1
|
Yang C, Zhu F, Yang J, Wang M, Zhang S, Zhao Z. DCE-MRI quantitative analysis and MRI-based radiomics for predicting the early efficacy of microwave ablation in lung cancers. Cancer Imaging 2025; 25:26. [PMID: 40065426 PMCID: PMC11892232 DOI: 10.1186/s40644-025-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVES To evaluate the feasibility and value of dynamic contrast-enhanced MRI (DCE-MRI) quantitative analysis and MRI-based radiomics in predicting the efficacy of microwave ablation (MWA) in lung cancers (LCs). METHODS Forty-three patients with LCs who underwent DCE-MRI within 24 h of receiving MWA were enrolled in the study and divided into two groups according to the modified response evaluation criteria in solid tumors (m-RECIST) criteria: the effective treatment (complete response + partial response + stable disease, n = 28) and the ineffective treatment (progressive disease, n = 15). DCE-MRI datasets were processed by Omni. Kinetics software, using the extended tofts model (ETM) and exchange model (ECM) to yield pharmacokinetic parameters and their histogram features. Changes in quantitative perfusion parameters were compared between the two groups. Scientific research platform ( https://medresearch.shukun.net/ ) was used for radiomics analysis. A total of 1874 radiomic features were extracted for each tumor by manually segmentation of T1WI and Contrast-enhanced of T1WI (Ce-T1WI) fat inhibition sequence. The performances of radiomics models were evaluated by the receiver operating characteristic curve. Based on radiomics features, survival curves were generated by Kaplan-Meier survival analysis to evaluate patient outcomes. P < 0.05 was set for the significance threshold. RESULTS The Vp value of ECM was significantly higher in the ineffective group compared to the effective group (p = 0.027). Additionally, the skewness, and kurtosis of Vp (p = 0.020 and 0.013, respectively) derived from ETM and Fp (p = 0.027 and 0.030, respectively) from ECM as well as the quantiles were higher in the ineffective group than in the effective group. Significant statistical differences were observed in the energy and entropy of Ve (p = 0.044 and 0.025, respectively) and Vp (p = 0.025 and 0.026, respectively) between the two groups. In the process of model construction, seven features from T1WI, five features from Ce-T1WI, and ten features from combined sequences were ultimately selected. The area under the curve (AUC) values for the T1WI model, Ce-T1WI model, and combined model were 0.910, 0.890, 0.965 in the training group, and 0.850, 0.700, 0.850 in the test group, respectively. CONCLUSIONS DCE-MRI quantitative analysis and MRI-based radiomics may be helpful in assessing the early response to MWA in patients with LCs.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiology, Shaoxing People's Hosipital, Shaoxing, China
| | - Fandong Zhu
- Department of Radiology, Shaoxing People's Hosipital, Shaoxing, China
| | - Jing Yang
- Department of Radiology, Shaoxing People's Hosipital, Shaoxing, China
| | - Min Wang
- Department of Pathology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Shijun Zhang
- Department of Pathology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hosipital, Shaoxing, China.
| |
Collapse
|
2
|
Billy CA, Darmiati S, Prihartono J. Diagnostic accuracy of diffusion weighted imaging compared to magnetic resonance spectroscopy in differentiation of benign and malignant breast lesions: A systematic review and meta-analysis. Eur J Radiol 2023; 168:111124. [PMID: 37820523 DOI: 10.1016/j.ejrad.2023.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE To compare the sensitivity and specificity of diffusion weighted imaging (DWI) and magnetic resonance spectroscopy (MRS) in the differentiation of benign and malignant breast lesions. METHODS Scopus, PubMed, and other registries were searched up to April 2023. We included diagnostic studies with DWI and MRS as index tests and histopathologic examination as the reference standard for differentiating benign and malignant breast lesions in adult females. We excluded studies involving healthy women, only breast cancer patients, and non-comparative diagnostic accuracy studies on either index test. The sensitivity and specificity of DWI and MRS were investigated and pooled using random-effect bivariate meta-analysis. Risk of bias was assessed using QUADAS-2. Evidence quality was summarized using GRADE. RESULTS Eight eligible studies involving 632 females and 687 breast lesions were identified. The pooled sensitivity and specificity of DWI were 92% (CI 85-96%) and 88% (CI 75-94%), respectively. The pooled sensitivity and specificity of MRS were 85% (CI 66-94%) and 85% (CI 77-91%), respectively. No significant difference was noted in the sensitivity (7%, CI -8-22%) and specificity (3%, CI -9-14%) between DWI and MRS. CONCLUSIONS In low to moderate quality evidence, DWI and MRS show comparable sensitivity and specificity in differentiating benign and malignant breast lesions.
Collapse
Affiliation(s)
- Christy Amanda Billy
- Department of Radiology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia.
| | - Sawitri Darmiati
- Department of Radiology, Dr. Cipto Mangunkusumo National General Hospital, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
| | - Joedo Prihartono
- Department of Community Medicine, Faculty of Medicine, University of Indonesia, Jakarta 10310, Indonesia
| |
Collapse
|
3
|
Kuş CC, Güldoğan N, Yılmaz E, Soyder A, Arslan A, Arıbal ME. Can Supine Breast Magnetic Resonance Imaging After a Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging Provide Information for Supine Procedures? J Comput Assist Tomogr 2023:00004728-990000000-00169. [PMID: 36944155 DOI: 10.1097/rct.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
METHODS A retrospective analysis was conducted on 75 lesions in 50 patients with pathologically proven breast cancer who underwent MRI in prone and supine positions between December 2019 and December 2020. The transverse, anteroposterior, and craniocaudal dimensions (in millimeters) of the tumor in the x-, y-, and z-axes were measured. Distances from the center of the tumor to the chest wall and the adjacent skin were measured on transverse and reformatted sagittal images. In cases where multifocal lesions were present, the transverse, anteroposterior, and craniocaudal distances between the tumor centers in the x-, y-, and z-axes were measured. Differences between measurements in supine and prone MRI were evaluated with the Mann-Whitney U and the Wilcoxon tests. P values of less than 0.05 were considered to indicate a statistically significant difference. RESULTS The analysis revealed 31 MRIs with 1 and 20 with multifocal lesions. The x-axis dimension of the lesions in prone and supine positions did not significantly differ (P = 0.198) between the 2 positions. A significant difference in the y- and z-axes dimensions was observed between the prone and supine position (P = 0.00 for both). The distance from the tumor to the chest wall and the adjacent skin showed significant difference (P = 0.00 for both). For multifocal lesions, the distance between the lesions showed a significant difference on the y-axis (P = 0.00). CONCLUSIONS This study showed a significant difference in the tumor size, location, and tumor-to-tumor distances due to change of patient position, from the standard prone MRI to the supine position in the operating room, resulting in distortion, spatial repositioning, and convergence of the lesions. Supine MRI may be considered in providing a less extensive surgery.
