1
|
Masselli G, Di Bella C. Will PET/MR Imaging Replace PET/CT for Pediatric Applications? Diagnostics (Basel) 2025; 15:1070. [PMID: 40361889 DOI: 10.3390/diagnostics15091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is a modern, highly advanced diagnostic tool that offers numerous advantages in the treatment and management of some pediatric pathologies. The use of PET/MR in children provides high-resolution images with outstanding tissue characterization, as well as important metabolic and physiological information; it is not only essential for early diagnosis, but also for the assessment and management of oncological, neurological, and cardiovascular diseases. The hybrid PET/MR is a multimodal approach that reduces the need for separate examinations, minimizes radiation exposure, and improves the overall experience for pediatric patients. In addition, PET/MR, by combining functional data, allows for more precise therapeutic planning and monitoring of treatment responses, optimizing clinical interventions especially with regard to staging and follow-up. This review will explore the benefits, weaknesses, and emerging applications of PET/MR in pediatric patients.
Collapse
Affiliation(s)
- Gabriele Masselli
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
2
|
Waelti S, Skawran S, Sartoretti T, Schwyzer M, Gennari AG, Mader C, Treyer V, Kellenberger CJ, Burger IA, Hany T, Maurer A, Huellner MW, Messerli M. A third of the radiotracer dose: two decades of progress in pediatric [ 18F]fluorodeoxyglucose PET/CT and PET/MR imaging. Eur Radiol 2024; 34:3252-3259. [PMID: 37855853 PMCID: PMC11126459 DOI: 10.1007/s00330-023-10319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To assess the evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between years 2000 and 2021. METHODS Pediatric patients (≤ 16 years) referred for 18F-FDG PET/CT or PET/MR imaging of the body during 2000 and 2021 were retrospectively included. The amount of administered radiotracer activity in megabecquerel (MBq) was recorded, and signal-to-noise ratio (SNR) was measured in the right liver lobe with a 4 cm3 volume of interest as an indicator for objective image quality. Descriptive statistics were computed. RESULTS Two hundred forty-three children and adolescents underwent a total of 466 examinations. The median injected 18F-FDG activity in MBq decreased significantly from 296 MBq in 2000-2005 to 100 MBq in 2016-2021 (p < 0.001), equaling approximately one-third of the initial amount. The median SNR ratio was stable during all years with 11.7 (interquartile range [IQR] 10.7-12.9, p = 0.133). CONCLUSIONS Children have benefited from a massive reduction in the administered 18F-FDG dose over the past 20 years without compromising objective image quality. CLINICAL RELEVANCE STATEMENT Radiotracer dose was reduced considerably over the past two decades of pediatric F-18-fluorodeoxyglucose PET/CT and PET/MR imaging highlighting the success of technical innovations in pediatric PET imaging. KEY POINTS • The evolution of administered radiotracer activity for F-18-fluorodeoxyglucose (18F-FDG) PET/CT or PET/MR in pediatric patients (0-16 years) between 2000 and 2021 was assessed. • The injected tracer activity decreased by 66% during the study period from 296 megabecquerel (MBq) to 100 MBq (p < 0.001). • The continuous implementation of technical innovations in pediatric hybrid 18F-FDG PET has led to a steady decrease in the amount of applied radiotracer, which is particularly beneficial for children who are more sensitive to radiation.
