1
|
Kiko T, Asano R, Ishibashi T, Endo H, Fujisaki S, Takano R, Akao M, Nishi N, Hayashi H, Kotoku A, Horinouchi H, Ueda J, Tsuji A, Fukuda T, Nakaoka Y, Ogo T. Balloon Pulmonary Angioplasty in Heterozygous RNF213 p.Arg4810Lys Variant Carriers Diagnosed With Chronic Thromboembolic Pulmonary Hypertension. J Am Heart Assoc 2025; 14:e039002. [PMID: 40240930 DOI: 10.1161/jaha.124.039002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/30/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND The heterozygous ring finger protein 213 (RNF213) p.Arg4810Lys variant has been identified in patients with chronic thromboembolic pulmonary hypertension (CTEPH). This study aimed to clarify the influence of the RNF213 p.Arg4810Lys variant on the response to balloon pulmonary angioplasty (BPA) in patients with CTEPH. METHODS We retrospectively analyzed 93 patients with CTEPH who underwent BPA by analyzing the RNF213 p.Arg4810Lys variant. Clinical parameters and hemodynamics following BPA were compared between RNF213 p.Arg4810Lys variant carriers and noncarriers, along with BPA-related complications. RESULTS Among 93 patients, 7 (8%) were heterozygous RNF213 p.Arg4810Lys variant carriers and 86 (92%) were noncarriers. Both groups showed significant improvements in mean pulmonary artery pressure and pulmonary vascular resistance following BPA. However, the 6-minute walk distance, symptoms, cardiac index, and right ventricular function did not significantly improve in heterozygous RNF213 variant carriers, whereas noncarriers showed notable improvements. Group differences in mean change from baseline to follow-up were significant in cardiac index (0.4 L/min per m2 [95% CI, 0.1-0.8]; P=0.019), 6-minute walk distance (70 m [95% CI, 6-135]; P=0.036), and right ventricular ejection fraction (9% [95% CI, 5-12]; P<0.001), all favoring noncarriers. Of the 515 BPA procedures, complications were significantly higher in variant carriers than in noncarriers (25% versus 8%; P<0.001). Multivariate logistic regression analysis indicated a significant association between the RNF213 p.Arg4810Lys variant and BPA complications (adjusted odds ratio, 7.0 [95% CI, 1.1-44.4]; P=0.038). CONCLUSIONS Heterozygous RNF213 p.Arg4810Lys variant carriers exhibited a poor response to BPA, suggesting that the RNF213 p.Arg4810Lys variant could be a risk factor for BPA complications.
Collapse
Affiliation(s)
- Takatoyo Kiko
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Ryotaro Asano
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
- Department of Vascular Physiology National Cerebral and Cardiovascular Center Research Institute Osaka Japan
| | - Tomohiko Ishibashi
- Department of Vascular Physiology National Cerebral and Cardiovascular Center Research Institute Osaka Japan
| | - Hiroyuki Endo
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Shinya Fujisaki
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Ryo Takano
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Mitsumasa Akao
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Naruhiro Nishi
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Hiroya Hayashi
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Akiyuki Kotoku
- Department of Radiology National Cerebral and Cardiovascular Center Osaka Japan
| | - Hiroki Horinouchi
- Department of Radiology National Cerebral and Cardiovascular Center Osaka Japan
| | - Jin Ueda
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Akihiro Tsuji
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Tetsuya Fukuda
- Department of Radiology National Cerebral and Cardiovascular Center Osaka Japan
| | - Yoshikazu Nakaoka
- Department of Vascular Physiology National Cerebral and Cardiovascular Center Research Institute Osaka Japan
| | - Takeshi Ogo
- Division of Pulmonary Circulation, Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| |
Collapse
|
2
|
Expert Panel on Cardiac Imaging, Renapurkar RD, Rajiah PS, Bartel TB, El-Sherief AH, Francois CJ, Hanneman K, Hsu JY, Jackson CD, Lenge de Rosen V, Safi LM, Sierra-Galan LM, Young PM, Bolen MA. ACR Appropriateness Criteria® Imaging for Pulmonary Embolism, Known Clot. J Am Coll Radiol 2025; 22:S261-S273. [PMID: 40409881 DOI: 10.1016/j.jacr.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/25/2025]
Abstract
Acute pulmonary embolism (PE) is a common medical problem associated with high cardiovascular morbidity and mortality. Often, survivors of acute PE present with recurring symptoms and can have long-term functional sequela. Imaging plays a crucial role in initial evaluation of patients with suspected recurrent or residual PE with V/Q scan and CT angiography often used as the initial test of choice. In patients with known chronic thromboembolic disease, imaging is often used to map the disease burden, for surveillance and treatment planning; CT angiography is often used as the preliminary test for this purpose. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | | | | | - Twyla B Bartel
- Global Advanced Imaging, Little Rock, Arkansas; Commission on Nuclear Medicine and Molecular Imaging
| | | | | | - Kate Hanneman
- University Medical Imaging Toronto, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Joe Y Hsu
- Kaiser Permanente, Los Angeles, California
| | - Christopher D Jackson
- The University of Tennessee Health Science Center, Memphis, Tennessee; Society of General Internal Medicine
| | | | - Lucy M Safi
- Mount Sinai Hospital, New York, New York; American Society of Echocardiography
| | - Lilia M Sierra-Galan
- American British Cowdray Medical Center, Mexico City, Mexico; Society for Cardiovascular Magnetic Resonance
| | | | | |
Collapse
|
3
|
Kerber B, Hüllner M, Maurer A, Flohr T, Ulrich S, Lichtblau M, Frauenfelder T, Franckenberg S. Photon-Counting Detector CT Iodine Maps Versus SPECT/CT: Advancing Lung Perfusion Imaging in Chronic Thromboembolic Pulmonary Hypertension. Invest Radiol 2025:00004424-990000000-00301. [PMID: 40014875 DOI: 10.1097/rli.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
OBJECTIVES The aim of this study was to compare the accuracy of photon-counting detector computed tomography (PCD-CT) iodine maps of the lung parenchyma with perfusion scintigraphy for detection and extent estimation of pulmonary perfusion defects. MATERIALS AND METHODS This institutional review board-approved retrospective study included 26 subjects (11 male, aged 57.2 ± 15.8 years; 15 female, aged 55.2 ± 15.7 years) who underwent clinically indicated PCD-CT and perfusion SPECT/CT to assess for chronic thromboembolic pulmonary hypertension (CTEPH). Two blinded radiologists used CT iodine maps and corresponding sharp-kernel CT reconstructions in lung window to evaluate presence and extent of lobar perfusion defects and detect patients with CTEPH (or CTEPH overlap with other causes of PH). Accordingly, 2 blinded nuclear medicine physicians/radiologists evaluated perfusion SPECT/CT scans. The clinical diagnosis was reviewed in an interdisciplinary clinical setting. Quantitative analyses were calculated for both modalities. Perfusion defect estimation was compared with right heart catheter measurements. RESULTS Of the 26 subjects included, 10 were diagnosed with CTEPH or CTEPH overlap, 12 were diagnosed with PH associated with other pathologic mechanisms, 3 had no PH, and 1 had previous acute pulmonary embolism, which resolved. Radiation dose was greatly reduced for PCD-CT compared with SPECT/CT (1.19 [±0.33] mSv; 6.34 [±1.68] mSv, respectively, P < 0.001). Both PCD-CT readers (R1, R2) showed a trend toward higher accuracy, sensitivity, and specificity for CTEPH diagnosis compared with the scintigraphy consensus (SC) (accuracy: R1 0.85, R2 0.88, SC 0.73; sensitivity: R1 0.90, R2 0.90, SC 0.80; specificity: R1 0.81, R2 0.88, SC 0.69), although there was no significant difference observed (P > 0.688). There was good to excellent agreement between both PCD-CT readers for perfusion defect estimation. Moderate intermodality agreement was observed for CTEPH diagnosis certainty and perfusion defect estimation. The quantitative evaluation showed strong to excellent correlation between PCD-CT and SPECT/CT relative perfusion. There was a significant moderate correlation between PCD-CT perfusion defect estimations and mean pulmonary artery pressure (R1: r = 0.49, P = 0.020; R2: r = 0.49, P = 0.021), pulmonary vascular resistance (R1: r = 0.60, P = 0.003; R2: r = 0.52, P = 0.013), and cardiac index (R1: r = -0.45, P = 0.042). CONCLUSIONS PCD-CT iodine maps allow for accurate CTEPH detection and are comparable to perfusion SPECT/CT with good quantitative correlation, but only moderate qualitative agreement, at greatly reduced radiation dose. Furthermore, visual PCD-CT perfusion defect extent was associated with prognostic right heart catheter measurements.
Collapse
Affiliation(s)
- Bjarne Kerber
- From the Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, University Zurich, Zurich, Switzerland (B.K., T.Fl., T.Fr., S.F.); Department of Nuclear Medicine, University Hospital Zurich, University Zurich, Zurich, Switzerland (M.H., A.M.); Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, the Netherlands (T.Fl.); and Clinic of Pulmonology, University Hospital Zurich, Zurich, Switzerland (S.U., M.L.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Hansen JV, Poulsen MW, Nielsen‐Kudsk JE, Kalra MK, Lyhne MD, Andersen A. Quantitative pulmonary perfusion in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension. Pulm Circ 2024; 14:e12445. [PMID: 39525949 PMCID: PMC11544464 DOI: 10.1002/pul2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Current methods for quantifying perfusion from computed tomography pulmonary angiography (CTPA) often rely on semi-quantitative scoring systems and requires an experienced evaluator. Few studies report on absolute quantitative variables derived from the images, and the methods are varied with mixed results. Dual-energy CTPA (DE-CTPA) enables automatic quantification of lung and lobar perfusion with minimal user interaction by utilizing machine learning based software. We aimed to evaluate differences in DE-CTPA derived quantitative perfusion variables between patients with acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension (CTEPH). This retrospective, single-center, observational study included 162 adult patients diagnosed with PE (n = 81) or CTEPH (n = 81) and scanned using dual-energy CT between 2020 and 2023. Mann-Whitney U tests and permutational analysis of variance (PERMANOVA) were used for comparative analyses. We found whole lung perfusion blood volume to be lower (p < 0.001) in PE patients (median 3399 mL [2554, 4284]) than in CTEPH patients (median 4094 mL [3397, 4818]). The same was observed at single lung and lobar level. PERMANOVA encompassing all perfusion variables showed a difference between the two groups (F-statistic = 13.3, p = 0.002). Utilizing logistic regression, right and left lower lobe perfusion blood volume showed some ability to differentiate between PE and CTEPH with area under the receiver operation characteristics curve values of 0.71 (95% CI: 0.56; 0.84) and 0.72 (95% CI: 0.56; 0.86). Pulmonary perfusion is lower in patients with PE than patients with CTEPH, highlighted by differences in DECT-derived perfusion blood volume. Quantitative perfusion variables might be useful to differentiate between the two diseases.
Collapse
Affiliation(s)
- Jacob V. Hansen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Mette W. Poulsen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Jens E. Nielsen‐Kudsk
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| | - Mannudeep K. Kalra
- Department of RadiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Mads D. Lyhne
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
- Department of Anaesthesiology and Intensive CareAarhus University HospitalAarhus NDenmark
| | - Asger Andersen
- Department of CardiologyAarhus University HospitalAarhus NDenmark
- Department of Clinical MedicineAarhus UniversityAarhus NDenmark
| |
Collapse
|
5
|
Rajagopal S, Bogaard HJ, Elbaz MSM, Freed BH, Remy-Jardin M, van Beek EJR, Gopalan D, Kiely DG. Emerging multimodality imaging techniques for the pulmonary circulation. Eur Respir J 2024; 64:2401128. [PMID: 39209480 PMCID: PMC11525339 DOI: 10.1183/13993003.01128-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) remains a challenging condition to diagnose, classify and treat. Current approaches to the assessment of PH include echocardiography, ventilation/perfusion scintigraphy, cross-sectional imaging using computed tomography and magnetic resonance imaging, and right heart catheterisation. However, these approaches only provide an indirect readout of the primary pathology of the disease: abnormal vascular remodelling in the pulmonary circulation. With the advent of newer imaging techniques, there is a shift toward increased utilisation of noninvasive high-resolution modalities that offer a more comprehensive cardiopulmonary assessment and improved visualisation of the different components of the pulmonary circulation. In this review, we explore advances in imaging of the pulmonary vasculature and their potential clinical translation. These include advances in diagnosis and assessing treatment response, as well as strategies that allow reduced radiation exposure and implementation of artificial intelligence technology. These emerging modalities hold the promise of developing a deeper understanding of pulmonary vascular disease and the impact of comorbidities. They also have the potential to improve patient outcomes by reducing time to diagnosis, refining classification, monitoring treatment response and improving our understanding of disease mechanisms.