Collapse
Affiliation(s)
- Ceyda Civan Kuş
- From the Department of Radiology, Marmara University Research and Education Hospital
| | | | | | | | - Aydan Arslan
- Department of Radiology, Ümraniye Research and Education Hospital
| | | |
Collapse
|
4
|
Sabatino V, Pignata A, Valentini M, Fantò C, Leonardi I, Campora M. Assessment and Response to Neoadjuvant Treatments in Breast Cancer: Current Practice, Response Monitoring, Future Approaches and Perspectives. Cancer Treat Res 2023; 188:105-147. [PMID: 38175344 DOI: 10.1007/978-3-031-33602-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neoadjuvant treatments (NAT) for breast cancer (BC) consist in the administration of chemotherapy-more rarely endocrine therapy-before surgery. Firstly, it was introduced 50 years ago to downsize locally advanced (inoperable) BCs. NAT are now widespread and so effective to be used also at the early stage of the disease. NAT are heterogeneous in terms of therapeutic patterns, class of used drugs, dosage, and duration. The poly-chemotherapy regimen and administration schedule are established by a multi-disciplinary team, according to the stage of disease, the tumor subtype and the age, the physical status, and the drug sensitivity of BC patients. Consequently, an accurate monitoring of treatment response can provide significant clinical advantages, such as the treatment de-escalation in case of early recognition of complete response or, on the contrary, the switch to an alternative treatment path in case of early detection of resistance to the ongoing therapy. Future is going toward increasingly personalized therapies and the prediction of individual response to treatment is the key to practice customized care pathways, preserving oncological safety and effectiveness. To gain such goal, the development of an accurate monitoring system, reproducible and reliable alone or as part of more complex diagnostic algorithms, will be promising.
Collapse
Affiliation(s)
- Vincenzo Sabatino
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy.
| | - Alma Pignata
- Breast Center, Spedali Civili Hospital, ASST, Brescia, Italy
| | - Marvi Valentini
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Carmen Fantò
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Irene Leonardi
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Michela Campora
- Pathology Department, Santa Chiara Hospital, APSS, Trento, Italy
| |
Collapse
|
5
|
Gu H, Cui W, Luo S, Deng X. Diagnostic Performance of Diffusion Kurtosis Imaging for Benign and Malignant Breast Lesions: A Systematic Review and Meta-Analysis. Appl Bionics Biomech 2022; 2022:2042736. [PMID: 35721236 PMCID: PMC9203235 DOI: 10.1155/2022/2042736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/21/2022] Open
Abstract
Purpose Magnetic resonance imaging (MRI) has a high sensitivity for differentiating between malignant and non-malignant breast lesions but is sometimes limited due to its low specificity. Here, we performed a meta-analysis to evaluate the diagnostic performance of mean kurtosis (MK) and mean diffusivity (MD) values in magnetic resonance diffusion kurtosis imaging (DKI) for benign and malignant breast lesions. Methods Original articles on relevant topics, published from 2010 to 2019, in PubMed, EMBASE, and WanFang databases were systematically reviewed. According to the purpose of the study and the characteristics of DKI reported, the diagnostic performances of MK and MD were evaluated, and meta-regression was conducted to explore the source of heterogeneity. Results Fourteen studies involving 1,099 (451 benign and 648 malignant) lesions were analyzed. The pooled sensitivity, pooled specificity, positive likelihood ratio, and negative likelihood ratio for MD were 0.84 (95% confidence interval (CI), 0.81-0.87), 0.83 (95% CI, 0.79-0.86), 4.44 (95% CI, 3.54-5.57), and 0.18 (95% CI, 0.13-0.26), while those for MK were 0.89 (95% CI, 0.86-0.91), 0.86 (95% CI, 0.82-0.89), 5.72 (95% CI, 4.26-7.69), and 0.13 (95% CI, 0.09-0.19), respectively. The overall area under the curve (AUC) was 0.91 for MD and 0.95 for MK. Conclusions Analysis of the data from 14 studies showed that MK had a higher pooled sensitivity, pooled specificity, and diagnostic performance for differentiating between breast lesions, compared with MD.
Collapse
Affiliation(s)
- Hongyu Gu
- Department of Radiology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu 215600, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu 210029, China
| | - Song Luo
- Department of Diagnostic Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaoyi Deng
- Department of Radiology, Affiliated Aoyang Hospital of Jiangsu University, Jiangsu 215600, China
| |
Collapse
|
6
|
Thakran S, Gupta RK, Singh A. Characterization of breast tumors using machine learning based upon multiparametric magnetic resonance imaging features. NMR IN BIOMEDICINE 2022; 35:e4665. [PMID: 34962326 DOI: 10.1002/nbm.4665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Magnetic resonance imaging (MRI) is playing an important role in the classification of breast tumors. MRI can be used to obtain multiparametric (mp) information, such as structural, hemodynamic, and physiological information. Quantitative analysis of mp-MRI data has shown potential in improving the accuracy of breast tumor classification. In general, a large set of quantitative and texture features can be generated depending upon the type of methodology used. A suitable combination of selected quantitative and texture features can further improve the accuracy of tumor classification. Machine learning (ML) classifiers based upon features derived from MRI data have shown potential in tumor classification. There is a need for further research studies on selecting an appropriate combination of features and evaluating the performance of different ML classifiers for accurate classification of breast tumors. The objective of the current study was to develop and optimize an ML framework based upon mp-MRI features for the characterization of breast tumors (malignant vs. benign and low- vs. high-grade). This study included the breast mp-MRI data of 60 female patients with histopathology results. A total of 128 features were extracted from the mp-MRI tumor data followed by features selection. Five ML classifiers were evaluated for tumor classification using 10-fold crossvalidation with 10 repetitions. The support vector machine (SVM) classifier based on optimum features selected using a wrapper method with an adaptive boosting (AdaBoost) technique provided the highest sensitivity (0.96 ± 0.03), specificity (0.92 ± 0.09), and accuracy (94% ± 2.91%) in the classification of malignant versus benign tumors. This method also provided the highest sensitivity (0.94 ± 0.07), specificity (0.80 ± 0.05), and accuracy (90% ± 5.48%) in the classification of low- versus high-grade tumors. These findings suggest that the SVM classifier outperformed other ML methods in the binary classification of breast tumors.
