage and Iterative Model Reconstruction in Follow-up CT Angiography After Thoracic Endovascular Aortic Repair: Ultra-low Radiation Exposure and Contrast Medium Dose. Acad Radiol 2018; 25:494-501. [PMID: 29249576 DOI: 10.1016/j.acra.2017.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the feasibility of reducing radiation exposure and contrast medium (CM) dose in follow-up computed tomography angiography (CTA) after thoracic endovascular aortic repair (TEVAR) using low tube voltage and knowledge-based iterative model reconstruction (IMR). MATERIALS AND METHODS Thirty-six patients that required follow-up CTA after TEVAR were included in this intra-individual study. The conventional protocol with standard tube voltage of 120 kVp and CM volume of 70 mL was applied in the first follow-up CTA of all the patients (control group A). The ultra-low CM dose protocol with low tube voltage of 80 kVp and weight-adapted CM volume of 0.4 mL/kg was utilized in the second follow-up CTA (study group B). Set A.FBP (group A filtered back-projection) contained images for group A that were reconstructed through FBP method. Three sets (B.FBP, B.HIR, and B.IMR) for group B were reconstructed using three methods, FBP, hybrid iterative reconstruction (HIR), and IMR, respectively. Objective measurements including aortic attenuations, image noise, contrast-to-noise ratios (CNRs), and figure of merit of CNR (FOMCNR), and subjective rating scores of the four image sets were compared. RESULTS Compared to the images in set A.FBP, the images in set B.IMR had better quality in terms of equivalent attenuation values, equivalent subjective scores, lower noise, higher or equivalent CNRs, and higher FOMCNR. The quality of images in sets B.FBP and B.HIR was unacceptable. The radiation exposure and CM dose in group B were 1.94 mGy and 28 ± 5 mL, respectively, representing reductions of 77.6% (P < .001) and 60% (P < .001) as compared to those in group A. CONCLUSIONS In follow-up examinations after TEVAR, CTA with ultra-low radiation exposure and CM dose is feasible using low tube voltage and IMR for nonobese patients.
Collapse
Affiliation(s)
- Ping Hou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Xiangnan Feng
- School of Economics and Management, Southwest Jiaotong University, Chengdu, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Xiaopeng Wang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Yaojun Jiang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Leigang Dong
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jianshe Road, Zhengzhou, Henan Province 450052, China.
| |
Collapse
|
24
|
Milanese G, Eberhard M, Martini K, Vittoria De Martini I, Frauenfelder T. Vessel suppressed chest Computed Tomography for semi-automated volumetric measurements of solid pulmonary nodules. Eur J Radiol 2018; 101:97-102. [PMID: 29571809 DOI: 10.1016/j.ejrad.2018.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To evaluate whether vessel-suppressed computed tomography (VSCT) can be reliably used for semi-automated volumetric measurements of solid pulmonary nodules, as compared to standard CT (SCT) MATERIAL AND METHODS: Ninety-three SCT were elaborated by dedicated software (ClearRead CT, Riverain Technologies, Miamisburg, OH, USA), that allows subtracting vessels from lung parenchyma. Semi-automated volumetric measurements of 65 solid nodules were compared between SCT and VSCT. The measurements were repeated by two readers. For each solid nodule, volume measured on SCT by Reader 1 and Reader 2 was averaged and the average volume between readers acted as standard of reference value. Concordance between measurements was assessed using Lin's Concordance Correlation Coefficient (CCC). Limits of agreement (LoA) between readers and CT datasets were evaluated. RESULTS Standard of reference nodule volume ranged from 13 to 366 mm3. The mean overestimation between readers was 3 mm3 and 2.9 mm3 on SCT and VSCT, respectively. Semi-automated volumetric measurements on VSCT showed substantial agreement with the standard of reference (Lin's CCC = 0.990 for Reader 1; 0.985 for Reader 2). The upper and lower LoA between readers' measurements were (16.3, -22.4 mm3) and (15.5, -21.4 mm3) for SCT and VSCT, respectively. CONCLUSIONS VSCT datasets are feasible for the measurements of solid nodules, showing an almost perfect concordance between readers and with measurements on SCT.