Collapse
Affiliation(s)
- Stephan Waelti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Thomas Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Moritz Schwyzer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Antonio G Gennari
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Cäcilia Mader
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Christian J Kellenberger
- University of Zurich, Zurich, Switzerland
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Thomas Hany
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- MRI Bahnhofplatz, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Requist MR, Mills MK, Carroll KL, Lenz AL. Quantitative Skeletal Imaging and Image-Based Modeling in Pediatric Orthopaedics. Curr Osteoporos Rep 2024; 22:44-55. [PMID: 38243151 DOI: 10.1007/s11914-023-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE OF REVIEW Musculoskeletal imaging serves a critical role in clinical care and orthopaedic research. Image-based modeling is also gaining traction as a useful tool in understanding skeletal morphology and mechanics. However, there are fewer studies on advanced imaging and modeling in pediatric populations. The purpose of this review is to provide an overview of recent literature on skeletal imaging modalities and modeling techniques with a special emphasis on current and future uses in pediatric research and clinical care. RECENT FINDINGS While many principles of imaging and 3D modeling are relevant across the lifespan, there are special considerations for pediatric musculoskeletal imaging and fewer studies of 3D skeletal modeling in pediatric populations. Improved understanding of bone morphology and growth during childhood in healthy and pathologic patients may provide new insight into the pathophysiology of pediatric-onset skeletal diseases and the biomechanics of bone development. Clinical translation of 3D modeling tools developed in orthopaedic research is limited by the requirement for manual image segmentation and the resources needed for segmentation, modeling, and analysis. This paper highlights the current and future uses of common musculoskeletal imaging modalities and 3D modeling techniques in pediatric orthopaedic clinical care and research.
Collapse
Affiliation(s)
- Melissa R Requist
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA
| | - Megan K Mills
- Department of Radiology and Imaging Sciences, University of Utah, 30 N Mario Capecchi Dr. 2 South, Salt Lake City, UT, 84112, USA
| | - Kristen L Carroll
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
- Shriners Hospital for Children, 1275 E Fairfax Rd, Salt Lake City, UT, 84103, USA
| | - Amy L Lenz
- Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA.
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr., Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Urla C, Fuchs J, Grimm A, Schmidt A, Schäfer J, Schuhmann MU, Warmann SW. Interdisciplinary surgical approach enables complete tumor resection with preservation of neurological function in specific conditions of pediatric solid malignancies. J Cancer Res Clin Oncol 2023; 149:4497-4507. [PMID: 36131157 PMCID: PMC10349722 DOI: 10.1007/s00432-022-04273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE Success of pediatric solid tumor surgery is regularly hampered by infiltration of essential neurovascular structures. A surgical dilemma arises when imaging data suggest a conflict between complete resection and preservation of neurological function. The aim of the study was to analyze data of children harboring tumors with involvement of neurovascular structure treated by an interdisciplinary pediatric surgical/neurosurgical team. METHODS We retrospectively analyzed data of 25 children undergoing surgery for solid tumors, in whom preoperative imaging showed a relevant involvement of nerve structures. Surgery was simultaneously performed by a pediatric onco-surgeon and a pediatric neurosurgeon with peripheral nerve expertise, including intraoperative electrophysiological monitoring. RESULTS The following tumors were treated: NF1 associated neurofibromas (10), neuroblastomas (5), desmoid tumors (2), MPNST (2), ganglioneuroma (1), Ewing sarcoma (1), infantile fibromatosis (1), PNET (1), rhabdomyosarcoma (1), angiolipoma (1). The most frequent tumor localizations were the pelvis (n = 7) and retroperitoneal region (n = 6). Median age at surgery was 8 years (1.5-16). Macroscopically complete tumor resection was achieved in 24/25 patients. In 2/4 patients with limb tumors an amputation was planned externally. In both, a limb-salvage procedure was possible. Transient postoperative neurological deficits occurred in 2/25 patients. Four patients had tumor relapses. All but one are alive after a median follow-up of 46 months (2-155). CONCLUSIONS Simultaneous interdisciplinary pediatric surgical/neurosurgical approach enables radical tumor resection with preservation of neurological function in patients suffering from solid tumors with involvement of relevant neurovascular structures. This approach should be performed by experienced surgeons in reference pediatric onco-surgical centers.