Collapse
Affiliation(s)
- Snekha Thakran
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh Kumar Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurgaon, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department for Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Magnetic Resonance Imaging (MRI) and MR Spectroscopic Methods in Understanding Breast Cancer Biology and Metabolism. Metabolites 2022; 12:metabo12040295. [PMID: 35448482 PMCID: PMC9030399 DOI: 10.3390/metabo12040295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
A common malignancy that affects women is breast cancer. It is the second leading cause of cancer-related death among women. Metabolic reprogramming occurs during cancer growth, invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of techniques have shown potential for illustrating physiological and molecular processes changes before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H) MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood, urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies can provide information on more metabolites than what is seen by in vivo MRS, thus providing a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed enormous potential in the development of new therapeutic approaches. Recently, multiparametric MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in the diagnosis and therapeutic monitoring of breast cancer.
Collapse
|
8
|
Hashem LMB, Gareer SWY, Hashem AMB, Fakhry S, Tohamey YM. Can DWI-MRI be an alternative to DCE-MRI in the diagnosis of troublesome breast lesions? THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has always been a problem solver in troublesome breast lesions. Despite its many advantages, the encountered low specificity results in unnecessary biopsies. Diffusion-weighted MRI (DW-MRI) is a well-established technique that helps in characterizing breast lesions according to their water diffusivity. So this work aimed to assess the diagnostic performance of DW-MRI in troublesome breast lesions and see if it can replace DCE-MRI study.
Results
In our prospective study, we included 86 patients with mammography and/or ultrasound-detected 90 probably benign or probably malignant (BIRADS 3 or 4) breast lesions. Among the studied cases, 49/90 lesions were benign, and 41/90 were malignant. Combined analysis of morphological and kinetic findings in DCE-MRI had achieved the highest sensitivity of 95.1%. DW-MRI alone was less sensitive (73.2%) yet more specific (83.7%) than DCE-MRI (77.6%). Diagnostic accuracy of DCE-MRI was higher (85.6%) as compared to DW-MRI which was (78.9%).
Conclusion
DCE-MRI is the cornerstone in the workup of troublesome breast lesions. DW-MRI should not be used as supplementary tool unless contrast administration is contraindicated. Combining both DCE-MRI and DW-MRI is the ultimate technique for better lesion evaluation.
Collapse
|
9
|
Sharma U, Jagannathan NR. MR spectroscopy in breast cancer metabolomics. ANALYTICAL SCIENCE ADVANCES 2021; 2:564-578. [PMID: 38715862 PMCID: PMC10989566 DOI: 10.1002/ansa.202000160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2024]
Abstract
Breast cancer poses a significant health care challenge worldwide requiring early detection and effective treatment strategies for better patient outcome. A deeper understanding of the breast cancer biology and metabolism may help developing better diagnostic and therapeutic approaches. Metabolomic studies give a comprehensive analysis of small molecule metabolites present in human tissues in vivo. The changes in the level of these metabolites provide information on the complex mechanism of the development of the disease and its progression. Metabolomic approach using analytical techniques such as magnetic resonance spectroscopy (MRS) has evolved as an important tool for identifying clinically relevant metabolic biomarkers. The metabolic characterization of breast lesions using in-vivo MRS has shown that malignant breast tissues contain elevated levels of choline containing compounds (tCho), suggesting rapid proliferation of cancer cells and alterations in membrane metabolism. Also, tCho has been identified as one of the important biomarkers that help to enhance the diagnostic accuracy of dynamic contrast enhanced magnetic resonance imaging and also for monitoring treatment response. Further, metabolome of malignant tissues can be studied using ex vivo and in vitro MRS at high magnetic fields. This provided the advantage of detection of a large number of compounds that facilitated more comprehensive insight into the altered metabolic pathways associated with the cancer development and progression and also in identification of several metabolites as potential biomarkers. This article briefly reviews the role of MRS based metabolic profiling in the discovery of biomarkers and understanding of the altered metabolism in breast cancer.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Naranamangalam R. Jagannathan
- Department of Radiology, Chettinad Hospital & Research InstituteChettinad Academy of Research & EducationKelambakkamIndia
- Department of RadiologySri Ramachandra Institute of Higher Education and ResearchChennaiIndia
- Department of Electrical EngineeringIndian Institute of Technology MadrasChennaiIndia
| |
Collapse
|
10
|
Zhu CR, Chen KY, Li P, Xia ZY, Wang B. Accuracy of multiparametric MRI in distinguishing the breast malignant lesions from benign lesions: a meta-analysis. Acta Radiol 2021; 62:1290-1297. [PMID: 33059458 DOI: 10.1177/0284185120963900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The sensitivity of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for detecting breast cancer was high and the specificity was relatively low. However, diffusion-weighted imaging (DWI) has a high specificity in the diagnosis of malignant lesions. PURPOSE To evaluate the accuracy of the multiparametric MRI (mp-MRI) in distinguishing the breast malignant lesions from the benign lesions. MATERIAL AND METHODS A comprehensive search of the PubMed, Embase, and Cochrane Library electronic databases was conducted up to March 2020. Data were analyzed for the following indexes: pooled sensitivity and specificity; positive likelihood ratio; negative likelihood ratio; diagnostic odds ratio; and the area under the curve. RESULTS A total of 2356 patients with 1604 malignant and 967 benign breast lesions were included from 22 studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve for mp-MRI were 0.93, 0.85, 6.3, 0.08, 81, and 0.96, respectively. The pooled sensitivity, specificity, and area under the curve for DCE-MRI alone were 0.95, 0.71, and 0.92, respectively. The pooled sensitivity, specificity, and area under the curve for DWI alone were 0.88, 0.84, and 0.93, respectively. CONCLUSION The mp-MRI did not improve the sensitivity but increased the specificity for the diagnosis of breast malignant lesions.