Collapse
Affiliation(s)
| | - Harm J Bogaard
- Department of Pulmonology, Amsterdam University Medical Center, Location VU Medical Center, Amsterdam, The Netherlands
| | - Mohammed S M Elbaz
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit and NIHR Biomedical Research Centre Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
6
|
Ghani H, Weir-McCall JR, Ruggiero A, Pepke-Zaba J. Imaging in chronic thromboembolic pulmonary disease: Current practice and advances. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2024; 17:100536. [PMID: 39711768 PMCID: PMC11657945 DOI: 10.1016/j.ijcchd.2024.100536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 12/24/2024] Open
Abstract
Chronic thromboembolic pulmonary disease (CTEPD) with or without pulmonary hypertension (PH) occurs when thromboemboli in pulmonary arteries fail to resolve completely. Pulmonary artery obstructions due to chronic thrombi and secondary microvasculopathy can increase pulmonary arterial pressure and resistance leading to chronic thromboembolic PH (CTEPH). Mechanical interventions and/or PH medications can improve cardiopulmonary haemodynamic, alleviate symptoms, and decrease mortality risk. Imaging is pivotal throughout the CTEPD management journey, spanning diagnosis, treatment planning, and assessing treatment outcome. With just computed tomography (CT) pulmonary angiogram and right heart catheterisation, an experienced multidisciplinary team can determine surgical candidacy in most cases. Dual energy CT, lung subtraction iodine mapping CT, and dynamic contrast-enhanced magnetic resonance imaging (MRI) offer comparable sensitivities with ventilation-perfusion scintigraphy in diagnosing CTEPD. Pulmonary angiogram with digital subtraction angiography although considered the gold standard for assessing thrombi extent and vasculature morphology is now mostly used to assess targets for balloon pulmonary angioplasty. Advancements in CT modalities and innovative MRI metrics offer better insight into CTEPD management but are limited by the availability of technology and expertise. Learning from current artificial intelligence application in medical imaging, there is promise in tapping the wealth of data provided by CTEPD imaging through automating cardiopulmonary and vascular morphology analysis.
Collapse
Affiliation(s)
- Hakim Ghani
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| | - Jonathan R. Weir-McCall
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Royal Papworth Hospital, Cambridge, UK
| | | | - Joanna Pepke-Zaba
- National Pulmonary Hypertension Centre, Royal Papworth Hospital, UK
- Institute of Heart and Lung Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Moore J, Altschul E, Remy-Jardin M, Raoof S. Chronic Thromboembolic Pulmonary Hypertension: Clinical and Imaging Evaluation. Clin Chest Med 2024; 45:405-418. [PMID: 38816096 DOI: 10.1016/j.ccm.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of pulmonary embolism and is an important cause of pulmonary hypertension. As a clinical entity, it is frequently underdiagnosed with prolonged diagnostic delays. This study reviews the clinical and radiographic findings associated with CTEPH to improve awareness and recognition. Strengths and limitations of multiple imaging modalities are reviewed. Accompanying images are provided to supplement the text and provide examples of important findings for the reader.
Collapse
Affiliation(s)
- Jonathan Moore
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA
| | - Erica Altschul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA
| | - Martine Remy-Jardin
- Department of Thoracic Imaging, Univ.Lille, CHU Lille, LILLE F-59000, France; Univ.Lille, CHU Lille, ULR 2694 METRICS Evaluation des Technologies de Santé et des Pratiques Médicales, LILLE F-59000, France
| | - Suhail Raoof
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY, USA.
| |
Collapse
|
8
|
Renapurkar RD, Bullen J, Rizk A, Abozeed M, Karim W, Bin Saeedan M, Tong MZ, Heresi GA. A Novel Dual Energy Computed Tomography Score Correlates With Postoperative Outcomes in Chronic Thromboembolic Pulmonary Hypertension. J Thorac Imaging 2024; 39:178-184. [PMID: 37423613 DOI: 10.1097/rti.0000000000000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
PURPOSE To compare dual-energy computed tomography (DECT) based qualitative and quantitative parameters in chronic thromboembolic pulmonary hypertension with various postoperative primary and secondary endpoints. MATERIALS AND METHODS This was a retrospective analysis of 64 patients with chronic thromboembolic pulmonary hypertension who underwent DECT. First, a clot score was calculated by assigning the following score: pulmonary trunk-5, each main pulmonary artery-4, each lobar-3, each segmental-2, and subsegmental-1 per lobe; the sum total was then calculated. The perfusion defect (PD) score was calculated by assigning 1 point to each segmental PD. The combined score was calculated by adding clot and PD scores. For quantitative evaluation, we calculated perfused blood volume (PBV) (%) of each lung and the sum of both lungs. Primary endpoints included testing association between combined score and total PBV with change in mean pulmonary arterial pressure ([mPAP], change calculated as preop minus postop values). Secondary endpoints included explorative analysis of the correlation between combined score and PBV with change in preoperative and postoperative pulmonary vascular resistance, change in preoperative 6-minute walk distance (6MWD), and immediate postoperative complications such as reperfusion edema, ECMO placement, stroke, death and mechanical ventilation for more than 48 hours, all within 1 month of surgery. RESULTS Higher combined scores were associated with larger decreases in mPAP ( =0.27, P =0.036). On average, the decrease in mPAP (pre mPAP-post mPAP) increased by 2.2 mm Hg (95% CI: -0.6, 5.0) with each 10 unit increase in combined score. The correlation between total PBV and change in mPAP was small and not statistically significant. During an exploratory analysis, higher combined scores were associated with larger increases in 6MWD at 6 months postprocedure ( =0.55, P =0.002). CONCLUSION Calculation of DECT-based combined score offers potential in the evaluation of hemodynamic response to surgery. This response can also be objectively quantified.
Collapse
Affiliation(s)
| | | | - Alain Rizk
- Section of Thoracic Imaging, Imaging Institute
| | | | - Wadih Karim
- Section of Thoracic Imaging, Imaging Institute
| | | | | | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
9
|
Israël-Biet D, Pastré J, Nunes H. Sarcoidosis-Associated Pulmonary Hypertension. J Clin Med 2024; 13:2054. [PMID: 38610818 PMCID: PMC11012707 DOI: 10.3390/jcm13072054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Sarcoidosis-associated pulmonary hypertension (SAPH) is a very severe complication of the disease, largely impacting its morbidity and being one of its strongest predictors of mortality. With the recent modifications of the hemodynamic definition of pulmonary hypertension (mean arterial pulmonary pressure >20 instead of <25 mmHg,) its prevalence is presently not precisely known, but it affects from 3 to 20% of sarcoid patients; mostly, although not exclusively, those with an advanced, fibrotic pulmonary disease. Its gold-standard diagnostic tool remains right heart catheterization (RHC). The decision to perform it relies on an expert decision after a non-invasive work-up, in which echocardiography remains the screening tool of choice. The mechanisms underlying SAPH, very often entangled, are crucial to define, as appropriate and personalized therapeutic strategies will aim at targeting the most significant ones. There are no recommendations so far as to the indications and modalities of the medical treatment of SAPH, which is based upon the opinion of a multidisciplinary team of sarcoidosis, pulmonary hypertension and sometimes lung transplant experts.
Collapse
Affiliation(s)
| | - Jean Pastré
- Service de Pneumologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France;
| | - Hilario Nunes
- Service de Pneumologie, Hôpital Avivenne, AP-HP, 93000 Bobigny, France;
- Inserm UMR 1272 “Hypoxie et Poumon”, UFR de Santé, Médecine et Biologie Humaine (SMBH), Université Sorbonne Paris-Nord, 93000 Bobigny, France
| |
Collapse
|
10
|
Maier J, Erath J, Sawall S, Fournié E, Stierstorfer K, Kachelrieß M. Raw data consistent deep learning-based field of view extension for dual-source dual-energy CT. Med Phys 2024; 51:1822-1831. [PMID: 37650780 DOI: 10.1002/mp.16684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Due to technical constraints, dual-source dual-energy CT scans may lack spectral information in the periphery of the patient. PURPOSE Here, we propose a deep learning-based iterative reconstruction to recover the missing spectral information outside the field of measurement (FOM) of the second source-detector pair. METHODS In today's Siemens dual-source CT systems, one source-detector pair (referred to as A) typically has a FOM of about 50 cm, while the FOM of the other pair (referred to as B) is limited by technical constraints to a diameter of about 35 cm. As a result, dual-energy applications are currently only available within the small FOM, limiting their use for larger patients. To derive a reconstruction at B's energy for the entire patient cross-section, we propose a deep learning-based iterative reconstruction. Starting with A's reconstruction as initial estimate, it employs a neural network in each iteration to refine the current estimate according to a raw data fidelity measure. Here, the corresponding mapping is trained using simulated chest, abdomen, and pelvis scans based on a data set containing 70 full body CT scans. Finally, the proposed approach is tested on simulated and measured dual-source dual-energy scans and compared against existing reference approaches. RESULTS For all test cases, the proposed approach was able to provide artifact-free CT reconstructions of B for the entire patient cross-section. Considering simulated data, the remaining error of the reconstructions is between 10 and 17 HU on average, which is about half as low as the reference approaches. A similar performance with an average error of 8 HU could be achieved for real phantom measurements. CONCLUSIONS The proposed approach is able to recover missing dual-energy information for patients exceeding the small 35 cm FOM of dual-source CT systems. Therefore, it potentially allows to extend dual-energy applications to the entire-patient cross section.
Collapse
Affiliation(s)
- Joscha Maier
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julien Erath
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | - Stefan Sawall
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | | | - Marc Kachelrieß
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Moore J, Remy J, Altschul E, Chusid J, Flohr T, Raoof S, Remy-Jardin M. Thoracic Applications of Spectral CT Scan. Chest 2024; 165:417-430. [PMID: 37619663 DOI: 10.1016/j.chest.2023.07.4225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
TOPIC IMPORTANCE Thoracic imaging with CT scan has become an essential component in the evaluation of respiratory and thoracic diseases. Providers have historically used conventional single-energy CT; however, prevalence of dual-energy CT (DECT) is increasing, and as such, it is important for thoracic physicians to recognize the utility and limitations of this technology. REVIEW FINDINGS The technical aspects of DECT are presented, and practical approaches to using DECT are provided. Imaging at multiple energy spectra allows for postprocessing of the data and the possibility of creating multiple distinct image reconstructions based on the clinical question being asked. The data regarding utility of DECT in pulmonary vascular disorders, ventilatory defects, and thoracic oncology are presented. A pictorial essay is provided to give examples of the strengths associated with DECT. SUMMARY DECT has been most heavily studied in chronic thromboembolic pulmonary hypertension; however, it is increasingly being used across a wide spectrum of thoracic diseases. DECT combines morphologic and functional assessments in a single imaging acquisition, providing clinicians with a powerful diagnostic tool. Its role in the evaluation and treatment of thoracic diseases will likely continue to expand in the coming years as clinicians become more experienced with the technology.
Collapse
Affiliation(s)
- Jonathan Moore
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jacques Remy
- Univ Lille, Department of Thoracic Imaging, Lille, France
| | - Erica Altschul
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY
| | - Jesse Chusid
- Feinstein Institutes for Medical Research, and Imaging Services, Department of Radiology, Northwell Health, Manhasset, NY
| | - Thomas Flohr
- Department of Computed Tomography Research & Development, Siemens Healthineers, Forchheim, Germany
| | - Suhail Raoof
- Department of Pulmonary and Critical Care Medicine, Lenox Hill Hospital, Northwell Health Physician Partners, New York, NY.
| | - Martine Remy-Jardin
- Univ Lille, Department of Thoracic Imaging, Lille, France; Univ Lille, CHU Lille, Evaluation des technologies de santé et des pratiques médicales, Lille, France
| |
Collapse
|
12
|
Goda A, Takeuchi K, Kikuchi H, Inami T, Kohno T, Soejima K, Satoh T. Pulmonary artery pressure-perfusion relation during exercise in patients with chronic thromboembolic pulmonary hypertension using pulmonary arteriography and right-heart catheterization. INTERNATIONAL JOURNAL OF CARDIOLOGY. HEART & VASCULATURE 2023; 48:101252. [PMID: 37663616 PMCID: PMC10474603 DOI: 10.1016/j.ijcha.2023.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023]
Abstract
Background In pulmonary hypertension (PH), pulmonary artery pressure (PAP) does not increase to pulmonary perfusion (PP) < 50%. During exercise, PAP may be increased even at PP > 50% for the early detection of PP disorders. The relationship between PP estimated by pulmonary angiography (PAG) and PAP was evaluated in patients with chronic thromboembolic PH (CTEPH) treated by balloon pulmonary angioplasty with near-normal PH. Methods Thirty-one patients (age 60 ± 11 years) with CTEPH underwent catheterization at rest and during exercise. Each segmental PP was determined by visualization of its segmental pulmonary artery and graded from 0 to 3 in the PAG. PP was estimated as the percentage PAG (%PAG) score-%summed total of all segmental PP/the full score-54. Results The mean PAP (mPAP) increased from 28 ± 6 mmHg to 46 ± 10 mmHg during exercise. Transpulmonary pressure gradient, the value of mPAP with the pulmonary artery wedge pressure substituted at peak exercise, was negatively correlated with %PAG score (rs = -0.56, p < 0.001) and elevated at > 50% PP. Conclusions The PAP-PP relationship at peak exercise was correlated, shifting from the relationship at rest, and the PAP started to rise with PP > 50%.