Collapse
Affiliation(s)
- Gianluca Milanese
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Ilaria Vittoria De Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
25
|
Usefulness of model-based iterative reconstruction in semi-automatic volumetry for ground-glass nodules at ultra-low-dose CT: a phantom study. Radiol Phys Technol 2018; 11:235-241. [DOI: 10.1007/s12194-018-0442-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/20/2018] [Accepted: 01/25/2018] [Indexed: 01/11/2023]
|
26
|
Dabrowska M, Przybylo Z, Zukowska M, Kobylecka M, Maskey-Warzechowska M, Krenke R. SHOULD WE BE CONCERNED ABOUT THE DOSES OF IONIZING RADIATION RELATED TO DIAGNOSTIC AND FOLLOW-UP IMAGING IN PATIENTS WITH SOLITARY PULMONARY NODULES? RADIATION PROTECTION DOSIMETRY 2018; 178:201-207. [PMID: 28981871 DOI: 10.1093/rpd/ncx099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Diagnosing solitary pulmonary nodules (SPNs) frequently requires radiological follow up associated with exposure to ionizing radiation. The aim of this study was to estimate the effective dose of ionizing radiation in patients diagnosed and followed up due to SPNs, which were found beyond lung cancer screening programs. We estimated the exposure to ionizing radiation as effective doses (ED) of all imaging techniques using ionizing radiation: chest computed tomography (CT), contrast enhanced CT (CECT) and positron emission tomography combined with CT (PET/CT) in each patient. The median ED related to CT, CECT and PET/CT were 27.8, 17.2 and 20.4 mSv, respectively. The total ED related to all imaging examinations performed during 2 years of radiological follow-up was 33.9 mSv (range: 3.2-122.4) per patient. Majority (59%) of radiation exposure resulted from repeated chest CT. In conclusion, diagnosis and follow up of patients with SPN with different radiological techniques is associated with high exposure to ionizing radiation.
Collapse
Affiliation(s)
- Marta Dabrowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| | - Zuzanna Przybylo
- Students' Research Group 'Alveolus', Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| | - Malgorzata Zukowska
- 2nd Department of Clinical Radiology, Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| | - Malgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| | - Marta Maskey-Warzechowska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1 A, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Gavrielides MA, Berman BP, Supanich M, Schultz K, Li Q, Petrick N, Zeng R, Siegelman J. Quantitative assessment of nonsolid pulmonary nodule volume with computed tomography in a phantom study. Quant Imaging Med Surg 2017; 7:623-635. [PMID: 29312867 DOI: 10.21037/qims.2017.12.07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background To assess the volumetric measurement of small (≤1 cm) nonsolid nodules with computed tomography (CT), focusing on the interaction of state of the art iterative reconstruction (IR) methods and dose with nodule densities, sizes, and shapes. Methods Twelve synthetic nodules [5 and 10 mm in diameter, densities of -800, -630 and -10 Hounsfield units (HU), spherical and spiculated shapes] were scanned within an anthropomorphic phantom. Dose [computed tomography scan dose index (CTDIvol)] ranged from standard (4.1 mGy) to below screening levels (0.3 mGy). Data was reconstructed using filtered back-projection and two state-of-the-art IR methods (adaptive and model-based). Measurements were extracted with a previously validated matched filter-based estimator. Analysis of accuracy and precision was based on evaluation of percent bias (PB) and the repeatability coefficient (RC) respectively. Results Density had the most important effect on measurement error followed by the interaction of density with nodule size. The nonsolid -630 HU nodules had high accuracy and precision at levels comparable to solid (-10 HU) nonsolid, regardless of reconstruction method and with CTDIvol as low as 0.6 mGy. PB was <5% and <11% for the 10- and 5-mm in nominal diameter -630 HU nodules respectively, and RC was <5% and <12% for the same nodules. For nonsolid -800 HU nodules, PB increased to <11% and <30% for the 10- and 5-mm nodules respectively, whereas RC increased slightly overall but varied widely across dose and reconstruction algorithms for the 5-mm nodules. Model-based IR improved measurement accuracy for the 5-mm, low-density (-800, -630 HU) nodules. For other nodules the effect of reconstruction method was small. Dose did not affect volumetric accuracy and only affected slightly the precision of 5-mm nonsolid nodules. Conclusions Reasonable values of both accuracy and precision were achieved for volumetric measurements of all 10-mm nonsolid nodules, and for the 5-mm nodules with -630 HU or higher density, when derived from scans acquired with below screening dose levels as low as 0.6 mGy and regardless of reconstruction algorithm.