Collapse
Affiliation(s)
- Chun-Rong Zhu
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Ke-Yu Chen
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Pan Li
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Zhi-Yang Xia
- North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Bin Wang
- Department of Breast and Thyroid Surgery, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, PR China
| |
Collapse
|
11
|
Ko CC, Yeh LR, Kuo YT, Chen JH. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res 2021; 9:52. [PMID: 34215324 PMCID: PMC8252278 DOI: 10.1186/s40364-021-00306-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Response Evaluation Criteria in Solid Tumors (RECIST) is the gold standard for assessment of treatment response in solid tumors. Morphologic change of tumor size evaluated by RECIST is often correlated with survival length and has been considered as a surrogate endpoint of therapeutic efficacy. However, the detection of morphologic change alone may not be sufficient for assessing response to new anti-cancer medication in all solid tumors. During the past fifteen years, several molecular-targeted therapies and immunotherapies have emerged in cancer treatment which work by disrupting signaling pathways and inhibited cell growth. Tumor necrosis or lack of tumor progression is associated with a good therapeutic response even in the absence of tumor shrinkage. Therefore, the use of unmodified RECIST criteria to estimate morphological changes of tumor alone may not be sufficient to estimate tumor response for these new anti-cancer drugs. Several studies have reported the low reliability of RECIST in evaluating treatment response in different tumors such as hepatocellular carcinoma, lung cancer, prostate cancer, brain glioma, bone metastasis, and lymphoma. There is an increased need for new medical imaging biomarkers, considering the changes in tumor viability, metabolic activity, and attenuation, which are related to early tumor response. Promising imaging techniques, beyond RECIST, include dynamic contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI), diffusion-weight imaging (DWI), magnetic resonance spectroscopy (MRS), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET). This review outlines the current RECIST with their limitations and the new emerging concepts of imaging biomarkers in oncology.
Collapse
Affiliation(s)
- Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Lee-Ren Yeh
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Kuo
- Department of Medical Imaging, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jeon-Hor Chen
- Department of Radiology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan. .,Tu & Yuan Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, 164 Irvine Hall, Irvine, CA, 92697 - 5020, USA.
| |
Collapse
|
12
|
McGee KP, Hwang K, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua C, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys 2021; 48:e697-e732. [PMID: 33864283 PMCID: PMC8361924 DOI: 10.1002/mp.14884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
A magnetic resonance (MR) biologic marker (biomarker) is a measurable quantitative characteristic that is an indicator of normal biological and pathogenetic processes or a response to therapeutic intervention derived from the MR imaging process. There is significant potential for MR biomarkers to facilitate personalized approaches to cancer care through more precise disease targeting by quantifying normal versus pathologic tissue function as well as toxicity to both radiation and chemotherapy. Both of which have the potential to increase the therapeutic ratio and provide earlier, more accurate monitoring of treatment response. The ongoing integration of MR into routine clinical radiation therapy (RT) planning and the development of MR guided radiation therapy systems is providing new opportunities for MR biomarkers to personalize and improve clinical outcomes. Their appropriate use, however, must be based on knowledge of the physical origin of the biomarker signal, the relationship to the underlying biological processes, and their strengths and limitations. The purpose of this report is to provide an educational resource describing MR biomarkers, the techniques used to quantify them, their strengths and weakness within the context of their application to radiation oncology so as to ensure their appropriate use and application within this field.
Collapse
Affiliation(s)
| | - Ken‐Pin Hwang
- Department of Imaging PhysicsDivision of Diagnostic ImagingMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | | | - John Kurhanewicz
- Department of RadiologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Yanle Hu
- Department of Radiation OncologyMayo ClinicScottsdaleArizonaUSA
| | - Jihong Wang
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| | - Wen Li
- Department of Radiation OncologyUniversity of ArizonaTucsonArizonaUSA
| | - Josef Debbins
- Department of RadiologyBarrow Neurologic InstitutePhoenixArizonaUSA
| | - Eric Paulson
- Department of Radiation OncologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Jeffrey R. Olsen
- Department of Radiation OncologyUniversity of Colorado Denver ‐ Anschutz Medical CampusDenverColoradoUSA
| | - Chia‐ho Hua
- Department of Radiation OncologySt. Jude Children’s Research HospitalMemphisTennesseeUSA
| | | | - Daniel Ma
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Eduardo Moros
- Department of Radiation OncologyMoffitt Cancer CenterTampaFloridaUSA
| | - Neelam Tyagi
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Caroline Chung
- Department of Radiation OncologyMD Anderson Cancer CenterUniversity of TexasHoustonTexasUSA
| |
Collapse
|
13
|
Razek AAKA, El-Adalany MA, El-Metwally D. Role of diffusion-weighted imaging in prediction of nipple-areolar complex invasion by breast cancer. Clin Imaging 2020; 69:45-49. [PMID: 32652457 DOI: 10.1016/j.clinimag.2020.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 11/29/2022]
Abstract
THE AIM OF THIS WORK The aim of this work was to estimate the role of diffusion-weighted imaging (DWI) in predicting malignant invasion of the nipple-areolar complex (NAC) by underlying breast cancer. MATERIAL AND METHODS This prospective study included 70 female patients with breast cancer with a mean age of 45.8 years (range: 28-68). DWI of the breast was done for all patients. Apparent diffusion coefficient (ADC) maps were automatically constructed. The mean ADC values of NAC were independently measured by two observers who are experts in breast imaging and correlated with the results of histopathological examinations. RESULTS Both observers found a significantly lower ADC value of malignant NAC invasion (n = 18) when compared with free NAC (n = 52), with mean ADC value for malignant NAC invasion was 0.86 ± 0.35 × 10-3 mm2/s and 0.84 ± 0.08 × 10-3 mm2/s for observer one and two respectively versus mean ADC value of 1.34 ± 0.25 × 10-3 mm2/s and 1.4 ± 0.26 × 10-3 mm2/s for free NAC by observer one and two respectively (P-value =0.001). Observer one found that a cutoff ADC value of 1.05 × 0-3 mm2/s can predict malignant NAC invasion with 0.975 AUC, 92.8% accuracy, 94.4% sensitivity, and 92.3% specificity. Observer two found that a cutoff ADC value of 0.95 × 10-3 mm2/s can predict malignant NAC invasion with 0.992 AUC, 95.7% accuracy, 88.9% sensitivity, and 98.1% specificity. CONCLUSION DWI can predict malignant NAC invasion in patients with breast cancer.