Collapse
Affiliation(s)
- Cristian Urla
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Jörg Fuchs
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Alexander Grimm
- Neuromuscular Division, Department of Neurology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Andreas Schmidt
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany
| | - Jürgen Schäfer
- Department of Diagnostic and Interventional Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Martin U Schuhmann
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Center of Neurofibromatosis, Center of Rare Diseases, University Hospital of Tuebingen, Tuebingen, Germany
| | - Steven W Warmann
- Department of Pediatric Surgery and Pediatric Urology, University Children's Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076, Tuebingen, Germany.
| |
Collapse
|
5
|
Evaluation of functional and metabolic tumor volume using voxel-wise analysis in childhood rhabdomyosarcoma. Pediatr Radiol 2023; 53:438-449. [PMID: 36399161 PMCID: PMC9968707 DOI: 10.1007/s00247-022-05540-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cross-sectional imaging-based morphological characteristics of pediatric rhabdomyosarcoma have failed to predict outcomes. OBJECTIVE To evaluate the feasibility and possible value of generating tumor sub-volumes using voxel-wise analysis of metabolic and functional data from positron emission tomography/magnetic resonance imaging (PET/MR) or PET/computed tomography (CT) and MRI in rhabdomyosarcoma. MATERIALS AND METHODS Thirty-four examinations in 17 patients who received PET/MRI or PET/CT plus MRI were analyzed. The volume of interest included total tumor volume before and after therapy. Apparent diffusion coefficients (ADC) and standard uptake values (SUV) were determined voxel-wise. Voxels were assigned to three different groups based on ADC and SUV: "viable tumor tissue," "intermediate tissue" or "possible necrosis." In a second approach, data were grouped into three clusters using the Gaussian mixture model. The ratio of these clusters to total tumor volume and changes due to chemotherapy were correlated with clinical and histopathological data. RESULTS After chemotherapy, the proportion of voxels in the different groups changed significantly. A significant reduction of the proportion of voxels assigned to cluster 1 was found, from a mean of 36.4% to 2.5% (P < 0.001). There was a significant increase in the proportion of voxels in cluster 3 following chemotherapy from 24.8% to 81.6% (P = 0.02). The proportion of voxels in cluster 2 differed depending on the presence or absence of tumor recurrence, falling from 48% to 10% post-chemotherapy in the group with no tumor recurrence (P < 0.05) and from 29% to 23% (P > 0.05) in the group with tumor recurrence. CONCLUSION Voxel-wise evaluation of multimodal data in rhabdomyosarcoma is feasible. Our initial results suggest that the different distribution of sub-volumes before and after therapy may have prognostic significance.
Collapse
|
6
|
18F Site-Specific Labelling of a Single-Chain Antibody against Activated Platelets for the Detection of Acute Thrombosis in Positron Emission Tomography. Int J Mol Sci 2022; 23:ijms23136886. [PMID: 35805892 PMCID: PMC9267009 DOI: 10.3390/ijms23136886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022] Open
Abstract
Positron emission tomography is the imaging modality of choice when it comes to the high sensitivity detection of key markers of thrombosis and inflammation, such as activated platelets. We, previously, generated a fluorine-18 labelled single-chain antibody (scFv) against ligand-induced binding sites (LIBS) on activated platelets, binding it to the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. We used a non-site-specific bio conjugation approach with N-succinimidyl-4-[18F]fluorobenzoate (S[18F]FB), leading to a mixture of products with reduced antigen binding. In the present study, we have developed and characterised a novel fluorine-18 PET radiotracer, based on this antibody, using site-specific bio conjugation to engineer cysteine residues with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). ScFvanti-LIBS and control antibody mut-scFv, with engineered C-terminal cysteine, were reduced, and then, they reacted with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). Radiolabelled scFv was injected into mice with FeCl3-induced thrombus in the left carotid artery. Clots were imaged in a PET MR imaging system, and the amount of radioactivity in major organs was measured using an ionisation chamber and image analysis. Assessment of vessel injury, as well as the biodistribution of the radiolabelled scFv, was studied. In the in vivo experiments, we found uptake of the targeted tracer in the injured vessel, compared with the non-injured vessel, as well as a high uptake of both tracers in the kidney, lung, and muscle. As expected, both tracers cleared rapidly via the kidney. Surprisingly, a large quantity of both tracers was taken up by organs with a high glutathione content, such as the muscle and lung, due to the instability of the maleimide cysteine bond in vivo, which warrants further investigations. This limits the ability of the novel antibody radiotracer 18F-scFvanti-LIBS to bind to the target in vivo and, therefore, as a useful agent for the sensitive detection of activated platelets. We describe the first fluorine-18 variant of the scFvanti-LIBS against activated platelets using site-specific bio conjugation.