Collapse
Affiliation(s)
- Ayumi Goda
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Kaori Takeuchi
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Hanako Kikuchi
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Takumi Inami
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Takashi Kohno
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Kyoko Soejima
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| | - Toru Satoh
- Department of Cardiovascular Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
13
|
Bird E, Hasenstab K, Kim N, Madani M, Malhotra A, Hahn L, Kligerman S, Hsiao A, Contijoch F. Mapping the Spatial Extent of Hypoperfusion in Chronic Thromboembolic Pulmonary Hypertension Using Multienergy CT. Radiol Cardiothorac Imaging 2023; 5:e220221. [PMID: 37693197 PMCID: PMC10483250 DOI: 10.1148/ryct.220221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 09/12/2023]
Abstract
Purpose To assess if a novel automated method to spatially delineate and quantify the extent of hypoperfusion on multienergy CT angiograms can aid the evaluation of chronic thromboembolic pulmonary hypertension (CTEPH) disease severity. Materials and Methods Multienergy CT angiograms obtained between January 2018 and December 2020 in 51 patients with CTEPH (mean age, 47 years ± 17 [SD]; 27 women) were retrospectively compared with those in 110 controls with no imaging findings suggestive of pulmonary vascular abnormalities (mean age, 51 years ± 16; 81 women). Parenchymal iodine values were automatically isolated using deep learning lobar lung segmentations. Low iodine concentration was used to delineate areas of hypoperfusion and calculate hypoperfused lung volume (HLV). Receiver operating characteristic curves, correlations with preoperative and postoperative changes in invasive hemodynamics, and comparison with visual assessment of lobar hypoperfusion by two expert readers were evaluated. Results Global HLV correctly separated patients with CTEPH from controls (area under the receiver operating characteristic curve = 0.84; 10% HLV cutoff: 90% sensitivity, 72% accuracy, and 64% specificity) and correlated moderately with hemodynamic severity at time of imaging (pulmonary vascular resistance [PVR], ρ = 0.67; P < .001) and change after surgical treatment (∆PVR, ρ = -0.61; P < .001). In patients surgically classified as having segmental disease, global HLV correlated with preoperative PVR (ρ = 0.81) and postoperative ∆PVR (ρ = -0.70). Lobar HLV correlated moderately with expert reader lobar assessment (ρHLV = 0.71 for reader 1; ρHLV = 0.67 for reader 2). Conclusion Automated quantification of hypoperfused areas in patients with CTEPH can be performed from clinical multienergy CT examinations and may aid clinical evaluation, particularly in patients with segmental-level disease.Keywords: CT-Spectral Imaging (Multienergy), Pulmonary, Pulmonary Arteries, Embolism/Thrombosis, Chronic Thromboembolic Pulmonary Hypertension, Multienergy CT, Hypoperfusion© RSNA, 2023.
Collapse
Affiliation(s)
- Elizabeth Bird
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Kyle Hasenstab
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Nick Kim
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Michael Madani
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Atul Malhotra
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Lewis Hahn
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Seth Kligerman
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Albert Hsiao
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| | - Francisco Contijoch
- From the Department of Bioengineering (E.B., A.H., F.C.), Department
of Radiology (K.H., L.H., S.K., A.H., F.C.), Department of Medicine, Division of
Pulmonary, Critical Care, and Sleep Medicine (N.K., A.M.), and Department of
Surgery (M.M.), University of California San Diego, 9500 Gilman Dr, MC 0412, La
Jolla, CA 92093
| |
Collapse
|
14
|
Ozawa Y, Ohno Y, Nagata H, Tamokami K, Nishikimi K, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Toyama H. Advances for Pulmonary Functional Imaging: Dual-Energy Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2295. [PMID: 37443688 DOI: 10.3390/diagnostics13132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Dual-energy computed tomography (DECT) can improve the differentiation of material by using two different X-ray energy spectra, and may provide new imaging techniques to diagnostic radiology to overcome the limitations of conventional CT in characterizing tissue. Some techniques have used dual-energy imaging, which mainly includes dual-sourced, rapid kVp switching, dual-layer detectors, and split-filter imaging. In iodine images, images of the lung's perfused blood volume (PBV) based on DECT have been applied in patients with pulmonary embolism to obtain both images of the PE occluding the pulmonary artery and the consequent perfusion defects in the lung's parenchyma. PBV images of the lung also have the potential to indicate the severity of PE, including chronic thromboembolic pulmonary hypertension. Virtual monochromatic imaging can improve the accuracy of diagnosing pulmonary vascular diseases by optimizing kiloelectronvolt settings for various purposes. Iodine images also could provide a new approach in the area of thoracic oncology, for example, for the characterization of pulmonary nodules and mediastinal lymph nodes. DECT-based lung ventilation imaging is also available with noble gases with high atomic numbers, such as xenon, which is similar to iodine. A ventilation map of the lung can be used to image various pulmonary diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keigo Tamokami
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keitaro Nishikimi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
15
|
Update on the roles of imaging in the management of chronic thromboembolic pulmonary hypertension. J Cardiol 2023; 81:297-306. [PMID: 35490106 DOI: 10.1016/j.jjcc.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH), classified as group 4 pulmonary hypertension (PH), is caused by stenosis and obstruction of the pulmonary arteries by organized thrombi that are incompletely resolved after acute pulmonary embolism. The prognosis of patients with CTEPH is poor if untreated; however, in expert centers with multidisciplinary teams, a treatment strategy for CTEPH has been established, dramatically improving its prognosis. CTEPH is currently not a fatal disease and is the only curable form of PH. Despite these advances and the establishment of treatment approaches, early diagnosis is still challenging, especially for non-experts, for several reasons. One of the reasons for this is insufficient knowledge of the various diagnostic imaging modalities, which are essential in the clinical practice of CTEPH. Imaging modalities should detect the following pathological findings: lung perfusion defects, thromboembolic lesions in pulmonary arteries, and right ventricular remodeling and dysfunction. Perfusion lung scintigraphy and catheter angiography have long been considered gold standards for the detection of perfusion defects and assessment of vascular lesions, respectively. However, advances in imaging technology of computed tomography and magnetic resonance imaging have enabled the non-invasive detection of these abnormal findings in a single examination. Cardiac magnetic resonance (CMR) is the gold standard for evaluating the morphology and function of the right heart; however, state-of-the-art techniques in CMR allow the assessment of cardiac tissue characterization and hemodynamics in the pulmonary arteries. Comprehensive knowledge of the role of imaging in CTEPH enables appropriate use of imaging modalities and accurate image interpretation, resulting in early diagnosis, determination of treatment strategies, and appropriate evaluation of treatment efficacy. This review summarizes the current roles of imaging in the clinical practice for CTEPH, demonstrating the characteristic findings observed in each modality.
Collapse
|
16
|
Si-Mohamed SA, Zumbihl L, Turquier S, Boccalini S, Mornex JF, Douek P, Cottin V, Boussel L. Lung Dual-Energy CT Perfusion Blood Volume as a Marker of Severity in Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2023; 13:diagnostics13040769. [PMID: 36832256 PMCID: PMC9955200 DOI: 10.3390/diagnostics13040769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
In chronic thromboembolic pulmonary hypertension (CTEPH), assessment of severity requires right heart catheterization (RHC) through cardiac index (CI). Previous studies have shown that dual-energy CT allows a quantitative assessment of the lung perfusion blood volume (PBV). Therefore, the objective was to evaluate the quantitative PBV as a marker of severity in CTEPH. In the present study, thirty-three patients with CTEPH (22 women, 68.2 ± 14.8 years) were included from May 2017 to September 2021. Mean quantitative PBV was 7.6% ± 3.1 and correlated with CI (r = 0.519, p = 0.002). Mean qualitative PBV was 41.1 ± 13.4 and did not correlate with CI. Quantitative PBV AUC values were 0.795 (95% CI: 0.637-0.953, p = 0.013) for a CI ≥ 2 L/min/m2 and 0.752 (95% CI: 0.575-0.929, p = 0.020) for a CI ≥ 2.5 L/min/m2. In conclusion, quantitative lung PBV outperformed qualitative PBV for its correlation with the cardiac index and may be used as a non-invasive marker of severity in CTPEH patients.
Collapse
Affiliation(s)
- Salim A. Si-Mohamed
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
- Correspondence: ; Tel.: +33-04-7235-7335
| | - Léa Zumbihl
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
| | - Ségolène Turquier
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Sara Boccalini
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Jean-Francois Mornex
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Philippe Douek
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, 69677 Lyon, France
- UMR 754, INRAE, Claude Bernard University Lyon, 69007 Lyon, France
- ERN-LUNG, 69500 Bron, France
| | - Loic Boussel
- Radiology Department, Louis Pradel Hospital, 59 Boulevard Pinel, 69500 Bron, France
- INSA-Lyon, University of Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, 69621 Lyon, France
| |
Collapse
|
17
|
Remy-Jardin M, Hutt A, Remy J. Chronic Thromboembolic Pulmonary Disease and Chronic Thromboembolic Pulmonary Hypertension. Semin Respir Crit Care Med 2022; 43:936-945. [PMID: 36307107 DOI: 10.1055/s-0042-1755570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) and chronic thromboembolic pulmonary disease (CTEPD) are two terms characterizing symptomatic patients with chronic thromboembolic occlusions of pulmonary arteries with or without pulmonary hypertension at rest. Their diagnosis follows evolving schemas that integrate technological advances of pivotal imaging modalities among which computed tomography angiography plays a major role. This review article summarizes the current knowledge on the natural history of acute pulmonary embolism and its evolution toward chronic pulmonary embolism, as well as the imaging clues, for the identification of chronically obstructed pulmonary arteries. The requirements for imaging at the time of therapeutic decisions are also described in the light of recent updates in the literature from multidisciplinary groups of experts. Because an early diagnosis of CTEPH remains a challenge for the medical community, several practical issues are included in this article with the objective of improving the knowledge and collaboration between radiologists and clinicians in service to the patient.
Collapse
Affiliation(s)
| | - Antoine Hutt
- Department of Thoracic Imaging, Heart & Lung Institute, Lille Cedex, France
| | - Jacques Remy
- Department of Thoracic Imaging, Heart & Lung Institute, Lille Cedex, France
| |
Collapse
|
18
|
Correlation between CT Value on Lung Subtraction CT and Radioactive Count on Perfusion Lung Single Photon Emission CT in Chronic Thromboembolic Pulmonary Hypertension. Diagnostics (Basel) 2022; 12:diagnostics12112895. [PMID: 36428955 PMCID: PMC9688979 DOI: 10.3390/diagnostics12112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Lung subtraction CT (LSCT), the subtraction of noncontrast CT from CT pulmonary angiography (CTPA) without spatial misregistration, is easily applicable by utilizing a software-based deformable image registration technique without additional hardware and permits the evaluation of lung perfusion as iodine accumulation, similar to that observed in perfusion lung single photon emission CT (PL-SPECT). The aim of this study was to use LSCT to newly assess the quantitative correlation between the CT value on LSCT and radioactive count on PL-SPECT as a reference and validate the quantification of lung perfusion by measuring the CT value in chronic thromboembolic pulmonary hypertension (CTEPH). Methods: We prospectively enrolled 47 consecutive patients with CTEPH undergoing both LSCT and PL-SPECT; we used noncontrast CT, CTPA, and LSCT to measure CT values and PL-SPECT to measure radioactive counts in areas representing three different perfusion classes—no perfusion defect, subsegmental perfusion defect, and segmental perfusion defect; we compared CT values on noncontrast CT, CTPA, and LSCT and radioactive counts on PL-SPECT among the three classes, then assessed the correlation between them. Results: Both the CT values and radioactive counts differed significantly among the three classes (p < 0.01 for all) and showed weak correlation (ρ = 0.38) by noncontrast CT, moderate correlation (ρ = 0.61) by CTPA, and strong correlation (ρ = 0.76) by LSCT. Conclusions: The CT value measurement on LSCT is a novel quantitative approach to assess lung perfusion in CTEPH and only correlates strongly with radioactive count measurement on PL-SPECT.