Collapse
Affiliation(s)
| | | | - Dina El-Metwally
- Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt
| |
Collapse
|
14
|
Wielema M, Dorrius MD, Pijnappel RM, De Bock GH, Baltzer PAT, Oudkerk M, Sijens PE. Diagnostic performance of breast tumor tissue selection in diffusion weighted imaging: A systematic review and meta-analysis. PLoS One 2020; 15:e0232856. [PMID: 32374781 PMCID: PMC7202642 DOI: 10.1371/journal.pone.0232856] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several methods for tumor delineation are used in literature on breast diffusion weighted imaging (DWI) to measure the apparent diffusion coefficient (ADC). However, in the process of reaching consensus on breast DWI scanning protocol, image analysis and interpretation, still no standardized optimal breast tumor tissue selection (BTTS) method exists. Therefore, the purpose of this study is to assess the impact of BTTS methods on ADC in the discrimination of benign from malignant breast lesions in DWI in terms of sensitivity, specificity and area under the curve (AUC). METHODS AND FINDINGS In this systematic review and meta-analysis, adhering to the PRISMA statement, 61 studies, with 65 study subsets, in females with benign or malignant primary breast lesions (6291 lesions) were assessed. Studies on DWI, quantified by ADC, scanned on 1.5 and 3.0 Tesla and using b-values 0/50 and ≥ 800 s/mm2 were included. PubMed and EMBASE were searched for studies up to 23-10-2019 (n = 2897). Data were pooled based on four BTTS methods (by definition of measured region of interest, ROI): BTTS1: whole breast tumor tissue selection, BTTS2: subtracted whole breast tumor tissue selection, BTTS3: circular breast tumor tissue selection and BTTS4: lowest diffusion breast tumor tissue selection. BTTS methods 2 and 3 excluded necrotic, cystic and hemorrhagic areas. Pooled sensitivity, specificity and AUC of the BTTS methods were calculated. Heterogeneity was explored using the inconsistency index (I2) and considering covariables: field strength, lowest b-value, image of BTTS selection, pre-or post-contrast DWI, slice thickness and ADC threshold. Pooled sensitivity, specificity and AUC were: 0.82 (0.72-0.89), 0.79 (0.65-0.89), 0.88 (0.85-0.90) for BTTS1; 0.91 (0.89-0.93), 0.84 (0.80-0.87), 0.94 (0.91-0.96) for BTTS2; 0.89 (0.86-0.92), 0.90 (0.85-0.93), 0.95 (0.93-0.96) for BTTS3 and 0.90 (0.86-0.93), 0.84 (0.81-0.87), 0.86 (0.82-0.88) for BTTS4, respectively. Significant heterogeneity was found between studies (I2 = 95). CONCLUSIONS None of the breast tissue selection (BTTS) methodologies outperformed in differentiating benign from malignant breast lesions. The high heterogeneity of ADC data acquisition demands further standardization, such as DWI acquisition parameters and tumor tissue selection to substantially increase the reliability of DWI of the breast.
Collapse
Affiliation(s)
- M. Wielema
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M. D. Dorrius
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R. M. Pijnappel
- Department of Radiology, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - G. H. De Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P. A. T. Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - M. Oudkerk
- University of Groningen, Groningen, The Netherlands
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - P. E. Sijens
- Department of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Surov A, Meyer HJ, Wienke A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings? A meta-analysis based on 13 847 lesions. BMC Cancer 2019; 19:955. [PMID: 31615463 PMCID: PMC6794799 DOI: 10.1186/s12885-019-6201-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The purpose of the present meta-analysis was to provide evident data about use of Apparent Diffusion Coefficient (ADC) values for distinguishing malignant and benign breast lesions. METHODS MEDLINE library and SCOPUS database were screened for associations between ADC and malignancy/benignancy of breast lesions up to December 2018. Overall, 123 items were identified. The following data were extracted from the literature: authors, year of publication, study design, number of patients/lesions, lesion type, mean value and standard deviation of ADC, measure method, b values, and Tesla strength. The methodological quality of the 123 studies was checked according to the QUADAS-2 instrument. The meta-analysis was undertaken by using RevMan 5.3 software. DerSimonian and Laird random-effects models with inverse-variance weights were used without any further correction to account for the heterogeneity between the studies. Mean ADC values including 95% confidence intervals were calculated separately for benign and malign lesions. RESULTS The acquired 123 studies comprised 13,847 breast lesions. Malignant lesions were diagnosed in 10,622 cases (76.7%) and benign lesions in 3225 cases (23.3%). The mean ADC value of the malignant lesions was 1.03 × 10- 3 mm2/s and the mean value of the benign lesions was 1.5 × 10- 3 mm2/s. The calculated ADC values of benign lesions were over the value of 1.00 × 10- 3 mm2/s. This result was independent on Tesla strength, choice of b values, and measure methods (whole lesion measure vs estimation of ADC in a single area). CONCLUSION An ADC threshold of 1.00 × 10- 3 mm2/s can be recommended for distinguishing breast cancers from benign lesions.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany. .,Department of Diagnostic and Interventional Radiology, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Hans Jonas Meyer
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Magdeburger Str. 8, 06097, Halle, Germany
| |
Collapse
|
16
|
Sharma U, Jagannathan NR. In vivo MR spectroscopy for breast cancer diagnosis. BJR Open 2019; 1:20180040. [PMID: 33178927 PMCID: PMC7592438 DOI: 10.1259/bjro.20180040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/02/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a significant health concern in females, worldwide. In vivo proton (1H) MR spectroscopy (MRS) has evolved as a non-invasive tool for diagnosis and for biochemical characterization of breast cancer. Water-to-fat ratio, fat and water fractions and choline containing compounds (tCho) have been identified as diagnostic biomarkers of malignancy. Detection of tCho in normal breast tissue of volunteers and in lactating females limits the use of tCho as a diagnostic marker. Technological developments like high-field scanners, multi channel coils, pulse sequences with water and fat suppression facilitated easy detection of tCho. Also, quantification of tCho and its cut-off for objective assessment of malignancy have been reported. Meta-analysis of in vivo 1H MRS studies have documented the pooled sensitivities and the specificities in the range of 71-74% and 78-88%, respectively. Inclusion of MRS has been shown to enhance the diagnostic specificity of MRI, however, detection of tCho in small sized lesions (≤1 cm) is challenging even at high magnetic fields. Potential of MRS in monitoring the effect of chemotherapy in breast cancer has also been reported. This review briefly presents the potential clinical role of in vivo 1H MRS in the diagnosis of breast cancer, its current status and future developments.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences , New Delhi, India
| | | |
Collapse
|
17
|
Baxter GC, Graves MJ, Gilbert FJ, Patterson AJ. A Meta-analysis of the Diagnostic Performance of Diffusion MRI for Breast Lesion Characterization. Radiology 2019; 291:632-641. [PMID: 31012817 DOI: 10.1148/radiol.2019182510] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Various techniques are available to assess diffusion properties of breast lesions as a marker of malignancy at MRI. The diagnostic performance of these diffusion markers has not been comprehensively assessed. Purpose To compare by meta-analysis the diagnostic performance of parameters from diffusion-weighted imaging (DWI), diffusion-tensor imaging (DTI), and intravoxel incoherent motion (IVIM) in the differential diagnosis of malignant and benign breast lesions. Materials and Methods PubMed and Embase databases were searched from January to March 2018 for studies in English that assessed the diagnostic performance of DWI, DTI, and IVIM in the breast. Studies were reviewed according to eligibility and exclusion criteria. Publication bias and heterogeneity between studies were assessed. Pooled summary estimates for sensitivity, specificity, and area under the curve were obtained for each parameter by using a bivariate model. A subanalysis investigated the effect of MRI parameters on diagnostic performance by using a Student t test or a one-way analysis of variance. Results From 73 eligible studies, 6791 lesions (3930 malignant and 2861 benign) were included. Publication bias was evident for studies that evaluated apparent diffusion coefficient (ADC). Significant heterogeneity (P < .05) was present for all parameters except the perfusion fraction (f). The pooled sensitivity, specificity, and area under the curve for ADC was 89%, 82%, and 0.92, respectively. The highest performing parameter for DTI was the prime diffusion coefficient (λ1), and pooled sensitivity, specificity, and area under the curve was 93%, 90%, and 0.94, respectively. The highest performing parameter for IVIM was tissue diffusivity (D), and the pooled sensitivity, specificity, and area under the curve was 88%, 79%, and 0.90. Choice of MRI parameters had no significant effect on diagnostic performance. Conclusion Diffusion-weighted imaging, diffusion-tensor imaging, and intravoxel incoherent motion have comparable diagnostic accuracy with high sensitivity and specificity. Intravoxel incoherent motion is comparable to apparent diffusion coefficient. Diffusion-tensor imaging is potentially promising but to date the number of studies is limited. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Gabrielle C Baxter
- From the Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, England (G.C.B., F.J.G.); and Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England (M.J.G., A.J.P.)