Collapse
Affiliation(s)
- Marios A Gavrielides
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, , Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Benjamin P Berman
- Division of Radiological Health, Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mark Supanich
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Kurt Schultz
- Toshiba Medical Research Institute USA, Inc., Center for Medical Research and Development, Illinois, USA
| | - Qin Li
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, , Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nicholas Petrick
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, , Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Rongping Zeng
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, , Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jenifer Siegelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachussetts, USA
| |
Collapse
|
28
|
Ohana M, Ludes C, Schaal M, Meyer E, Jeung MY, Labani A, Roy C. [What future for chest x-ray against ultra-low-dose computed tomography?]. REVUE DE PNEUMOLOGIE CLINIQUE 2017; 73:3-12. [PMID: 27956084 DOI: 10.1016/j.pneumo.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 06/06/2023]
Abstract
Technological improvements, with iterative reconstruction at the foreground, have lowered the radiation dose of a chest CT close to that of a PA and lateral chest x-ray. This ultra-low dose chest CT (ULD-CT) has an image quality that is degraded on purpose, yet remains diagnostic in many clinical indications. Thus, its effectiveness is already validated for the detection and the monitoring of solid parenchymal nodules, for the diagnosis and monitoring of infectious lung diseases and for the screening of pleural lesions secondary to asbestos exposure. Its limitations are the analysis of the mediastinal structures, the severe obesity (BMI>35) and the detection of interstitial lesions. If it can replace the standard chest CT in these indications, all the more in situations where radiation dose is a major problem (young patients, repeated exams, screening), it progressively emerges as a first line alternative for chest radiograph, providing more data at a similar radiation cost.
Collapse
Affiliation(s)
- M Ohana
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France; Laboratoire iCube, UMR 7357, CNRS, université de Strasbourg, 67400 Illkirch, France.
| | - C Ludes
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - M Schaal
- Service de radiologie, centre hospitalier de Haguenau, 64, avenue du Professeur-Leriche, 67500 Haguenau, France
| | - E Meyer
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - M-Y Jeung
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - A Labani
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - C Roy
- Service de radiologie, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67000 Strasbourg, France
| |
Collapse
|
29
|
Jia Q, Zhuang J, Jiang J, Li J, Huang M, Liang C. Image quality of ct angiography using model-based iterative reconstruction in infants with congenital heart disease: Comparison with filtered back projection and hybrid iterative reconstruction. Eur J Radiol 2016; 86:190-197. [PMID: 28027746 DOI: 10.1016/j.ejrad.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/02/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare the image quality, rate of coronary artery visualization and diagnostic accuracy of 256-slice multi-detector computed tomography angiography (CTA) with prospective electrocardiographic (ECG) triggering at a tube voltage of 80kVp between 3 reconstruction algorithms (filtered back projection (FBP), hybrid iterative reconstruction (iDose4) and iterative model reconstruction (IMR)) in infants with congenital heart disease (CHD). METHODS Fifty-one infants with CHD who underwent cardiac CTA in our institution between December 2014 and March 2015 were included. The effective radiation doses were calculated. Imaging data were reconstructed using the FBP, iDose4 and IMR algorithms. Parameters of objective image quality (noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)); subjective image quality (overall image quality, image noise and margin sharpness); coronary artery visibility; and diagnostic accuracy for the three algorithms were measured and compared. RESULTS The mean effective radiation dose was 0.61±0.32 mSv. Compared to FBP and iDose4, IMR yielded significantly lower noise (P<0.01), higher SNR and CNR values (P<0.01), and a greater subjective image quality score (P<0.01). The total number of coronary segments visualized was significantly higher for both iDose4 and IMR than for FBP (P=0.002 and P=0.025, respectively), but there was no significant difference in this parameter between iDose4 and IMR (P=0.397). There was no significant difference in the diagnostic accuracy between the FBP, iDose4 and IMR algorithms (χ2=0.343, P=0.842). CONCLUSIONS For infants with CHD undergoing cardiac CTA, the IMR reconstruction algorithm provided significantly increased objective and subjective image quality compared with the FBP and iDose4 algorithms. However, IMR did not improve the diagnostic accuracy or coronary artery visualization compared with iDose4.