Collapse
|
7
|
Disselhorst JA, Newport DF, Schmid AM, Schmidt FP, Parl C, Liu CC, Pichler BJ, Mannheim JG. NEMA NU 4-2008 performance evaluation and MR compatibility tests of an APD-based small animal PET-insert for simultaneous PET/MR imaging. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac499d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An avalanche photodiode (APD)-based small animal positron emission tomography (PET)-insert was fully evaluated for its PET performance, as well as potential influences on magnetic resonance imaging (MRI) performance. This PET-insert has an extended axial field of view (FOV) compared with the previous design to increase system sensitivity, as well as an updated cooling and temperature regulation to enable stable and reproducible PET acquisitions. The PET performance was evaluated according to the National Electrical Manufacturers Association NU4-2008 protocol. The energy and timing resolution’s full width at half maximum were 16.1% and 4.7 ns, respectively. The reconstructed radial spatial resolution of the PET-insert was 1.8 mm full width at half maximum at the center FOV using filtered back projection for reconstruction and sensitivity was 3.68%. The peak noise equivalent count rates were 70 kcps for a rat-like and 350 kcps for a mouse-like phantom, respectively. Image quality phantom values and contrast recovery were comparable to state-of-the art PET-inserts and standalone systems. Regarding MR compatibility, changes in the mean signal-to-noise ratio for turbo spin echo and echo-planar imaging sequences were below 8.6%, for gradient echo sequences below 1%. Degradation of the mean homogeneity was below 2.3% for all tested sequences. The influence of the PET-insert on the B
0 maps was negligible and no influence on functional MRI sequences was detected. A mouse and rat imaging study demonstrated the feasibility of in vivo simultaneous PET/MRI.
Collapse
|
8
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
9
|
Sepehrizadeh T, Jong I, DeVeer M, Malhotra A. PET/MRI in paediatric disease. Eur J Radiol 2021; 144:109987. [PMID: 34649143 DOI: 10.1016/j.ejrad.2021.109987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Nuclear medicine and molecular imaging have a small but growing role in the management of paediatric and neonatal diseases. During the past decade, combined PET/MRI has emerged as a clinically important hybrid imaging modality in paediatric medicine due to diagnostic advantages and reduced radiation exposure compared to alternative techniques. The applications for nuclear medicine, radiopharmaceuticals and combined PET/MRI in paediatric diagnosis is broadly similar to adults, however there are some key differences. There are a variety of clinical applications for PET/MRI imaging in children including, but not limited to, oncology, neurology, cardiovascular, infection and chronic inflammatory diseases, and in renal-urological disorders. In this article, we review the applications of PET/MRI in paediatric and neonatal imaging, its current role, advantages and disadvantages over other hybrid imaging techniques such as PET/CT, and its future applications. Overall, PET/MRI is a powerful imaging technology in diagnostic medicine and paediatric diseases. Higher soft tissue contrasts and lower radiation dose of the MRI makes it the superior technology compared to other conventional techniques such as PET/CT or scintigraphy. However, this relatively new hybrid imaging has also some limitations. MRI based attenuation correction remains a challenge and although methodologies have improved significantly in the last decades, most remain under development.