Collapse
|
19
|
Miwa K, Taniguchi Y, Fujii H, Matsuoka Y, Onishi H, Yanaka K, Izawa Y, Tsuboi Y, Kono A, Emoto N, Hirata K. Microvasculopathy Evaluated by Dual-Energy Computed Tomography in Patients with Chronic Thromboembolic Pulmonary Hypertension and Pulmonary Arterial Hypertension. Life (Basel) 2022; 12:1232. [PMID: 36013412 PMCID: PMC9410450 DOI: 10.3390/life12081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Poor subpleural perfusion (PSP) on dual-energy computed tomography (DE-CT) suggests microvasculopathy in chronic thromboembolic pulmonary hypertension (CTEPH). However, whether the microvasculopathy findings are equivalent to those in pulmonary arterial hypertension (PAH) remains unclear. The aim of this study was to elucidate the characteristics of microvasculopathy in CTEPH compared to those of that in PAH. Methods: We retrospectively reviewed subpleural perfusion on DE-CT and the hemodynamics of 23 patients with PAH and 113 with inoperable CTEPH. Subpleural perfusion on DE-CT was classified as poor (subpleural spaces in all segments with little or no perfusion) or normal. Results: PSP was observed in 51% of patients with CTEPH and in 4% of those with PAH (p < 0.01). CTEPH patients with PSP had poorer baseline hemodynamics and lower diffusing capacity for carbon monoxide divided by the alveolar volume (DLCO/VA) than those with CTEPH with normal perfusion (pulmonary vascular resistance [PVR]: 768 ± 445 dynes-sec/cm5 vs. 463 ± 284 dynes-sec/cm5, p < 0.01; DLCO/VA, 60.4 ± 16.8% vs. 75.9 ± 15.7%, p < 0.001). Despite the existence of PSP, hemodynamics improved to nearly normal in both groups after balloon pulmonary angioplasty. Conclusions: PSP on DE-CT, which is one of the specific imaging findings in CTEPH, might suggest a different mechanism of microvasculopathy from that in PAH.
Collapse
Affiliation(s)
- Keisuke Miwa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu Taniguchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroyuki Fujii
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoichiro Matsuoka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hiroyuki Onishi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichi Yanaka
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yu Izawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasunori Tsuboi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Atsushi Kono
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kenichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
20
|
Rezaei-Kalantari K, Samimi K, Zomorodian H, Bakhshandeh H, Jafari M, Farahmand AM, Pourseyedian T, Sharifian M, Qanadli SD. Pulmonary Blood Volume Measured by Dual-Energy Computed Tomography Can Help Distinguish Patients With Pulmonary Hypertension. Front Cardiovasc Med 2022; 9:835655. [PMID: 35865383 PMCID: PMC9294319 DOI: 10.3389/fcvm.2022.835655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the correlation between whole lung enhancement (WLE) and pulmonary blood volume (PBV) obtained through dual energy computed tomography pulmonary angiography (DECTPA) and echocardiography-derived systolic pulmonary arterial pressure (SPAP). Methods Sixty-eight patients who underwent DECTPA were enrolled in the study after giving informed consent. A transthoracic echocardiography was performed for all the subjects within 48 h of their DECTPA study to measure SPAP. The correlation of the two DECTPA-derived parameters, WLE and PBV, with SPAP was assessed. In addition, the predictive strength of these parameters was compared with that of traditional computed tomography (CT) signs of pulmonary hypertension (PH). Results The SPAP value showed a moderate correlation with main pulmonary artery (MPA) diameter (r = 0.48, P < 0.001), while having a weak correlation with WLE (r = −0.33, P = 0.007), PBV (r = −0.31, P = 0.01) and MPA/ascending aorta (MPA/AA) ratio (r = 0.26, P = 0.03). On regression analysis, MPA diameter (B ± SE: 1.8 ± 0.6, P = 0.004) and WLE (B ± SE: −0.5 ± 0.3, P = 0.042) had significant association with SPAP. In addition, SPAP ≥30 mmHg was related to the right to left ventricular diameter (RV/LV) ratio [OR (CI 95%): 24.39 (1.3–573.2), P = 0.04] and reversely associated with PBV [OR (CI 95%): 0.96 (0.93–0.98), P = 0.005]. Acquired cutoff value of 83% for PBV showed sensitivity and specificity of 73% to identify SPAP ≥30 mmHg [AUC (CI 95%):0.727 (0.588–0.866), P = 0.008]. Conclusions Automated postprocessing calculation of iodine distribution analysis by DECTPA could be considered as an adjunctive tool to investigate for PH.
Collapse
Affiliation(s)
- Kiara Rezaei-Kalantari
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardio-Oncology Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kaveh Samimi
- Hazrat Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Zomorodian
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshandeh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Jafari
- Department of Radiology, Ali Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Taleb Pourseyedian
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maedeh Sharifian
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Maedeh Sharifian
| | - Salah Dine Qanadli
- Cardiothoracic and Vascular Division, Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
21
|
McInnis M. Imaging Advances in Chronic Thromboembolic Pulmonary Hypertension. Semin Roentgenol 2022; 57:324-334. [DOI: 10.1053/j.ro.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/11/2022]
|
22
|
Abozeed M, Conic S, Bullen J, Rizk A, Saeedan MB, Karim W, Heresi GA, Renapurkar RD. Dual energy CT based scoring in chronic thromboembolic pulmonary hypertension and correlation with clinical and hemodynamic parameters: a retrospective cross-sectional study. Cardiovasc Diagn Ther 2022; 12:305-313. [PMID: 35800352 PMCID: PMC9253168 DOI: 10.21037/cdt-21-686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2024]
Abstract
BACKGROUND We used a dual energy computed tomography (DECT) based scoring system in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and correlated it with functional and hemodynamic parameters. METHODS This was a retrospective study on 78 patients with CTEPH who underwent DECT. First, clot burden score was calculated by assigning a following score: pulmonary trunk-5, each main pulmonary artery-4, each lobar-3, each segmental-2, and subsegmental-1 per lobe; sum total was then calculated. Perfusion defect (PD) score was calculated by assigning 1 point to each segmental PD. Combined score was calculated by adding the clot burden and PD score. All three scores were correlated with clinical and hemodynamic parameters that included New York Heart Association (NYHA) functional class, 6-minute walk distance (6MWT) in feet, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO), pulmonary arterial pressure (PAP) [systolic PAP (sPAP), diastolic PAP (dPAP) and mean PAP (mPAP)], pulmonary vascular resistance (PVR), right atrial pressure, cardiac output, and cardiac index. RESULTS Clot burden score, PD score, and combined score all positively correlated with sPAP (0.25, 0.34, 0.34), PVR (0.27, 0.30, 0.34), and mPAP (0.28, 0.31, 0.36). There was no statistically significant correlation of clot burden score, PD score and combined score with 6MWT, % predicted 6MWT, FEV1, FEV1%, FVC, FVC%, DLCO% and NYHA functional class. CONCLUSIONS DECT based scoring in CTEPH is feasible and correlates positively with sPAP, mPAP and PVR. Combined score has the highest magnitude of correlation.
Collapse
Affiliation(s)
- Mostafa Abozeed
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Sofija Conic
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | | | - Alain Rizk
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Mnahi Bin Saeedan
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Wadih Karim
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| | - Gustavo A. Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, OH, USA
| | - Rahul D. Renapurkar
- Sections of Thoracic and Cardiovascular Imaging Laboratory, Imaging Institute, Cleveland Clinic, OH, USA
| |
Collapse
|
23
|
Lefebvre B, Kyheng M, Giordano J, Lamblin N, de Groote P, Fertin M, Delobelle M, Perez T, Faivre JB, Remy J, Duhamel A, Remy-Jardin M. Dual-energy CT lung perfusion characteristics in pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH): preliminary experience in 63 patients. Eur Radiol 2022; 32:4574-4586. [PMID: 35286410 DOI: 10.1007/s00330-022-08577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the stratification of potential causes of PH, current guidelines recommend performing V/Q lung scintigraphy to screen for CTEPH. The recognition of CTEPH is based on the identification of lung segments or sub-segments without perfusion but preserved ventilation. The presence of mismatched perfusion defects has also been described in a small proportion of idiopathic pulmonary arterial hypertension (PAH) and pulmonary veno-occlusive disease and/or pulmonary capillary hemangiomatosis (PVOD/PCH). Dual-energy CT lung perfusion changes have not been specifically investigated in these two entities. PURPOSE To compare dual-energy CT (DECT) perfusion characteristics in PAH and PVOD/PCH, with specific interest in PE-type perfusion defects. MATERIALS AND METHODS Sixty-three patients with idiopathic or heritable PAH (group A; n = 51) and PVOD/PCH (group B; n = 12) were investigated with DECT angiography with reconstruction of morphologic and perfusion images. RESULTS The number of patients with abnormal perfusion did not differ between group A (35/51; 68.6%) and group B (6/12; 50%) (p = 0.31) nor did the mean number of segments with abnormal perfusion per patient (group A: 17.9 ± 4.9; group B: 18.3 ± 4.1; p = 0.91). The most frequent finding was the presence of patchy defects in group A (15/35; 42.9%) and a variable association of perfusion abnormalities in group B (4/6; 66.7%). The median percentage of segments with PE-type defects per patient was significantly higher in group B than in group A (p = 0.041). Two types of PE-type defects were depicted in 8 patients (group A: 5/51; 9.8%; group B: 3/12; 25%), superimposed on PH-related lung abnormalities (7/8) or normal lung (1/8). The iodine concentration was significantly lower in patients with abnormal perfusion (p < 0.001) but did not differ between groups. CONCLUSION Perfusion abnormalities did not differ between the two groups at the exception of a higher median percentage of segments with PE-type defects in patients with PVOD/PCH. KEY POINTS • Patchy perfusion defect was the most frequent pattern in PAH. • A variable association of perfusion abnormalities was seen in PVOD/PCH. • Lobular and PE-type perfusion defects larger than a sub-segment were depicted in both PAH and PVOD/PCH patients.
Collapse
Affiliation(s)
- Briac Lefebvre
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Maeva Kyheng
- Department of Biostatistics, University Center of Lille, F-59000, Lille, France
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France
| | - Jessica Giordano
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Nicolas Lamblin
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Pascal de Groote
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Marie Fertin
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1167, Institut Pasteur de Lille, F-59000, Lille, France
| | - Marie Delobelle
- Univ Lille, CHU Lille, Department of Cardiology, Cardio-Pulmonary Institute, F-59000, Lille, France
| | - Thierry Perez
- Univ Lille, CHU Lille, Department of Pulmonary Function, Cardio-Pulmonary Institute, F-59000, Lille, France
- INSERM U1019 - CNRS UMR 8204, Institut Pasteur de Lille - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Baptiste Faivre
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Jacques Remy
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France
| | - Alain Duhamel
- Department of Biostatistics, University Center of Lille, F-59000, Lille, France
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France
| | - Martine Remy-Jardin
- Univ Lille, CHU Lille, Department of Thoracic Imaging, Cardio-Pulmonary Institute, Boulevard Jules Leclercq, F-59000, Lille, France.