Collapse
Affiliation(s)
- Qianjun Jia
- Southern Medical University, Guangzhou, Guangdong, China; Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Jian Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Jun Jiang
- Department of Radiology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China.
| | - Jiahua Li
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Meiping Huang
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Southern Medical University, Guangzhou, Guangdong, China.
| | - Changhong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
de Margerie-Mellon C, de Bazelaire C, Montlahuc C, Lambert J, Martineau A, Coulon P, de Kerviler E, Beigelman C. Reducing Radiation Dose at Chest CT: Comparison Among Model-based Type Iterative Reconstruction, Hybrid Iterative Reconstruction, and Filtered Back Projection. Acad Radiol 2016; 23:1246-54. [PMID: 27346234 DOI: 10.1016/j.acra.2016.05.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/15/2022]
Abstract
RATIONALE AND OBJECTIVES The study aimed to evaluate the performances of two iterative reconstruction (IR) algorithms and of filtered back projection (FBP) when using reduced-dose chest computed tomography (RDCT) compared to standard-of-care CT. MATERIALS AND METHODS An institutional review board approval was obtained. Thirty-six patients with hematologic malignancies referred for a control chest CT of a known lung disease were prospectively enrolled. Patients underwent standard-of-care scan reconstructed with hybrid IR, followed by an RDCT reconstructed with FBP, hybrid IR, and iterative model reconstruction. Objective and subjective quality measurements, lesion detectability, and evolution assessment on RDCT were recorded. RESULTS For RDCT, the CTDIvol (volumetric computed tomography dose index) was 0.43 mGy⋅cm for all patients, and the median [interquartile range] effective dose was 0.22 mSv [0.22-0.24]; corresponding measurements for standard-of-care scan were 3.4 mGy [3.1-3.9] and 1.8 mSv [1.6-2.0]. Noise significantly decreased from FBP to hybrid IR and from hybrid IR to iterative model reconstruction on RDCT, whereas lesion conspicuity and diagnostic confidence increased. Accurate evolution assessment was obtained in all cases with IR. Emphysema identification was higher with iterative model reconstruction. CONCLUSION Although iterative model reconstruction offered better diagnostic confidence and emphysema detection, both IR algorithms allowed an accurate evolution assessment with an effective dose of 0.22 mSv.
Collapse
|
31
|
Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom. Pediatr Radiol 2016; 46:303-15. [PMID: 26546568 DOI: 10.1007/s00247-015-3486-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/10/2015] [Accepted: 10/19/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. OBJECTIVE To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. MATERIALS AND METHODS We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. RESULTS With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. CONCLUSION Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.
Collapse
|
32
|
Takenaka T, Yamazaki K, Miura N, Mori R, Takeo S. The Prognostic Impact of Tumor Volume in Patients with Clinical Stage IA Non-Small Cell Lung Cancer. J Thorac Oncol 2016; 11:1074-80. [PMID: 26899756 DOI: 10.1016/j.jtho.2016.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Tumor volume promises to be an important factor for predicting the prognosis of patients with non-small cell lung cancer (NSCLC). METHODS A total of 255 patients who underwent curative surgical resection for clinical stage IA NSCLC were included. We performed semiautomated measurement of the whole tumor volume and the volume of the solid part (referred to as the solid part volume) from a volumetric analysis of chest three-dimensional computed tomography scans using the SYNAPSE VINCENT imaging software program (Fujifilm Medical, Tokyo, Japan). We evaluated the relationships among tumor size, tumor volume, and survival. RESULTS The mean whole tumor size, the ratio of the maximum diameter of consolidation to the maximum tumor diameter (CTR), the whole tumor volume, and the solid part volume were 20 mm (range 0-30 mm), 0.84 (range 0-1.0), 3080 mm(3) (range 123-17509 mm(3)), and 2032 mm(3) (0-12466 mm(3)), respectively. The receiver operating characteristic area under the curve for the whole tumor size, CTR, whole tumor volume, and solid part volume used to identify recurrence were 0.60, 0.68, 0.58, and 0.69, respectively. A univariate analysis revealed that the whole tumor size, CTR, whole tumor volume, and solid part volume were associated with disease-free survival (DFS). A multivariate analysis of these factors identified the solid part volume to be the only independent factor for the prediction of DFS. CONCLUSIONS The whole tumor volume and the solid part volume were associated with DFS. In particular, the solid part volume was a very useful factor for predicting prognosis in clinical stage IA NSCLC.