Collapse
Affiliation(s)
| | - Ian Jong
- Department of diagnostic imaging, Monash Health, Melbourne, Australia
| | - Michael DeVeer
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Atul Malhotra
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Value of 18F-PSMA-PET/MRI for Assessment of Recurring Ranula. Diagnostics (Basel) 2021; 11:diagnostics11081462. [PMID: 34441395 PMCID: PMC8394896 DOI: 10.3390/diagnostics11081462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
We report the case of a 6-year-old patient with suspected recurrence of a plunging ranula in clinical and ultrasonographic examination. Surgical resection of the left submandibular and sublingual glands had already been performed. Since persistent glandular tissue could not be excluded with certainty via MRI, we expanded diagnostics by performing a PET/MRI using a head and neck imaging protocol and the radiotracer 18F-PSMA-1007, which is physiologically expressed by salivary gland tissue. The 18F-PSMA-PET/MRI provided evidence of a cystically transformed, diminishing seroma in the left retro-/submandibular region. No 18F-PSMA expressing glandular tissue could be detected in the area of resection, excluding a relapse of a plunging ranula. As a consequence, we opted for a conservative treatment without further surgical intervention. We conclude that a simultaneous 18F-PSMA-PET/MRI is a comprehensive imaging modality, which can help to rule out persistent salivary tissue and recurring plunging ranula. It is a useful tool to facilitate the decision making of surgical interventions.
Collapse
|
11
|
Schäfer JF, Herrmann J, Kammer B, Koerber F, Tsiflikas I, von Kalle T, Mentzel HJ. Fortschrittliche radiologische Diagnostik bei soliden Tumoren im Kindes- und Jugendalter. DER ONKOLOGE 2021; 27:410-426. [DOI: 10.1007/s00761-021-00910-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 01/04/2025]
|
12
|
Qi J, Thakrar PD, Browning MB, Vo N, Kumbhar SS. Clinical utilization of whole-body PET/MRI in childhood sarcoma. Pediatr Radiol 2021; 51:471-479. [PMID: 33040234 DOI: 10.1007/s00247-020-04834-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) has emerged as a useful tool that combines the superior tissue contrast of MRI with the targeted functional imaging of PET. In the assessment of sarcomas in children, PET/MRI has the potential to serve as a single point of service, allowing superior anatomical imaging and evaluation of metabolic uptake during one imaging session. In this pictorial essay, we review our preliminary experience with PET/MRI in the evaluation of pediatric sarcoma. The limitations and contraindications of PET/MRI are also discussed.
Collapse
Affiliation(s)
- Jing Qi
- Department of Radiology, Children's Wisconsin and the Medical College of Wisconsin, 9000 W. Wisconsin Ave., MS-721, Milwaukee, WI, 53226, USA.
| | - Pooja D Thakrar
- Department of Radiology, Children's Wisconsin and the Medical College of Wisconsin, 9000 W. Wisconsin Ave., MS-721, Milwaukee, WI, 53226, USA
| | - Meghen B Browning
- Department of Pediatric Hematology and Oncology, Children's Wisconsin and the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nghia Vo
- Department of Radiology, Children's Wisconsin and the Medical College of Wisconsin, 9000 W. Wisconsin Ave., MS-721, Milwaukee, WI, 53226, USA
| | - Sachin S Kumbhar
- Department of Radiology, Children's Wisconsin and the Medical College of Wisconsin, 9000 W. Wisconsin Ave., MS-721, Milwaukee, WI, 53226, USA
| |
Collapse
|
13
|
Snyder SE, Butch ER, Shulkin BL. Radiopharmaceuticals in Pediatric Nuclear Medicine. HANDBOOK OF RADIOPHARMACEUTICALS 2020:653-701. [DOI: 10.1002/9781119500575.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Elders B, Ciet P, Tiddens H, van den Bosch W, Wielopolski P, Pullens B. MRI of the upper airways in children and young adults: the MUSIC study. Thorax 2020; 76:44-52. [PMID: 33122446 PMCID: PMC7803889 DOI: 10.1136/thoraxjnl-2020-214921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 11/03/2022]
Abstract