- EA2694-Santé Publique: épidémiologie et qualité des soins, F-59000, Lille, France.
| |
Collapse
|
24
|
Valentin S, Maurac A, Mandry D, Selton-Suty C, Huttin O, Cherifi A, Guillaumot A, Gomez E, Chabot F, Chaouat A. Place de l’IRM cardiaque dans l’hypertension artérielle pulmonaire et l’hypertension pulmonaire thrombo-embolique chronique. Rev Mal Respir 2022; 39:486-497. [DOI: 10.1016/j.rmr.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/14/2022] [Indexed: 01/26/2023]
|
25
|
Kroeger JR, Zöllner J, Gerhardt F, Rosenkranz S, Gertz RJ, Kerszenblat S, Pahn G, Maintz D, Bunck AC. Detection of patients with chronic thromboembolic pulmonary hypertension by volumetric iodine quantification in the lung-a case control study. Quant Imaging Med Surg 2022; 12:1121-1129. [PMID: 35111609 DOI: 10.21037/qims-21-229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/23/2021] [Indexed: 01/23/2023]
Abstract
Background To evaluate whether volumetric iodine quantification of the lung allows for the automatic identification of patients with chronic thromboembolic pulmonary hypertension (CTEPH) and whether the extent of pulmonary malperfusion correlates with invasive hemodynamic parameters. Methods Retrospective data base search identified 30 consecutive patients with CTEPH who underwent CT pulmonary angiography (CTPA) on a spectral-detector CT scanner. Thirty consecutive patients who underwent an identical CT examination for evaluation of suspected acute pulmonary embolism and had no signs of pulmonary embolism or PH, served as control cohort. Lungs were automatically segmented for all patients and normal and malperfused volumes were segmented based on iodine density thresholds. Results were compared between groups. For correlation analysis between the extent of malperfused volume and mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) 3 patients were excluded because of a time span of more than 30 days between CTPA and right heart catheterization. Results Patients with CTEPH had a higher percentage of malperfused lung compared to controls (43.25%±24.72% vs. 21.82%±20.72%; P=0.001) and showed reduced mean iodine density in malperfused and normal-perfused lung areas, as well as in the vessel volume. Controls showed a left-tailed distribution of iodine density in malperfused lung areas while patients with CTEPH had a more symmetrical distribution (Skew: -0.382±0.435 vs. -0.010±0.396; P=0.004). Patients with CTEPH showed a significant correlation between the percentage of malperfused lung volume and the PVR (r=0.57, P=0.001). Conclusions Volumetric iodine quantification helps to identify patients with CTEPH by showing increased areas of malperfusion. The extent of malperfusion might provide a measurement for disease severity in patients with CTEPH.
Collapse
Affiliation(s)
- Jan Robert Kroeger
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Germany.,Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jakob Zöllner
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Gerhardt
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Rosenkranz
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman Johannes Gertz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | - David Maintz
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Systemic-pulmonary collateral supply associated with clinical severity of chronic thromboembolic pulmonary hypertension: a study using intra-aortic computed tomography angiography. Eur Radiol 2022; 32:7668-7679. [PMID: 35420297 PMCID: PMC9668953 DOI: 10.1007/s00330-022-08768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To assess whether systemic-pulmonary collaterals are associated with clinical severity and extent of pulmonary perfusion defects in chronic thromboembolic pulmonary hypertension (CTEPH). METHODS This prospective study was approved by a local ethics committee. Twenty-four patients diagnosed with inoperable CTEPH were enrolled between July 2014 and February 2017. Systemic-pulmonary collaterals were detected using pulmonary vascular enhancement on intra-aortic computed tomography (CT) angiography. The pulmonary enhancement parameters were calculated, including (1) Hounsfield unit differences (HUdiff) between pulmonary trunks and pulmonary arteries (PAs) or veins (PVs), namely HUdiff-PA and HUdiff-PV, on the segmental base; (2) the mean HUdiff-PA, mean HUdiff-PV, numbers of significantly enhanced PAs and PVs, on the patient base. Pulmonary perfusion defects were recorded and scored using the lung perfused blood volume (PBV) based on intravenous dual-energy CT (DECT) angiography. Pearson's or Spearman's correlation coefficients were used to evaluate correlations between the following: (1) segment-based intra-aortic CT and intravenous DECT parameters (2) patient-based intra-aortic CT parameters and clinical severity parameters or lung PBV scores. Statistical significance was set at p < 0.05. RESULTS Segmental HUdiff-PV was correlated with the segmental perfusion defect score (r = 0.45, p < 0.01). The mean HUdiff-PV was correlated with the mean pulmonary arterial pressure (PAP) (r = 0.52, p < 0.01), cardiac output (rho = - 0.41, p = 0.05), and lung PBV score (rho = 0.43, p = 0.04). And the number of significantly enhanced PVs was correlated with the mean PAP (r = 0.54, p < 0.01), pulmonary vascular resistance (r = 0.54, p < 0.01), and lung PBV score (rho = 0.50, p = 0.01). CONCLUSIONS PV enhancement measured by intra-aortic CT angiography reflects clinical severity and pulmonary perfusion defects in CTEPH. KEY POINTS • Intra-aortic CT angiography demonstrated heterogeneous enhancement within the pulmonary vasculature, showing collaterals from the systemic arteries to the pulmonary circulation in CTEPH. • The degree of systemic-pulmonary collateral development was significantly correlated with the clinical severity of CTEPH and may be used to evaluate disease progression. • The distribution of systemic-pulmonary collaterals is positively correlated with perfusion defects in the lung segments in CTEPH.
Collapse
|
27
|
Hong YJ, Shim J, Lee SM, Im DJ, Hur J. Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications. Korean J Radiol 2021; 22:1555-1568. [PMID: 34448383 PMCID: PMC8390816 DOI: 10.3348/kjr.2020.1512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary embolism (PE) is a potentially fatal disease if the diagnosis or treatment is delayed. Currently, multidetector computed tomography (MDCT) is considered the standard imaging method for diagnosing PE. Dual-energy CT (DECT) has the advantages of MDCT and can provide functional information for patients with PE. The aim of this review is to present the potential clinical applications of DECT in PE, focusing on the diagnosis and risk stratification of PE.
Collapse
Affiliation(s)
- Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jina Shim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hur
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
de Perrot M, Gopalan D, Jenkins D, Lang IM, Fadel E, Delcroix M, Benza R, Heresi GA, Kanwar M, Granton JT, McInnis M, Klok FA, Kerr KM, Pepke-Zaba J, Toshner M, Bykova A, Armini AMD, Robbins IM, Madani M, McGiffin D, Wiedenroth CB, Mafeld S, Opitz I, Mercier O, Uber PA, Frantz RP, Auger WR. Evaluation and management of patients with chronic thromboembolic pulmonary hypertension - consensus statement from the ISHLT. J Heart Lung Transplant 2021; 40:1301-1326. [PMID: 34420851 DOI: 10.1016/j.healun.2021.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
ISHLT members have recognized the importance of a consensus statement on the evaluation and management of patients with chronic thromboembolic pulmonary hypertension. The creation of this document required multiple steps, including the engagement of the ISHLT councils, approval by the Standards and Guidelines Committee, identification and selection of experts in the field, and the development of 6 working groups. Each working group provided a separate section based on an extensive literature search. These sections were then coalesced into a single document that was circulated to all members of the working groups. Key points were summarized at the end of each section. Due to the limited number of comparative trials in this field, the document was written as a literature review with expert opinion rather than based on level of evidence.
Collapse
Affiliation(s)
- Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London & Cambridge University Hospital, Cambridge, UK
| | - David Jenkins
- National Pulmonary Endarterectomy Service, Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Irene M Lang
- Department of Cardiology, Pulmonary Hypertension Unit, Medical University of Vienna, Vienna, Austria
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Pulmonary Hypertension Centre, UZ Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU, Leuven, Belgium
| | - Raymond Benza
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio
| | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manreet Kanwar
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - John T Granton
- Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Micheal McInnis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Frederikus A Klok
- Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim M Kerr
- University of California San Diego Medical Health, Division of Pulmonary Critical Care and Sleep Medicine, San Diego, California
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK
| | - Mark Toshner
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK; Heart Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anastasia Bykova
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M D' Armini
- Unit of Cardiac Surgery, Intrathoracic-Trasplantation and Pulmonary Hypertension, University of Pavia, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ivan M Robbins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Madani
- Department of Cardiovascular and Thoracic Surgery, University of California San Diego, La Jolla, California
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Campus Kerckhoff of the University of Giessen, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Sebastian Mafeld
- Division of Vascular and Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Patricia A Uber
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Robert P Frantz
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - William R Auger
- Pulmonary Hypertension and CTEPH Research Program, Temple Heart and Vascular Institute, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Al Abri Q, Lu AJ, Ramchandani MK. Chronic Thromboembolic Pulmonary Hypertension: A Comprehensive Review and Multidisciplinary Approach to Surgical Treatment. Methodist Debakey Cardiovasc J 2021; 17:e18-e28. [PMID: 34377353 PMCID: PMC8331206 DOI: 10.14797/iqtu6714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 11/08/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is an underdiagnosed and undertreated sequelae of acute pulmonary embolism. In this comprehensive review, we provide an introductory overview of CTEPH, highlight recent advances in its diagnostic imaging, and describe the surgical technique for pulmonary thromboendarterectomy (PTE), the only established curative treatment for CTEPH. We also discuss the emerging role of balloon pulmonary angioplasty, both independently and combined with PTE, for patients with inoperable, residual, or refractory pulmonary hypertension post PTE. Finally, we stress the importance of a specialized multidisciplinary team approach to CTEPH patient care and share our approach to optimizing care for these patients.
Collapse
|
30
|
Delcroix M, Torbicki A, Gopalan D, Sitbon O, Klok FA, Lang I, Jenkins D, Kim NH, Humbert M, Jais X, Vonk Noordegraaf A, Pepke-Zaba J, Brénot P, Dorfmuller P, Fadel E, Ghofrani HA, Hoeper MM, Jansa P, Madani M, Matsubara H, Ogo T, Grünig E, D'Armini A, Galie N, Meyer B, Corkery P, Meszaros G, Mayer E, Simonneau G. ERS statement on chronic thromboembolic pulmonary hypertension. Eur Respir J 2021; 57:13993003.02828-2020. [PMID: 33334946 DOI: 10.1183/13993003.02828-2020] [Citation(s) in RCA: 328] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/05/2020] [Indexed: 12/25/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism, either symptomatic or not. The occlusion of proximal pulmonary arteries by fibrotic intravascular material, in combination with a secondary microvasculopathy of vessels <500 µm, leads to increased pulmonary vascular resistance and progressive right heart failure. The mechanism responsible for the transformation of red clots into fibrotic material remnants has not yet been elucidated. In patients with pulmonary hypertension, the diagnosis is suspected when a ventilation/perfusion lung scan shows mismatched perfusion defects, and confirmed by right heart catheterisation and vascular imaging. Today, in addition to lifelong anticoagulation, treatment modalities include surgery, angioplasty and medical treatment according to the localisation and characteristics of the lesions.This statement outlines a review of the literature and current practice concerning diagnosis and management of CTEPH. It covers the definitions, diagnosis, epidemiology, follow-up after acute pulmonary embolism, pathophysiology, treatment by pulmonary endarterectomy, balloon pulmonary angioplasty, drugs and their combination, rehabilitation and new lines of research in CTEPH.It represents the first collaboration of the European Respiratory Society, the International CTEPH Association and the European Reference Network-Lung in the pulmonary hypertension domain. The statement summarises current knowledge, but does not make formal recommendations for clinical practice.