| | - Martin J Graves
- From the Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, England (G.C.B., F.J.G.); and Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England (M.J.G., A.J.P.)
| | - Fiona J Gilbert
- From the Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, England (G.C.B., F.J.G.); and Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England (M.J.G., A.J.P.)
| | - Andrew J Patterson
- From the Department of Radiology, School of Clinical Medicine, University of Cambridge, Box 218, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, England (G.C.B., F.J.G.); and Department of Radiology, Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England (M.J.G., A.J.P.)
| |
Collapse
|
18
|
Arıbal E, Buğdaycı O. Supplementary abbreviated supine breast MRI following a standard prone breast MRI with single contrast administration: is it effective in detecting the initial contrast-enhancing lesions? ACTA ACUST UNITED AC 2019; 25:265-269. [PMID: 31124788 DOI: 10.5152/dir.2019.18167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE We aimed to evaluate the detectability of contrast enhancing lesions, initially demonstrated in standard prone dynamic contrast-enhanced MRI (DCE-MRI), in a supplementary supine breast MRI examination performed following the standard prone DCE-MRI examination and to show the correlation of spatial displacement of the lesions with breast size and density. METHODS Forty-two patients with 45 lesions were prospectively evaluated. Supine breast MRI was acquired with a 6-channel body coil following a standard DCE-MRI in prone position after repositioning the patient. No additional contrast media was administered. Images were evaluated by two radiologists in consensus for the visibility of the lesions. Lesion localization relative to the sternal midline, chest wall and nipple was measured in both prone and supine positions. Correlations between lesion displacement and breast size or breast density were analyzed. RESULTS Of 45 lesions, 23 (52.3%) were masses, 22 (47.7%) were nonmass enhancements (NME). Forty-four lesions (97.8%) could be detected on supine images. One linear NME of 33 mm in length could not be seen on supine images. Twenty (46.5%) of the detected lesions in supine position were equal to or smaller than 10 mm (11 NME [55%] and 9 masses [45%]). Lesion displacement relative to the chest wall increased with increasing breast size (P < 0.001). CONCLUSION An abbreviated supine sequence following a standard prone DCE-MRI with single contrast media administration is an effective method for defining the lesion location in supine position.
Collapse
Affiliation(s)
- Erkin Arıbal
- Department of Radiology, Marmara University School of Medicine, İstanbul, Turkey; Department of Radiology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| | - Onur Buğdaycı
- Department of Radiology, Marmara University School of Medicine, İstanbul, Turkey; Department of Radiology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, İstanbul, Turkey
| |
Collapse
|
19
|
Role of diffusion weighted imaging and magnetic resonance spectroscopy in breast cancer patients with indeterminate dynamic contrast enhanced magnetic resonance imaging findings. Magn Reson Imaging 2019; 61:66-72. [PMID: 31128225 DOI: 10.1016/j.mri.2019.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022]
Abstract
PURPOSE Dynamic contrast enhanced MRI (DCEMRI), diffusion weighted imaging (DWI) and in vivo proton (1H) magnetic resonance spectroscopy (MRS) provides functional and molecular nature of breast cancer. This study evaluates the potential of the combination of three MR parameters [curve kinetics, apparent diffusion coefficient (ADC) and total choline (tCho) concentration] determined from these techniques in increasing the sensitivity of breast cancer detection. METHODS MR investigations were carried out at 1.5 T on 56 patients with cytologically/histologically confirmed breast carcinoma. Single-voxel MRS was used to determine the tCho concentration. 3D FLASH was used for DCEMRI while single shot EPI based DWI was used for ADC determination. RESULTS On DCEMRI, one patient showed type I curve, while 8 showed type II and 47 showed type III curve thus giving a sensitivity of 83.9% as detection rate of malignancy. tCho concentration was above cut-off value (2.54 mmol/kg) for 50/56 cases giving a sensitivity of 89.3%. Among 9 indeterminate DCEMRI cases, tCho showed malignancy in 6 cases with type II curve. DWI detected malignancy in 54/56 cases that included 9 cases that were false negative on DCEMRI, yielding a sensitivity of 96.4%. A total of 54 cases showed malignancy when any two of the three MR parameters was positive for malignancy yielding a sensitivity of 96.4% while it increased to 100% when any one parameters showed positive result. CONCLUSION DWI showed highest sensitivity of detection compared to DCEMRI and MRS. Multi-parametric approach yielded 96.4% and 100% sensitivity when any two or one of the three parameters was taken as positive for malignancy, respectively. Also the results demonstrated that addition of DWI and MRS play a significant role in establishing the final diagnosis of malignancy, especially in cases where DCEMRI is indeterminate.