RATIONALE Paediatric laryngotracheal stenosis (LTS) is often successfully corrected with open airway surgery. However, respiratory and vocal sequelae frequently remain. Clinical care and surgical interventions could be improved with better understanding of these sequelae. OBJECTIVE The objective of this cross-sectional study was to develop an upper airway MRI protocol to obtain information on anatomical and functional sequelae post-LTS repair. METHODS Forty-eight patients (age 14.4 (range 7.5-30.7) years) and 11 healthy volunteers (15.9 (8.2-28.8) years) were included. Spirometry and static and dynamic upper airway MRI (3.0 T, 30 min protocol) were conducted. Analysis included assessment of postoperative anatomy and airway lumen measurements during static and dynamic (inspiration and phonation) acquisitions. MAIN RESULTS Good image quality without artefacts was achieved for static and dynamic images in the majority of MRIs. MRI showed vocal cord thickening in 80.9% of patients and compared with volunteers, a significant decrease in vocal cord lumen area (22.0 (IQR 17.7-30.3) mm2 vs 35.1 (21.2-54.7) mm2, p=0.03) but not cricoid lumen area (62.3±27.0 mm2 vs 66.2±34.8 mm2, p=0.70). Furthermore, 53.2% of patients had an A-frame deformation at site of previous tracheal cannula, showing lumen collapse during inspiration. Dynamic imaging showed incomplete vocal cord abduction during inspiration in 42.6% and incomplete adduction during phonation in 61.7% of patients. CONCLUSIONS Static and dynamic MRI is an excellent modality to non-invasively image anatomy, tissue characteristics and vocal cord dynamics of the upper airways. MRI-derived knowledge on postsurgical LTS sequelae might be used to improve surgery.
Collapse
Affiliation(s)
- Bernadette Elders
- Department of Pediatric Pulmonology, Erasmus MC Sophia, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Department of Pediatric Pulmonology, Erasmus MC Sophia, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Harm Tiddens
- Department of Pediatric Pulmonology, Erasmus MC Sophia, Rotterdam, The Netherlands
| | - Wytse van den Bosch
- Department of Pediatric Pulmonology, Erasmus MC Sophia, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Piotr Wielopolski
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bas Pullens
- Department of Pediatric Othorhinolaryngology, Erasmus MC Sophia, Rotterdam, The Netherlands
| |
Collapse
|
15
|
|
16
|
Rodríguez-Alfonso B, Simó-Perdigó M, Orcajo Rincón J. Functional imaging in soft tissue sarcomas: Update of the indications for 18F-FDG-PET/CT. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Rodríguez-Alfonso B, Simó-Perdigó M, Orcajo Rincón J. Functional image in soft tissue sarcomas: An update of the indications of 18F-FDG-PET/CT. Rev Esp Med Nucl Imagen Mol 2020; 39:233-243. [PMID: 32616457 DOI: 10.1016/j.remn.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Soft tissue sarcomas (STS) are a rare and heterogeneous group of tumors. They account for 1% of solid malignant tumors in adults and 7% in children and are responsible for 2% of cancer mortality. They require a multidisciplinary approach in centers with experience. This collaboration aims to update the scientific evidence to strengthen, together with clinical experience, the bases for the use and limitations of 18F-FDG-PET/CT in STSs. The general recommendations for the use of PET/CT in STS at present are summarized as the initial evaluation of soft tissue tumours when conventional image does not establish benignity with certainty and this determines the approach; in biopsy guiding in selected cases; in the initial staging, as additional tool, for rhabdomyosarcoma and STS of extremities or superficial trunk and head and neck tumours; in the suspicion of local recurrence when the CT or MRI are inconclusive and in the presence of osteosynthesis or prosthetic material and in assessment of therapy response to local/systemic therapy in stages ii/iii. In addition, PET/CT has the added value of being a surrogate marker of the histopathological response and it provides prognostic information, both in the baseline study and after treatment.