Collapse
Affiliation(s)
- Tomoyoshi Takenaka
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Naoko Miura
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Ryo Mori
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| |
Collapse
|
33
|
Advanced imaging tools in pulmonary nodule detection and surveillance. Clin Imaging 2016; 40:296-301. [PMID: 26916752 DOI: 10.1016/j.clinimag.2016.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/23/2022]
Abstract
Lung cancer is a leading cause of death worldwide. The National Lung Screening Trial has demonstrated that lung cancer screening can reduce lung cancer specific and all cause mortality. With approval of national coverage for lung cancer screening, it is expected that an increase in exams related to pulmonary nodule detection and surveillance will ensue. Advanced imaging technologies for nodule detection and surveillance will be more important than ever. While computed tomography (CT) remains the modality of choice, other emerging modalities such as magnetic resonance imaging provides viable alternatives to CT.
Collapse
|
34
|
Hu MQ, Li M, Liu ZY, Huang MP, Liu H, Liang CH. Image quality evaluation of iterative model reconstruction on low tube voltage (80 kVp) coronary CT angiography in an animal study. Acta Radiol 2016; 57:170-7. [PMID: 25657261 DOI: 10.1177/0284185114568909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 12/30/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Iterative model reconstruction (IMR) is a newer generation iterative reconstruction method, but its value on coronary computed tomography (CT) angiography requires investigation. PURPOSE To evaluate coronary image quality using IMR at a low-tube voltage of 80 kVp on coronary CT angiography in miniature pigs. MATERIAL AND METHODS Five healthy miniature pigs underwent prospective electrocardiogram-gated coronary 256-slice CT angiography at 120 kVp and 80 kVp tube voltages, respectively. Filtered back projection (FBP) was used to reconstruct the 120 kVp standard-dose (SD) image sets (SD-FBP group), while iDose(4) and IMR were used to reconstruct the 80 kVp low-dose (LD) image sets (LD-iDose(4) and LD-IMR groups). Objective and subjective image qualities were compared among three groups. RESULTS There were no significant differences in mean CT values of the ascending aorta, left main coronary artery, and right coronary artery between the LD-IMR and LD-iDose(4) groups (P > 0.05), but the values were significantly lower in the SD-FBP group than in those two groups (P < 0.05). The image noise in the LD-IMR group (21.5 ± 3.9 HU) was significantly lower than in the LD-iDose(4) (63.7 ± 9.8 HU) and SD-FBP (50.6 ± 4.6 HU) groups (P < 0.05). The signal-to-noise and contrast-to-noise ratios were significantly higher in the LD-IMR group than in the LD-iDose(4) and SD-FBP groups, respectively (P < 0.05). Subjective scoring of image noise, streak artifacts, and overall image quality indicated that the LD-IMR group was consistently superior to the LD-iDose(4) and SD-FBP groups (P < 0.05). CONCLUSION IMR can significantly improve image quality at a low-tube voltage (80 kVp) with a 66% radiation dose reduction on coronary 256-slice CT angiography in miniature pigs.