Collapse
|
20
|
Liu F, Wang M, Li H. Role of perfusion parameters on DCE-MRI and ADC values on DWMRI for invasive ductal carcinoma at 3.0 Tesla. World J Surg Oncol 2018; 16:239. [PMID: 30577820 PMCID: PMC6303963 DOI: 10.1186/s12957-018-1538-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The value of apparent diffusion coefficient (ADC) values and quantitative parameters (Ktrans, Kep, Ve) in detecting prognostic factor at 3.0 Tesla remains unclear, especially in predicting prognosis of breast cancer. METHODS A total of 151 patients with IDC underwent breast DCE-MRI and DWI-MRI at 3.0 Tesla following surgery. The ADC values were acquired with b values of 0 and 1000 s/mm2. The relationship between ADC values or DCE-MRI quantitative parameters and size, histologic grade (HG), lymph node metastasis (LNM), ER, PR, and Ki67 was evaluated. The predictive values of ADC, Ktrans, Kep, and Ve to prognosis of IDC were assessed. RESULTS ADC value was positively related to size (P = 0.04) and HER2 (P = 0.046) expression and negatively related to ER (P = 0.012) and PR (P < 0.001) expression. Ktrans value has positive correlation with size (P < 0.001), HG (P < 0.001), LNM (P < 0.001), HER2 (P = 0.007), and Ki67 (P < 0.001) expression and negative correlation with ER (P < 0.001) and PR (P < 0.001) expression. Kep value was positively related to size (P < 0.001) and negatively related to ER (P < 0.001) and PR (P < 0.001) expression. Ve value was negatively related to HER2 expression (P = 0.004). The Cox hazard ratio (HR) of ADC, Ktrans, Kep, and Ve values on survival was 5.26 (P = 0.093), 1.081 (P = 0.002), 1.006 (P = 0.941), and 0.883 (P = 0.926), respectively. CONCLUSIONS Ktrans value was a best predictive indicator of HG, LNM, ER, PR, and Ki67 expression, and ADC value was the best predictive indicator of HER2. Preoperative use of the 3.0 Tesla could provide important information to determine the optimal treatment plan.
Collapse
Affiliation(s)
- Fei Liu
- Department of Medical Imaging, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan, Nanjing, 210011, Jiangsu Province, China
| | - Mei Wang
- Department of Medical Imaging, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan, Nanjing, 210011, Jiangsu Province, China
| | - Haige Li
- Department of Medical Imaging, The Second Affiliated Hospital of Nanjing Medical University, No.121 Jiangjiayuan, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
21
|
Montemezzi S, Camera L, Giri MG, Pozzetto A, Caliò A, Meliadò G, Caumo F, Cavedon C. Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer? Eur J Radiol 2018; 108:120-127. [PMID: 30396643 DOI: 10.1016/j.ejrad.2018.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/20/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To test whether 3 T multiparametric magnetic resonance imaging (mMRI) provides information related to molecular subtypes of breast cancer. METHODS Women with mammographic or US findings of breast lesions (BI-RADS 4-5) underwent 3 T mMRI (DCE, DWI and MR spectroscopy). The histological type of breast cancer was assessed. Estrogen-receptor (ER), progesterone-receptor (PgR), Ki-67 status and HER-2 expression, assessed by immunohistochemistry (IHC), defined four molecular subtypes: Luminal-A, Luminal-B, HER2-enriched and triple-negative. Non-parametric tests (Kruskal-Wallis, k-sample equality of medians, and Mann-Whitney), logistic regression or ANOVA, and a multivariate analysis were performed to investigate correlations between the four molecular subtypes and mMRI (lesion volume, margins or distribution, enhancement pattern, ADC, type of kinetic curve, and total choline (tCho) signal-to-noise-ratio (SNR)). A ROC analysis was finally performed to test the diagnostic power of a multivariate logistic regression model. RESULTS 433 patients (453 lesions) were considered. Volume was smaller in Luminal-B and larger in triple-negative tumours compared to the other subtypes combined. Margins were significantly correlated to Luminal-A and Luminal-B. The type of curve was significantly correlated to Luminal-A. ADC values were higher in Luminal-A. tCho SNR was higher in triple-negative tumours. The ROC analysis showed that the area under the curve (AUC) significantly improved when multiple MRI features were used compared to individual parameters. CONCLUSIONS A significant correlation was found between some MRI features and molecular subtypes of breast tumours. A multiparametric approach improved the diagnostic power of MRI. However, further research is needed in order to predict the molecular subtype on the sole basis of mMRI.
Collapse
Affiliation(s)
- Stefania Montemezzi
- Department of Pathology and Diagnostics - Radiology Unit, University Hospital of Verona, Verona, Italy.
| | - Lucia Camera
- Department of Pathology and Diagnostics - Radiology Unit, University Hospital of Verona, Verona, Italy
| | - Maria Grazia Giri
- Department of Pathology and Diagnostics - Medical Physics Unit, University Hospital of Verona, Verona, Italy
| | - Alice Pozzetto
- Department of Pathology and Diagnostics - Radiology Unit, University Hospital of Verona, Verona, Italy
| | - Anna Caliò
- Department of Pathology and Diagnostics - Pathology Unit, University Hospital of Verona, Verona, Italy
| | - Gabriele Meliadò
- Department of Pathology and Diagnostics - Medical Physics Unit, University Hospital of Verona, Verona, Italy
| | - Francesca Caumo
- Radiology Department, Istituto Oncologico Veneto, Padova, Italy
| | - Carlo Cavedon
- Department of Pathology and Diagnostics - Medical Physics Unit, University Hospital of Verona, Verona, Italy
| |
Collapse
|
22
|
Leithner D, Wengert GJ, Helbich TH, Thakur S, Ochoa-Albiztegui RE, Morris EA, Pinker K. Clinical role of breast MRI now and going forward. Clin Radiol 2018; 73:700-714. [PMID: 29229179 PMCID: PMC6788454 DOI: 10.1016/j.crad.2017.10.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a well-established method in breast imaging, with manifold clinical applications, including the non-invasive differentiation between benign and malignant breast lesions, preoperative staging, detection of scar versus recurrence, implant assessment, and the evaluation of high-risk patients. At present, dynamic contrast-enhanced MRI is the most sensitive imaging technique for breast cancer diagnosis, and provides excellent morphological and to some extent also functional information. To compensate for the limited functional information, and to increase the specificity of MRI while preserving its sensitivity, additional functional parameters such as diffusion-weighted imaging and apparent diffusion coefficient mapping, and MR spectroscopic imaging have been investigated and implemented into the clinical routine. Several additional MRI parameters to capture breast cancer biology are still under investigation. MRI at high and ultra-high field strength and advances in hard- and software may also further improve this imaging technique. This article will review the current clinical role of breast MRI, including multiparametric MRI and abbreviated protocols, and provide an outlook on the future of this technique. In addition, the predictive and prognostic value of MRI as well as the evolving field of radiogenomics will be discussed.