Collapse
Affiliation(s)
- Marion Delcroix
- Clinical Dept of Respiratory Diseases, Pulmonary Hypertension Center, UZ Leuven, Leuven, Belgium .,BREATHE, Dept CHROMETA, KU Leuven, Leuven, Belgium.,Co-chair
| | - Adam Torbicki
- Dept of Pulmonary Circulation, Thrombo-embolic Diseases and Cardiology, Center of Postgraduate Medical Education, ECZ-Otwock, Otwock, Poland.,Section editors
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Hospitals NHS Trusts, London, UK.,Section editors
| | - Olivier Sitbon
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Frederikus A Klok
- Dept of Medicine - Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands.,Section editors
| | - Irene Lang
- Medical University of Vienna, Vienna, Austria.,Section editors
| | - David Jenkins
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Nick H Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA, USA.,Section editors
| | - Marc Humbert
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Xavier Jais
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Section editors
| | - Anton Vonk Noordegraaf
- Dept of Pulmonary Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Section editors
| | - Joanna Pepke-Zaba
- Royal Papworth Hospital, Cambridge University Hospital, Cambridge, UK.,Section editors
| | - Philippe Brénot
- Marie Lannelongue Hospital, Paris-South University, Le Plessis Robinson, France
| | - Peter Dorfmuller
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | - Elie Fadel
- Hannover Medical School, Hannover, Germany
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, German Center of Lung Research (DZL), Giessen, Germany.,Dept of Medicine, Imperial College London, London, UK.,Dept of Pneumology, Kerckhoff-Clinic Bad Nauheim, Bad Nauheim, Germany
| | | | - Pavel Jansa
- 2nd Department of Medicine, Dept of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michael Madani
- Sulpizio Cardiovascular Centre, University of California, San Diego, CA, USA
| | - Hiromi Matsubara
- National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Takeshi Ogo
- National Cerebral and Cardiovascular Centre, Osaka, Japan
| | - Ekkehard Grünig
- Thoraxklinik Heidelberg at Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea D'Armini
- Unit of Cardiac Surgery, Intrathoracic Transplantation and Pulmonary Hypertension, University of Pavia School of Medicine, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | | | - Bernhard Meyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | | | - Eckhard Mayer
- Dept of Thoracic Surgery, Kerckhoff Clinic Bad Nauheim, Bad Nauheim, Germany.,Equal contribution.,Co-chair
| | - Gérald Simonneau
- Université Paris-Saclay; Inserm UMR_S 999, Service de Pneumologie, Hôpital Bicêtre (AP-HP), Le Kremlin-Bicêtre, France.,Equal contribution.,Co-chair
| |
Collapse
|
31
|
Kligerman S, Hsiao A. Optimizing the diagnosis and assessment of chronic thromboembolic pulmonary hypertension with advancing imaging modalities. Pulm Circ 2021; 11:20458940211007375. [PMID: 34104420 PMCID: PMC8150458 DOI: 10.1177/20458940211007375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023] Open
Abstract
Imaging is key to nearly all aspects of chronic thromboembolic pulmonary hypertension including management for screening, assessing eligibility for pulmonary endarterectomy, and post-operative follow-up. While ventilation/perfusion scintigraphy, the gold standard technique for chronic thromboembolic pulmonary hypertension screening, can have excellent sensitivity, it can be confounded by other etiologies of pulmonary malperfusion, and does not provide structural information to guide operability assessment. Conventional computed tomography pulmonary angiography has high specificity, though findings of chronic thromboembolic pulmonary hypertension can be visually subtle and unrecognized. In addition, computed tomography pulmonary angiography can provide morphologic information to aid in pre-operative workup and assessment of other structural abnormalities. Advances in computed tomography imaging techniques, including dual-energy computed tomography and spectral-detector computed tomography, allow for improved sensitivity and specificity in detecting chronic thromboembolic pulmonary hypertension, comparable to that of ventilation/perfusion scans. Furthermore, these advanced computed tomography techniques, compared with conventional computed tomography, provide additional physiologic data from perfused blood volume maps and improved resolution to better visualize distal chronic thromboembolic pulmonary hypertension, an important consideration for balloon pulmonary angioplasty for inoperable patients. Electrocardiogram-synchronized techniques in electrocardiogram-gated computed tomography can also show further information regarding right ventricular function and structure. While the standard of care in the workup of chronic thromboembolic pulmonary hypertension includes a ventilation/perfusion scan, computed tomography pulmonary angiography, direct catheter angiography, echocardiogram, and coronary angiogram, in the future an electrocardiogram-gated dual-energy computed tomography angiography scan may enable a "one-stop" imaging study to guide diagnosis, operability assessment, and treatment decisions with less radiation exposure and cost than traditional chronic thromboembolic pulmonary hypertension imaging modalities.
Collapse
Affiliation(s)
- Seth Kligerman
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| | - Albert Hsiao
- Cardiothoracic Imaging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
32
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology 2021; 298:531-549. [PMID: 33399507 DOI: 10.1148/radiol.2020203108] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mm Hg and classified into five different groups sharing similar pathophysiologic mechanisms, hemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: (a) Is noninvasive imaging capable of identifying PH? (b) What is the role of imaging in establishing the cause of PH? (c) How does imaging determine the severity and complications of PH? (d) How should imaging be used to assess chronic thromboembolic PH before treatment? (e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH. This article is a simultaneous joint publication in Radiology and European Respiratory Journal. The articles are identical except for stylistic changes in keeping with each journal's style. Either version may be used in citing this article. © 2021 RSNA and the European Respiratory Society. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Christopher J Ryerson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Mark L Schiebler
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Ann N C Leung
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - James M Wild
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marius M Hoeper
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Philip O Alderson
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Lawrence R Goodman
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - John Mayo
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Linda B Haramati
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Yoshiharu Ohno
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Patricia Thistlethwaite
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Edwin J R van Beek
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Shandra Lee Knight
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - David A Lynch
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Geoffrey D Rubin
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| | - Marc Humbert
- From the Department of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, 59037 Lille, France (M.R.J.); Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada (C.J.R.); Department of Radiology, UW-Madison School of Medicine and Public Health, Madison, Wis (M.L.S.); Department of Radiology, Stanford University Medical Center, Stanford, Calif (A.N.C.L.); Division of Imaging, Department of Infection Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, England (J.M.W.); Department of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany (M.M.H.); Department of Radiology, Saint Louis University School of Medicine, St Louis, Mo (P.O.A.); Department of Radiology, Medical College of Wisconsin, Milwaukee, Wis (L.R.G.); Department of Radiology, Vancouver General Hospital, Vancouver, Canada (J.M.); Department of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY (L.B.H.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Japan (Y.O.); Division of Cardiothoracic Surgery, University of California, San Diego, La Jolla, Calif (P.T.); Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, Scotland (E.J.R.v.B.); Department of Library and Knowledge Services (S.L.K.) and Department of Radiology (D.A.L.), National Jewish Health, Denver, Colo; Department of Radiology, Duke University School of Medicine, Durham, NC (G.D.R.); and Université Paris Saclay, Inserm UMR S999, Department of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France (M.H.)
| |
Collapse
|
33
|
Radiological differences between chronic thromboembolic pulmonary disease (CTEPD) and chronic thromboembolic pulmonary hypertension (CTEPH). Eur Radiol 2021; 31:6230-6238. [PMID: 33507354 PMCID: PMC8270867 DOI: 10.1007/s00330-020-07556-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The aim of this study was to describe the radiological features of chronic thromboembolic pulmonary disease (CTEPD), not yet systematically described in the literature. Furthermore, we compared vascular scores between CTEPD and chronic thromboembolic pulmonary hypertension (CTEPH) patients, trying to explain why pulmonary hypertension does not develop at rest in CTEPD patients. METHODS Eighty-five patients (40 CTEPD, 45 CTEPH) referred to our centre for pulmonary endarterectomy underwent dual-energy computed tomography pulmonary angiography (DE-CTPA) with iodine perfusion maps; other 6 CTEPD patients underwent single-source CTPA. CT scans were reviewed independently by an experienced cardiothoracic radiologist and a radiology resident to evaluate scores of vascular obstruction, hypoperfusion and mosaic attenuation, signs of pulmonary hypertension and other CT features typical of CTEPH. RESULTS Vascular obstruction burden was similar in the two groups (p = 0.073), but CTEPD patients have a smaller extension of perfusion defects in the iodine map (p = 0.009) and a smaller number of these patients had mosaic attenuation (p < 0.001) than CTEPH patients, suggesting the absence of microvascular disease. Furthermore, as expected, the two groups were significantly different considering the indirect signs of pulmonary hypertension (p < 0.001). CONCLUSIONS CTEPD and CTEPH patients have significantly different radiological characteristics, in terms of signs of pulmonary hypertension, mosaic attenuation and iodine map perfusion extension. Importantly, our results suggest that the absence of peripheral microvascular disease, even in presence of an important thrombotic burden, might be the reason for the absence of pulmonary hypertension in CTEPD. KEY POINTS • CTEPD and CTEPH patients have significantly different radiological characteristics. • The absence of peripheral microvascular disease might be the reason for the absence of pulmonary hypertension in CTEPD.
Collapse
|
34
|
Remy-Jardin M, Ryerson CJ, Schiebler ML, Leung ANC, Wild JM, Hoeper MM, Alderson PO, Goodman LR, Mayo J, Haramati LB, Ohno Y, Thistlethwaite P, van Beek EJR, Knight SL, Lynch DA, Rubin GD, Humbert M. Imaging of pulmonary hypertension in adults: a position paper from the Fleischner Society. Eur Respir J 2021; 57:2004455. [PMID: 33402372 DOI: 10.1183/13993003.04455-2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary artery pressure greater than 20 mmHg and classified into five different groups sharing similar pathophysiologic mechanisms, haemodynamic characteristics, and therapeutic management. Radiologists play a key role in the multidisciplinary assessment and management of PH. A working group was formed from within the Fleischner Society based on expertise in the imaging and/or management of patients with PH, as well as experience with methodologies of systematic reviews. The working group identified key questions focusing on the utility of CT, MRI, and nuclear medicine in the evaluation of PH: a) Is noninvasive imaging capable of identifying PH? b) What is the role of imaging in establishing the cause of PH? c) How does imaging determine the severity and complications of PH? d) How should imaging be used to assess chronic thromboembolic PH before treatment? e) Should imaging be performed after treatment of PH? This systematic review and position paper highlights the key role of imaging in the recognition, work-up, treatment planning, and follow-up of PH.
Collapse
Affiliation(s)
- Martine Remy-Jardin
- Dept of Thoracic Imaging, Hôpital Calmette, Boulevard Jules Leclercq, Lille, France
- Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| | - Christopher J Ryerson
- Dept of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Mark L Schiebler
- Dept of Radiology, UW-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ann N C Leung
- Dept of Radiology, Stanford University Medical Center, Stanford, CA, USA
| | - James M Wild
- Division of Imaging, Dept of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marius M Hoeper
- Dept of Respiratory Medicine, Hannover Medical School and German Centre of Lung Research (DZL), Hannover, Germany
| | - Philip O Alderson
- Dept of Radiology, Saint Louis University School of Medicine, St Louis, MO, USA
| | | | - John Mayo
- Dept of Radiology, Vancouver General Hospital, Vancouver, BC, Canada
| | - Linda B Haramati
- Dept of Radiology and Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yoshiharu Ohno
- Dept of Radiology, Fujita Health University School of Medicine, Toyoake, Japan
| | | | - Edwin J R van Beek
- Edinburgh Imaging, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Shandra Lee Knight
- Dept of Library and Knowledge Services, National Jewish Health, Denver, CO, USA
| | - David A Lynch
- Dept of Radiology, National Jewish Health, Denver, CO, USA
| | - Geoffrey D Rubin
- Dept of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Marc Humbert
- Université Paris Saclay, Inserm UMR S999, Dept of Pneumology, AP-HP, Pulmonary Hypertension Reference Center, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- Co-Chair of the Fleischner Society writing committee of the position paper for imaging of pulmonary hypertension
| |
Collapse
|
35
|
Bacon JL, Madden BP, Gissane C, Sayer C, Sheard S, Vlahos I. Vascular and Parenchymal Enhancement Assessment by Dual-Phase Dual-Energy CT in the Diagnostic Investigation of Pulmonary Hypertension. Radiol Cardiothorac Imaging 2020; 2:e200009. [PMID: 33778636 DOI: 10.1148/ryct.2020200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/30/2020] [Accepted: 10/20/2020] [Indexed: 11/11/2022]
Abstract
Purpose To evaluate pulmonary hypertension (PH) determination by dual-phase dual-energy CT pulmonary angiography vascular enhancement and perfused blood volume (PBV) quantification. Materials and Methods In this prospective study, consecutive participants who underwent both right heart catheterization and dual-phase dual-energy CT pulmonary angiography were included between 2012 and 2014. CT evaluation comprised a standard pulmonary arterial phase dual-energy CT pulmonary angiography acquisition (termed series 1) followed 7 seconds after series 1 completion by a second dual-energy CT pulmonary angiography acquisition limited to the central 10 cm of the pulmonary vasculature (termed series 2). In both series, enhancement in the main pulmonary artery (PAenh), the descending aorta (DAenh), and whole-lung PBV (WLenh) was calculated from dual-energy CT pulmonary angiography iodine images. Dual-energy CT pulmonary angiography and standard cardiovascular metrics were correlated to mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) with additional receiver operating characteristic curve analysis. Results A total of 102 participants (median age, 70; range, 58-78 years; 60 women) were included. Sixty-five participants had PH defined by mPAP of greater than or equal to 25 mm Hg, and 51 participants had PH defined by PVR of greater than 3 Wood units. By either definition, participants with PH had higher PAenh/WLenh ratio and lower WLenh and DAenh in series 1 (P < .05) and higher PAenh and WLenh in series 2 (P < .05). Change in WLenh determined highest diagnostic accuracy to define disease by mPAP (area under the receiver operating characteristic curve [AUC], 0.78) and PVR (AUC, 0.79) and the best mPAP correlation (r = 0.62). PAenh series 2 correlated best with PVR (r = 0.49). Multiple linear regression analysis incorporating WLenh and series 1 DAenh improved PVR correlation (r = 0.56). Combining these dual-energy CT pulmonary angiography metrics with main pulmonary artery size and right-to-left ventricular ratio achieved the highest correlations (mPAP, r = 0.71; PVR, r = 0.64). Conclusion Dual-phase dual-energy CT pulmonary angiography enhancement quantification appears to improve mPAP and PVR prediction in noninvasive PH evaluation.Supplemental material is available for this article.See also the commentary by Kay in this issue.© RSNA, 2020.