Collapse
Affiliation(s)
- B Rodríguez-Alfonso
- Servicio de Medicina Nuclear, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, España.
| | - M Simó-Perdigó
- Servicio de Medicina Nuclear, Hospital Universitari Vall d'Hebron, Barcelona, España
| | - J Orcajo Rincón
- Servicio de Medicina Nuclear, Hospital General Universitario Gregorio Marañón, Madrid, España; Miembro del Grupo Español de Investigación en Sarcomas (GEIS)
| |
Collapse
|
18
|
Abstract
With the routine availability of PET/CT imaging for oncologic purposes, there has been renewed interest in and acceptance of cardiac and neurologic applications of PET/CT. As our understanding of the pathophysiology underlying various pediatric heart diseases has improved, there has been a parallel advance in imaging modalities. Cardiac MR imaging and cardiac PET continue to improve in the pediatric domain. Molecular imaging holds promise to provide a more robust assessment of the cardiac pathophysiology in a 1-stop setting with less radiation exposure to the patient, an important consideration for the pediatric patient population.
Collapse
|
19
|
Lollert A. Quantitative bildgebende Untersuchungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Schäfer JF, Tsiflikas I, Esser M, Dittmann H, Bender B, Gatidis S. Kombinierte Positronenemissions-Magnetresonanztomographie (PET/MRT) bei Kindern und Jugendlichen. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-00889-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Torrado-Carvajal A. Importance of attenuation correction in PET/MR image quantification: Methods and applications. Rev Esp Med Nucl Imagen Mol 2020. [DOI: 10.1016/j.remnie.2020.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Torrado-Carvajal A. Importance of attenuation correction in PET/MR image quantification: Methods and applications. Rev Esp Med Nucl Imagen Mol 2020; 39:163-168. [PMID: 32345573 DOI: 10.1016/j.remn.2020.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
The generation of accurate attenuation correction (AC) maps is a basic step to allow for quantitative PET/MR imaging. However, generating MR-based AC maps is a challenge because there is no direct relationship between the PET attenuation coefficients (μ) and the intensity of the MR signal, contrary to what happens with the intensity of CT images. In fact, ignoring the bone causes a distorted and biased distribution of the calculated SUV values. To solve this problem, several MR-based AC methods have been proposed in the literature. In this paper we describe how these methods work, and the challenge they faced to translate into full body applications. Currently, in research environments, the accuracy of AC methods is no longer a limiting factor to solve in order to carry out quantitative in vivo molecular imaging studies. However, many of these methods present a series of limitations for their real implementation in the clinical practice due to insufficient clinical validation and the difficulty of their implementation in a real environment (as described in the examples of clinical applications). Thus, we need the PET/MR community to work on the standardization of the use and assessment of different AC methods. In this scenario, the opening and access by vendors to the implementation of new AC methods in their PET/MR scanners plays a crucial role.
Collapse
Affiliation(s)
- A Torrado-Carvajal
- Laboratorio de Análisis de Imagen Médica y Biometría, Universidad Rey Juan Carlos, Madrid, España; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, Estados Unidos.
| |
Collapse
|
23
|
Oehmigen M, Lindemann ME, Tellmann L, Lanz T, Quick HH. Improving the CT (140 kVp) to PET (511 keV) conversion in PET/MR hardware component attenuation correction. Med Phys 2020; 47:2116-2127. [DOI: 10.1002/mp.14091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/21/2023] Open
Affiliation(s)
- Mark Oehmigen
- High‐Field and Hybrid MR Imaging University Hospital Essen Essen Germany
| | - Maike E. Lindemann
- High‐Field and Hybrid MR Imaging University Hospital Essen Essen Germany
| | - Lutz Tellmann
- Institute for Neuroscience and Medicine (INM‐4) Forschungszentrum Jülich GmbH Jülich Germany
| | | | - Harald H. Quick
- High‐Field and Hybrid MR Imaging University Hospital Essen Essen Germany
- Erwin L. Hahn Institute for MR Imaging University Duisburg‐Essen Essen Germany