Collapse
Affiliation(s)
- D Leithner
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany; Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - G J Wengert
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - S Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R E Ochoa-Albiztegui
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Liu D, Ba Z, Ni X, Wang L, Yu D, Ma X. Apparent Diffusion Coefficient to Subdivide Breast Imaging Reporting and Data System Magnetic Resonance Imaging (BI-RADS-MRI) Category 4 Lesions. Med Sci Monit 2018; 24:2180-2188. [PMID: 29644993 PMCID: PMC5914275 DOI: 10.12659/msm.907000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aims to subdivide BI-RADS-MRI (Breast Imaging Reporting and Data System Magnetic Resonance Imaging) Category 4 lesions and to evaluate the role of Fischer's scoring system, apparent diffusion coefficient (ADC), and Fischer's + ADC in differential diagnosis of breast lesions. MATERIAL AND METHODS This study retrospectively analyzed the data of 143 patients (150 breast lesions), who were diagnosed by biopsy, and received dynamic contrast enhancement and diffusion-weighted imaging. The diagnostic efficacies of ADC, Fischer's scoring system, and the Fischer's + ADC were analyzed by the receiver operating characteristics curve. The area under the curve (AUC) was calculated. Fischer's scoring system and the Fischer's + ADC were used to subdivide BI-RADS Category 4 breast lesions. RESULTS ADC value was negatively correlated with the tumor grade. The AUC of Fischer's + ADC (0.949) was significantly higher than that of ADC (0.855) and Fischer's (0.912) (P=0.0008 and 0.001, respectively). Scored by Fischer's scoring system, Category 4 and 5 indicated a likely malignant threshold with sensitivity and specificity of 98.70% and 65.75%, respectively. Scored by the Fischer's + ADC method, Category 4B and 4C indicated a likely malignant threshold with sensitivity of 97.40% and specificity of 82.19%. Kappa values were 0.63 (ADC), 0.65 (Fischer's), and 0.80 (Fischer's + ADC), respectively. The positive predictive value of BI-RADS 4A, 4B, and 4C were 7.69%, 52.38% and 89.29%, respectively. CONCLUSIONS Fischer's scoring system combined with ADC could reasonably subdivide Category 4 breast lesions with high specificity and sensitivity.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Radiology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China (mainland)
| | - Zhaogui Ba
- Department of Radiology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China (mainland)
| | - Xiaoli Ni
- Department of Radiology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China (mainland)
| | - Linhong Wang
- Department of Radiology, Laigang Hospital Affiliated to Taishan Medical University, Laiwu, Shandong, China (mainland)
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
24
|
Leithner D, Wengert G, Helbich T, Morris E, Pinker K. MRI in the Assessment of BI-RADS® 4 lesions. Top Magn Reson Imaging 2017; 26:191-199. [PMID: 28961568 DOI: 10.1097/rmr.0000000000000138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) lexicon, which is used ubiquitously to standardize reporting of breast magnetic resonance imaging (MRI), provides 7 BI-RADS assessment categories to indicate the level of suspicion of malignancy and guide further management. A BI-RADS category 4 assessment is assigned when an imaging abnormality does not fulfill the typical criteria for malignancy, but is suspicious enough to warrant a recommendation for biopsy. The BI-RADS category 4 assessment covers a wide range of probability of malignancy, from >2 to <95%. MRI is an essential noninvasive technique in breast imaging and the role of MRI in the assessment of ACR BI-RADS 4 lesions is manifold. In lesions classified as suspicious on imaging with mammography, digital breast tomosynthesis, and sonography, MRI can aid in the noninvasive differentiation of benign and malignant lesions and obviate unnecessary breast biopsies. When the suspicion of cancer is confirmed with MRI, concurrent staging of disease for treatment planning can be accomplished. This article will provide a comprehensive overview of the role of breast MRI in the assessment of ACR BI-RADS 4 lesions. In addition, we will discuss strategies to decrease false positives and avoid false negative results when reporting MRI of the breast.
Collapse
Affiliation(s)
- Doris Leithner
- *Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany †Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria ‡Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | |
Collapse
|
25
|
Magnetic Resonance Spectroscopy and its Clinical Applications: A Review. J Med Imaging Radiat Sci 2017; 48:233-253. [PMID: 31047406 DOI: 10.1016/j.jmir.2017.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/30/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022]
Abstract
In vivo NMR spectroscopy is known as magnetic resonance spectroscopy (MRS). MRS has been applied as both a research and a clinical tool in order to detect visible or nonvisible abnormalities. The adaptability of MRS allows a technique that can probe a wide variety of metabolic uses across different tissues. Although MRS is mostly applied for brain tissue, it can be used for detection, localization, staging, tumour aggressiveness evaluation, and tumour response assessment of breast, prostate, hepatic, and other cancers. In this article, the medical applications of MRS in the brain, including tumours, neural and psychiatric disorder studies, breast, prostate, hepatic, gastrointestinal, and genitourinary investigations have been reviewed.
Collapse
|
26
|
Mahajan A, Deshpande SS, Thakur MH. Diffusion magnetic resonance imaging: A molecular imaging tool caught between hope, hype and the real world of “personalized oncology”. World J Radiol 2017; 9:253-268. [PMID: 28717412 PMCID: PMC5491653 DOI: 10.4329/wjr.v9.i6.253] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
“Personalized oncology” is a multi-disciplinary science, which requires inputs from various streams for optimal patient management. Humongous progress in the treatment modalities available and the increasing need to provide functional information in addition to the morphological data; has led to leaping progress in the field of imaging. Magnetic resonance imaging has undergone tremendous progress with various newer MR techniques providing vital functional information and is becoming the cornerstone of “radiomics/radiogenomics”. Diffusion-weighted imaging is one such technique which capitalizes on the tendency of water protons to diffuse randomly in a given system. This technique has revolutionized oncological imaging, by giving vital qualitative and quantitative information regarding tumor biology which helps in detection, characterization and post treatment surveillance of the lesions and challenging the notion that “one size fits all”. It has been applied at various sites with different clinical experience. We hereby present a brief review of this novel functional imaging tool, with its application in “personalized oncology”.
Collapse
|
27
|
Porembka JH, Seiler SJ, Sharma PB. Advanced Breast MRI Techniques: Helpful for Screening Breast Cancer? CURRENT BREAST CANCER REPORTS 2016. [DOI: 10.1007/s12609-016-0226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|