Collapse
Affiliation(s)
- Jenny Louise Bacon
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| | - Brendan Patrick Madden
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| | - Conor Gissane
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| | - Charles Sayer
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| | - Sarah Sheard
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| | - Ioannis Vlahos
- Departments of Cardiothoracic Medicine (J.L.B., B.P.M.) and Thoracic Imaging (I.V.), St George's University Hospitals NHS Foundation Trust and St George's University of London, Blackshaw Road, London SW17 0QT, England; School of Sport, Health and Applied Science, St Mary's University, London, England (C.G.); and Department of Radiology, St George's University Hospitals NHS Foundation Trust, London, England (C.S., S.S.)
| |
Collapse
|
36
|
Kay FU. Could Dual-Energy CT Become the "One-Stop Shop" Modality in Pulmonary Hypertension Workup? Radiol Cardiothorac Imaging 2020; 2:e200603. [PMID: 33779643 PMCID: PMC7977777 DOI: 10.1148/ryct.2020200603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Fernando Uliana Kay
- From the Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390
| |
Collapse
|
37
|
Gopalan D, Gibbs JSR. From Early Morphometrics to Machine Learning-What Future for Cardiovascular Imaging of the Pulmonary Circulation? Diagnostics (Basel) 2020; 10:diagnostics10121004. [PMID: 33255668 PMCID: PMC7760106 DOI: 10.3390/diagnostics10121004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Imaging plays a cardinal role in the diagnosis and management of diseases of the pulmonary circulation. Behind the picture itself, every digital image contains a wealth of quantitative data, which are hardly analysed in current routine clinical practice and this is now being transformed by radiomics. Mathematical analyses of these data using novel techniques, such as vascular morphometry (including vascular tortuosity and vascular volumes), blood flow imaging (including quantitative lung perfusion and computational flow dynamics), and artificial intelligence, are opening a window on the complex pathophysiology and structure-function relationships of pulmonary vascular diseases. They have the potential to make dramatic alterations to how clinicians investigate the pulmonary circulation, with the consequences of more rapid diagnosis and a reduction in the need for invasive procedures in the future. Applied to multimodality imaging, they can provide new information to improve disease characterization and increase diagnostic accuracy. These new technologies may be used as sophisticated biomarkers for risk prediction modelling of prognosis and for optimising the long-term management of pulmonary circulatory diseases. These innovative techniques will require evaluation in clinical trials and may in themselves serve as successful surrogate end points in trials in the years to come.
Collapse
Affiliation(s)
- Deepa Gopalan
- Imperial College Healthcare NHS Trust, London W12 0HS, UK
- Imperial College London, London SW7 2AZ, UK;
- Cambridge University Hospital, Cambridge CB2 0QQ, UK
- Correspondence: ; Tel.: +44-77-3000-7780
| | - J. Simon R. Gibbs
- Imperial College London, London SW7 2AZ, UK;
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK
| |
Collapse
|
38
|
Pulmonary Embolism Versus Mimics on Dual-energy Spectral Computed Tomography: An Algorithmic Approach. J Comput Assist Tomogr 2020; 44:833-840. [PMID: 33196595 DOI: 10.1097/rct.0000000000001093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pulmonary embolism is a commonly encountered diagnosis that is traditionally identified on conventional computed tomography angiography. Dual-energy computed tomography (DECT) is a new technology that may aid the initial identification and differential diagnosis of pulmonary embolism. In this review, we present an algorithmic approach for assessing pulmonary embolism on DECT, including acute versus chronic pulmonary embolism, relationship to conventional computed tomography angiography, surrogate for likelihood of hemodynamic significance, and alternative diagnoses for DECT perfusion defects.
Collapse
|
39
|
Perez-Johnston R, Plodkowski AJ, Halpenny DF, Hayes SA, Capanu M, Araujo-Filho JAB, Weinsaft JW, Ginsberg MS. Perfusion defects on dual-energy CTA in patients with suspected pulmonary embolism correlate with right heart strain and lower survival. Eur Radiol 2020; 31:2013-2021. [PMID: 33048226 DOI: 10.1007/s00330-020-07333-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To evaluate the utility of perfusion defects on dual-energy CT angiograms (DECTA) in assessing the clinical severity of pulmonary embolism (PE). METHODS We retrospectively reviewed 1136 consecutive diagnostic DECTA exams performed on patients with suspected PE between January 2014 and September 2014. Presence and location of obstructive and non-obstructive PE, right ventricular to left ventricular ratio (RV/LV ratio), and inferior vena cava (IVC) backflow were recorded. Iodine maps were reviewed to establish the presence of perfusion defect and its extent was determined through a score-based segmental impaired perfusion. Subsequently, the perfusion defect scores were correlated with clinical parameters including vital signs, electrocardiogram (ECG) abnormalities, echocardiogram findings, troponin, and brain natriuretic peptide (bnp) levels. Clinical information regarding primary cancer diagnosis, oncologic stage, and date of death if applicable was also recorded. RESULTS Of the 1136 diagnostic iodine maps, 96 of these patients had perfusion defects on iodine maps. After uni- and multivariate analysis, significant correlation was found between the presence of a perfusion defect and RV/LV ratio (p = 0.05), IVC backflow (p = 0.03), elevated troponin (p = 0.03), and right heart dysfunction as determined on an echocardiogram (p = 0.05). The greater the perfusion defect score, the higher the likelihood of IVC backflow (p = 0.005) and obstructive PE (p = 0.002). When adjusted for oncologic stage, patients with a perfusion defect and a higher perfusion defect score had a higher mortality rate (p = 0.005). CONCLUSION The presence of a perfusion defect correlates with several parameters evaluating PE severity. A perfusion defect and higher perfusion defect score were associated with a lower survival. KEY POINTS • Detection of perfusion defects on dual-energy CT angiograms and its extent correlates with right heart strain in the setting of pulmonary embolism. • The presence and extent of a perfusion defect in patients with pulmonary embolism are associated with lower survival.
Collapse
Affiliation(s)
- Rocio Perez-Johnston
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara A Hayes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - J A B Araujo-Filho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan W Weinsaft
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelle S Ginsberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
40
|
Kosmala A, Gruschwitz P, Veldhoen S, Weng AM, Krauss B, Bley TA, Petritsch B. Dual-energy CT angiography in suspected pulmonary embolism: influence of injection protocols on image quality and perfused blood volume. Int J Cardiovasc Imaging 2020; 36:2051-2059. [PMID: 32506286 PMCID: PMC8692293 DOI: 10.1007/s10554-020-01911-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
To compare intravenous contrast material (CM) injection protocols for dual-energy CT pulmonary angiography (CTPA) in patients with suspected acute pulmonary embolism with regard to image quality and pulmonary perfused blood volume (PBV) values. A total of 198 studies performed with four CM injection protocols varying in CM volume and iodine delivery rates (IDR) were retrospectively included: (A) 60 ml at 5 ml/s (IDR = 1.75gI/s), (B) 50 ml at 5 ml/s (IDR = 1.75gI/s), (C) 50 ml at 4 ml/s (IDR = 1.40gI/s), (D) 40 ml at 3 ml/s (IDR = 1.05gI/s). Image quality and PBV values at different resolution settings were compared. Pulmonary arterial tract attenuation was highest for protocol A (397 ± 110 HU; p vs. B = 0.13; vs. C = 0.02; vs. D < 0.001). CTPA image quality of protocol A was rated superior compared to protocols B and D by reader 1 (p = 0.01; < 0.001), and superior to protocols B, C and D by reader 2 (p < 0.001; 0.02; < 0.001). Otherwise, there were no significant differences in CTPA quality ratings. Subjective iodine map ratings did not vary significantly between protocols A, B, and C. Both readers rated protocol D inferior to all other protocols (p < 0.05). PBV values did not vary significantly between protocols A and B at resolution settings of 1, 4 and 10 (p = 0.10; 0.10; 0.09), while otherwise PBV values displayed a decreasing trend from protocol A to D (p < 0.05). Higher CM volume and IDR are associated with superior CTPA and iodine map quality and higher absolute PBV values.
Collapse
Affiliation(s)
- Aleksander Kosmala
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - Philipp Gruschwitz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Simon Veldhoen
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Andreas Max Weng
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Bernhard Krauss
- Siemens Healthcare GmbH, Research and Development, Forchheim, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| |
Collapse
|
41
|
Assessment of Severity in Chronic Thromboembolic Pulmonary Hypertension by Quantitative Parameters of Dual-Energy Computed Tomography. J Comput Assist Tomogr 2020; 44:578-585. [PMID: 32649425 PMCID: PMC7368845 DOI: 10.1097/rct.0000000000001052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to assess the correlation between dual-energy computed tomography quantitative parameters and hemodynamics in patients with chronic thromboembolic pulmonary hypertension.
Collapse
|
42
|
Desai A, Malaisrie SC, Cuttica M, Freed BH, Rich S, Schimmel D, Avery R. Dual-Energy Computed Tomography as an Alternative Noninvasive Study for Evaluation of Chronic Thromboembolic Pulmonary Hypertension Postoperatively. Circ Cardiovasc Imaging 2020; 13:e010168. [PMID: 32397817 DOI: 10.1161/circimaging.119.010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anand Desai
- Divisions of Cardiac Surgery (A.D., S.C.M.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - S Chris Malaisrie
- Divisions of Cardiac Surgery (A.D., S.C.M.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - Michael Cuttica
- Pulmonology (M.C.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - Benjamin H Freed
- Cardiology (B.H.F., S.R., D.S.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - Stuart Rich
- Cardiology (B.H.F., S.R., D.S.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - Daniel Schimmel
- Cardiology (B.H.F., S.R., D.S.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| | - Ryan Avery
- Radiology (R.A.), Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, Chicago IL
| |
Collapse
|
43
|
Haramati A, Haramati LB. Imaging of Chronic Thromboembolic Disease. Lung 2020; 198:245-255. [PMID: 32166427 DOI: 10.1007/s00408-020-00344-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Acute pulmonary embolism (PE) is a leading cause of cardiovascular morbidity. The most common long-term complication of acute PE is chronic thromboembolic disease, a heterogenous entity which ranges from asymptomatic imaging sequelae to persistent symptoms. Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare disease that can develop in this population and represents the only treatable type of pulmonary hypertension. Recognition of the characteristic findings of chronic pulmonary embolism and CTEPH provides not only diagnostic information, but is also crucial for guiding therapy. The present state-of-the-art review focuses on the multimodality imaging features of chronic pulmonary embolism. Detailed description and illustrations of relevant imaging findings will be demonstrated for ventilation/perfusion (V/Q) scan, CT scan and Dual-Energy CT and MRI and features that distinguish chronic PE from common imaging mimics.
Collapse
Affiliation(s)
- Adina Haramati
- Department of Radiology, Northwell Health, Manhasset, NY, USA.
| | - Linda B Haramati
- Departments of Radiology and Internal Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
44
|
Ranka S, Mohananey D, Agarwal N, Verma BR, Villablanca P, Mewhort HE, Ramakrishna H. Chronic Thromboembolic Pulmonary Hypertension-Management Strategies and Outcomes. J Cardiothorac Vasc Anesth 2019; 34:2513-2523. [PMID: 31883688 DOI: 10.1053/j.jvca.2019.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is rare but complex pathophysiological disease with hallmark features of chronic thrombotic mechanical obstruction, right ventricular dysfunction, and secondary pulmonary arteriopathy. It increasingly is being understood that chronic infection/inflammation, abnormal fibrinolysis, and cytokines play an important role in pathogenesis such that only a subset of patients with pulmonary embolism develop CTEPH. Diagnosis remains challenging given the lack of early clinical signs and overlap with other cardiopulmonary conditions. Pulmonary endarterectomy is the surgical procedure of choice with good postoperative survival and functional outcomes, especially when done at high-volume centers with a multidisciplinary approach. There has been a resurgence of balloon pulmonary angioplasty (BPA) as salvage therapy for inoperable CTEPH or in its newfound hybrid role for persistent postoperative pulmonary hypertension with excellent 1-year and 3-year survival. Use of riociguat has shown promising improvements in functional outcomes up to 2 years after initiation. Endothelin receptor antagonists serve a supplemental role postoperatively or in inoperable CTEPH. The role of drug therapy preoperatively or in tandem with BPA is currently under investigation.