Collapse
Affiliation(s)
- Mao-Qing Hu
- Southern Medical University, Guangzhou, Guangdong, PR China
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Meng Li
- Southern Medical University, Guangzhou, Guangdong, PR China
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Zai-Yi Liu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Mei-Ping Huang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Hui Liu
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| | - Chang-Hong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, PR China
| |
Collapse
|
35
|
Ludes C, Schaal M, Labani A, Jeung MY, Roy C, Ohana M. [Ultra-low dose chest CT: The end of chest radiograph?]. Presse Med 2016; 45:291-301. [PMID: 26830922 DOI: 10.1016/j.lpm.2015.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/27/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Ultra-low dose chest CT (ULD-CT) is acquired at a radiation dose lowered to that of a PA and lateral chest X-ray. Its image quality is degraded, yet remains diagnostic in many clinical indications. Technological improvements, with iterative reconstruction at the foreground, allowed a strong increase in the image quality obtained with this examination, which is achievable on most recent (<5 years) scanner. Established clinical indications of ULD-CT are increasing, and its non-inferiority compared to the reference "full dose" chest CT are currently demonstrated for the detection of solid nodules, for asbestos-related pleural diseases screening and for the monitoring of infectious pneumonia. Its current limitations are the obese patients (BMI>35) and the interstitial pneumonia, situations in which their performances are insufficient.
Collapse
Affiliation(s)
- Claire Ludes
- Hôpitaux universitaires de Strasbourg, Nouvel hôpital civil, service de radiologie, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - Marysa Schaal
- Centre hospitalier de Haguenau, service de radiologie, 64, avenue du Professeur-Leriche, 67500 Haguenau, France
| | - Aissam Labani
- Hôpitaux universitaires de Strasbourg, Nouvel hôpital civil, service de radiologie, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - Mi-Young Jeung
- Hôpitaux universitaires de Strasbourg, Nouvel hôpital civil, service de radiologie, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - Catherine Roy
- Hôpitaux universitaires de Strasbourg, Nouvel hôpital civil, service de radiologie, 1, place de l'Hôpital, 67000 Strasbourg, France
| | - Mickaël Ohana
- Hôpitaux universitaires de Strasbourg, Nouvel hôpital civil, service de radiologie, 1, place de l'Hôpital, 67000 Strasbourg, France; Université de Strasbourg/CNRS, laboratoire iCube, UMR 7357, 67400 Illkirch, France.
| |
Collapse
|
36
|
Pulmonary Nodule Volumetry at Different Low Computed Tomography Radiation Dose Levels With Hybrid and Model-Based Iterative Reconstruction. J Comput Assist Tomogr 2016; 40:578-83. [DOI: 10.1097/rct.0000000000000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Sakai N, Yabuuchi H, Kondo M, Kojima T, Nagatomo K, Kawanami S, Kamitani T, Yonezawa M, Nagao M, Honda H. Volumetric measurement of artificial pure ground-glass nodules at low-dose CT: Comparisons between hybrid iterative reconstruction and filtered back projection. Eur J Radiol 2015; 84:2654-62. [DOI: 10.1016/j.ejrad.2015.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 07/28/2015] [Accepted: 08/30/2015] [Indexed: 11/27/2022]
|
38
|
Ultra-low-dose CT with model-based iterative reconstruction (MBIR): detection of ground-glass nodules in an anthropomorphic phantom study. Radiol Med 2015; 120:611-7. [DOI: 10.1007/s11547-015-0505-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
|
39
|
Yamashiro T, Miyara T, Honda O, Kamiya H, Murata K, Ohno Y, Tomiyama N, Moriya H, Koyama M, Noma S, Kamiya A, Tanaka Y, Murayama S. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) improves chest CT image quality and reduces radiation exposure. PLoS One 2014; 9:e105735. [PMID: 25153797 PMCID: PMC4143266 DOI: 10.1371/journal.pone.0105735] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
Objective To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Methods Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. Results At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. Conclusion For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.
Collapse
Affiliation(s)
- Tsuneo Yamashiro
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- * E-mail:
| | - Tetsuhiro Miyara
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Osamu Honda
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisashi Kamiya
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Kiyoshi Murata
- Department of Radiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Moriya
- Department of Radiology, Ohara General Hospital, Fukushima-shi, Fukushima, Japan
| | - Mitsuhiro Koyama
- Department of Radiology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Satoshi Noma
- Department of Radiology, Tenri Hospital, Tenri, Nara, Japan
| | - Ayano Kamiya
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Yuko Tanaka
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Center for Clinical Training, Fujieda Municipal General Hospital, Fujieda, Shizuoka, Japan
| | - Sadayuki Murayama
- Department of Radiology, Graduate School of Medical Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|