Collapse
Affiliation(s)
- Sagar Ranka
- Department of Cardiovascular Medicine, Kansas University Medical Center, Kansas City, KS
| | - Divyanshu Mohananey
- Department of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Nikhil Agarwal
- Division of Cardiovascular Medicine, University of Buffalo, Buffalo, NY
| | - Beni Rai Verma
- Department of Cardiology, Cleveland Clinic, Cleveland, OH
| | | | | | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
45
|
Kay FU, Oz OK, Abbara S, Mortani Barbosa EJ, Agarwal PP, Rajiah P. Translation of Quantitative Imaging Biomarkers into Clinical Chest CT. Radiographics 2019; 39:957-976. [PMID: 31199712 DOI: 10.1148/rg.2019180168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Quantitative imaging has been proposed as the next frontier in radiology as part of an effort to improve patient care through precision medicine. In 2007, the Radiological Society of North America launched the Quantitative Imaging Biomarkers Alliance (QIBA), an initiative aimed at improving the value and practicality of quantitative imaging biomarkers by reducing variability across devices, sites, patients, and time. Chest CT occupies a strategic position in this initiative because it is one of the most frequently used imaging modalities, anatomically encompassing the leading causes of mortality worldwide. To date, QIBA has worked on profiles focused on the accurate, reproducible, and meaningful use of volumetric measurements of lung lesions in chest CT. However, other quantitative methods are on the verge of translation from research grounds into clinical practice, including (a) assessment of parenchymal and airway changes in patients with chronic obstructive pulmonary disease, (b) analysis of perfusion with dual-energy CT biomarkers, and (c) opportunistic screening for coronary atherosclerosis and low bone mass by using chest CT examinations performed for other indications. The rationale for and the key facts related to the application of these quantitative imaging biomarkers in cardiothoracic chest CT are presented. ©RSNA, 2019 See discussion on this article by Buckler (pp 977-980).
Collapse
Affiliation(s)
- Fernando U Kay
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| | - Orhan K Oz
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| | - Suhny Abbara
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| | - Eduardo J Mortani Barbosa
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| | - Prachi P Agarwal
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| | - Prabhakar Rajiah
- From the Department of Radiology, Cardiothoracic Division, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Room E6.122H, Dallas, TX 75390-9316 (F.U.K., O.K.O., S.A., P.R.); the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (E.J.M.B.); and the Department of Radiology, University of Michigan Health System, Ann Arbor, Mich (P.P.A.)
| |
Collapse
|
46
|
Rajiah P, Tanabe Y, Partovi S, Moore A. State of the art: utility of multi-energy CT in the evaluation of pulmonary vasculature. Int J Cardiovasc Imaging 2019; 35:1509-1524. [PMID: 31049753 DOI: 10.1007/s10554-019-01615-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
Multi-energy computed tomography (MECT) refers to acquisition of CT data at multiple energy levels (typically two levels) using different technologies such as dual-source, dual-layer and rapid tube voltage switching. In addition to conventional/routine diagnostic images, MECT provides additional image sets including iodine maps, virtual non-contrast images, and virtual monoenergetic images. These image sets provide tissue/material characterization beyond what is possible with conventional CT. MECT provides invaluable additional information in the evaluation of pulmonary vasculature, primarily by the assessment of pulmonary perfusion. This functional information provided by the MECT is complementary to the morphological information from a conventional CT angiography. In this article, we review the technique and applications of MECT in the evaluation of pulmonary vasculature.
Collapse
Affiliation(s)
- Prabhakar Rajiah
- Cardiothoracic Imaging Division, Department of Radiology, University of Texas Southwestern Medical Center, E6.122G, 5323 Harry Hines Boulevard, Mail Code 9316, Dallas, TX, 75390-8896, USA.
| | - Yuki Tanabe
- Cardiothoracic Imaging Division, Department of Radiology, University of Texas Southwestern Medical Center, E6.122G, 5323 Harry Hines Boulevard, Mail Code 9316, Dallas, TX, 75390-8896, USA
- Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sasan Partovi
- Interventional Radiology Section, Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alastair Moore
- Department of Radiology, Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
47
|
Huang WC, Hsu CH, Sung SH, Ho WJ, Chu CY, Chang CP, Chiu YW, Wu CH, Chang WT, Lin L, Lin SL, Cheng CC, Wu YJ, Wu SH, Hsieh TY, Hsu HH, Fu M, Dai ZK, Kuo PH, Hwang JJ, Cheng SM. 2018 TSOC guideline focused update on diagnosis and treatment of pulmonary arterial hypertension. J Formos Med Assoc 2019; 118:1584-1609. [PMID: 30926248 DOI: 10.1016/j.jfma.2018.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/18/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized as a progressive and sustained increase in pulmonary vascular resistance, which may induce right ventricular failure. In 2014, the Working Group on Pulmonary Hypertension of the Taiwan Society of Cardiology (TSOC) conducted a review of data and developed a guideline for the management of PAH.4 In recent years, several advancements in diagnosis and treatment of PAH has occurred. Therefore, the Working Group on Pulmonary Hypertension of TSOC decided to come up with a focused update that addresses clinically important advances in PAH diagnosis and treatment. This 2018 focused update deals with: (1) the role of echocardiography in PAH; (2) new diagnostic algorithm for the evaluation of PAH; (3) comprehensive prognostic evaluation and risk assessment; (4) treatment goals and follow-up strategy; (5) updated PAH targeted therapy; (6) combination therapy and goal-orientated therapy; (7) updated treatment for PAH associated with congenital heart disease; (8) updated treatment for PAH associated with connective tissue disease; and (9) updated treatment for chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Hsien Sung
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Jing Ho
- Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Yuan Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Ping Chang
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Wei Chiu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chun-Hsien Wu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Chang
- Division of Cardiovascular Medicine, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Lin Lin
- Cardiovascular Center, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Shoa-Lin Lin
- Department of Internal Medicine, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan; Pulmonary Hypertension Center, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yih-Jer Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan; Pulmonary Hypertension Interventional Medicine, Cardiovascular Center, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Shu-Hao Wu
- Pulmonary Hypertension Interventional Medicine, Cardiovascular Center, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Tsu-Yi Hsieh
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsao-Hsun Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Morgan Fu
- Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Zen-Kong Dai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ping-Hung Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Juey-Jen Hwang
- Cardiovascular Division, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; National Taiwan University Hospital Yunlin Branch, Douliu City, Taiwan.
| | - Shu-Meng Cheng
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | | |
Collapse
|
48
|
Kiely DG, Levin DL, Hassoun PM, Ivy D, Jone PN, Bwika J, Kawut SM, Lordan J, Lungu A, Mazurek JA, Moledina S, Olschewski H, Peacock AJ, Puri G, Rahaghi FN, Schafer M, Schiebler M, Screaton N, Tawhai M, van Beek EJ, Vonk-Noordegraaf A, Vandepool R, Wort SJ, Zhao L, Wild JM, Vogel-Claussen J, Swift AJ. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9:2045894019841990. [PMID: 30880632 PMCID: PMC6732869 DOI: 10.1177/2045894019841990] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55 statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in the diagnosis and assessment of PH and highlight areas requiring further research.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease
Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
| | - David L. Levin
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Paul M. Hassoun
- Department of Medicine John Hopkins
University, Baltimore, MD, USA
| | - Dunbar Ivy
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Pei-Ni Jone
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jim Lordan
- Freeman Hospital, Newcastle Upon Tyne,
Newcastle, UK
| | - Angela Lungu
- Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine,
Hospital
of the University of Pennsylvania,
Philadelphia, PA, USA
| | | | - Horst Olschewski
- Division of Pulmonology, Ludwig
Boltzmann Institute Lung Vascular Research, Graz, Austria
| | - Andrew J. Peacock
- Scottish Pulmonary Vascular Disease,
Unit, University of Glasgow, Glasgow, UK
| | - G.D. Puri
- Department of Anaesthesiology and
Intensive Care, Post Graduate Institute of Medical Education and Research,
Chandigarh, India
| | - Farbod N. Rahaghi
- Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Michal Schafer
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Mark Schiebler
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Merryn Tawhai
- Auckland Bioengineering Institute,
Auckland, New Zealand
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queens Medical
Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca Vandepool
- University of Arizona, Division of
Translational and Regenerative Medicine, Tucson, AZ, USA
| | - Stephen J. Wort
- Royal Brompton Hospital, London,
UK
- Imperial College, London, UK
| | | | - Jim M. Wild
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute of diagnostic and
Interventional Radiology, Medical Hospital Hannover, Hannover, Germany
| | - Andrew J. Swift
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Kröger JR, Gerhardt F, Dumitrescu D, Rosenkranz S, Schmidt M, Maintz D, Bunck AC. Diagnosis of pulmonary hypertension using spectral-detector CT. Int J Cardiol 2019; 285:80-85. [PMID: 30905521 DOI: 10.1016/j.ijcard.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/04/2019] [Accepted: 03/11/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To evaluate the value of spectral-detector CT (SDCT) in the diagnosis of chronic thromboembolic pulmonary hypertension (CTEPH), its differentiation against other etiologies of pulmonary hypertension (PH) and in the prediction of disease severity. MATERIALS AND METHODS 60 patients with suspected PH underwent SDCT. Additional diagnostic tests in accordance with the ESC guidelines including right heart catherization and VQ-SPECT were performed. After full diagnostic work-up patients were classified as: 21 precapillary PH, 5 postcapillary PH, 6 combined pre- and postcapillary PH, 19 CTEPH, 9 no PH. SDCT examinations were analyzed by two blinded readers deciding on the diagnosis of CTEPH and scoring the extent of perfusion abnormalities on iodine density images. An additional reading was performed using conventional CTPA images only. RESULTS With access to SDCT data, both readers reached a sensitivity of 100% for the diagnosis of CTEPH with a specificity of 95.1% and 87.8%. On analysis of conventional CTPA images alone, specificity and diagnostic confidence decreased for both readers (Specificity 90.2 and 85.3%) while sensitivity dropped for the less experienced reader only (Sensitivity 78.9%). Patients with PH showed significantly more perfusion abnormalities than patients without PH (16.6 ± 8.4 vs. 9.5 ± 8.9 p < 0.001) and the extent of perfusion abnormalities correlated with the mean pulmonary artery pressure (r = 0.37 p = 0.008). CONCLUSIONS SDCT offers confident identification of patients with CTEPH and enables a comprehensive analysis of pulmonary vasculature, pulmonary perfusion and the lung parenchyma in a single examination for patients with suspected PH.
Collapse
Affiliation(s)
- Jan Robert Kröger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany.
| | - Felix Gerhardt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Daniel Dumitrescu
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Stephan Rosenkranz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Cardiology, Germany
| | - Matthias Schmidt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear-Medicine, Germany
| | - David Maintz
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany
| | - Alexander C Bunck
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology, Germany
| |
Collapse
|
50
|
Bryce YC, Perez-Johnston R, Bryce EB, Homayoon B, Santos-Martin EG. Pathophysiology of right ventricular failure in acute pulmonary embolism and chronic thromboembolic pulmonary hypertension: a pictorial essay for the interventional radiologist. Insights Imaging 2019; 10:18. [PMID: 30758687 PMCID: PMC6375098 DOI: 10.1186/s13244-019-0695-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Pulmonary embolus (PE) is the third most common cause of cardiovascular death with more than 600,000 cases occurring in the USA per year. About 45% of patients with acute PE will have acute right ventricular failure, and up to 3.8% of patients will develop chronic thromboembolic pulmonary hypertension (CTEPH) with progressive, severe, chronic heart failure. The right ventricle (RV) is constructed to accommodate a low-resistance afterload. Increases in afterload from acute massive and submassive PE and CTEPH may markedly compromise the RV function leading to hemodynamic collapse and death. The purpose of this educational manuscript is to instruct on the pathophysiology of RV failure in massive and submassive PE and CTEPH. It is important to understand the pathophysiology of these diseases as it provides the rationale for therapeutic intervention by the Interventional Radiologist. We review here the pathophysiology of right ventricular (RV) failure in acute massive and submassive PE and CTEPH.
Collapse
Affiliation(s)
- Yolanda C Bryce
- Radiology Department, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Rocio Perez-Johnston
- Radiology Department, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Errol B Bryce
- Internal Medicine, Health Science Center, University of North Texas, 1622 8th Ave, Suite 110, Fort Worth, TX, 76104, USA
| | - Behrang Homayoon
- Radiology Department, University of British Columbia, 13750 96th Ave, Surrey, BC, V3V 1Z2, Canada
| | - Ernesto G Santos-Martin
- Radiology Department, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|