| |
Collapse
|
24
|
Comparison of FDG PET/MRI and FDG PET/CT in Pediatric Oncology in Terms of Anatomic Correlation of FDG-positive Lesions. J Pediatr Hematol Oncol 2019; 41:542-550. [PMID: 30933019 DOI: 10.1097/mph.0000000000001465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aims of our study were to compare F-18 fluorodeoxyglucose (FDG) positron-emission tomography/magnetic resonance imaging (PET/MRI) and PET/computed tomography (CT) in pediatric oncology patients in terms of anatomic correlation of FDG-positive lesions, and also to compare diffusion-weighted imaging (DWI) with PET to assess the correlation between apparent diffusion coefficient (ADC) values and standardized uptake value (SUV). Sequential PET/CT and PET/MRI images and/or whole-body DWI and ADC mapping in 34 pediatric patients were retrospectively analyzed. FDG-positive lesions were visually scored for CT, T1-weighted, T2-weighted, and DWI images separately in terms of anatomic correlation of FDG-avid lesions. Correlation analysis was performed for SUV parameters and ADC values. Among 47 FDG-positive lesions identified concurrently on PET/CT and PET/MRI, 37 were positive on CT and 46 were positive on at least one MRI sequence (P=0.012). Among 32 FDG-positive lesions for which DWI were available, 31 could be clearly depicted on DWI, resulting in significant difference compared with CT alone in the detection of FDG-positive lesions. No correlation was found between ADC and SUV. FDG PET/MRI exhibits better performance than PET/CT in terms of anatomic correlation of FDG-avid lesions. Therefore, PET/MRI may be more advantageous than PET/CT, not only due to reduced ionizing radiation dose but also for a better depiction of FDG-avid lesions in pediatric PET imaging.
Collapse
|
25
|
Abstract
CLINICAL/METHODICAL ISSUE Magnet resonance imaging (MRI) is an excellent anatomical reference method for the combination with positron emission tomography (PET). But MRI does not produce data, which can be directly used for attenuation correction of PET data, potentially compromising quantitative accuracy of PET. STANDARD RADIOLOGICAL METHODS Hybrid-positron emission tomography/computed tomography (PET/CT) is an established standard diagnostic tool, particularly for staging and restaging in oncology. Attenuation correction of PET data is performed with a µMAP derived from low-dose-CT, considered as a robust method. METHODICAL INNOVATIONS Using standardized MRI-sequences, tissue classes are segmented and attenuation maps are obtained, based on empirical density values. In addition, new reconstruction algorithms and the possibility to acquire PET and MRI simultaneously with MRI-based motion correction are available. These advances have improved image quality and quantitative accuracy of the PET-data in PET/MRI. PERFORMANCE In numerous oncological studies PET/CT and PET/MR were rated as equal in their diagnostic performance. The combination of functional-metabolic PET and multiparametric MRI with excellent soft tissue contrast complement each other with regard to their diagnostic information in numerous tumor entities. PRACTICAL RECOMMENDATIONS The standard diagnostic workup for lung cancer is currently still based on PET/CT. In numerous tumor entities, the combination of PET/MRI can provide additional diagnostic information.
Collapse
Affiliation(s)
- Bettina Beuthien-Baumann
- Abteilung Radiologie, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
26
|
Kwatra NS, Lim R, Gee MS, States LJ, Vossough A, Lee EY. PET/MR Imaging:. Magn Reson Imaging Clin N Am 2019; 27:387-407. [DOI: 10.1016/j.mric.2019.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Khafif A, Masalha M, Landsberg R, Domachevsky L, Bernstine H, Groshar D, Azoulay O, Lockman Y. The role of F18-fluorocholine positron emission tomography/magnetic resonance imaging in localizing parathyroid adenomas. Eur Arch Otorhinolaryngol 2019; 276:1509-1516. [DOI: 10.1007/s00405-019-05301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/16/2019] [Indexed: 11/30/2022]
|
28
|
Chambers G, Frood R, Patel C, Scarsbrook A. 18F-FDG PET-CT in paediatric oncology: established and emerging applications. Br J Radiol 2019; 92:20180584. [PMID: 30383441 PMCID: PMC6404840 DOI: 10.1259/bjr.20180584] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/01/2018] [Accepted: 10/27/2018] [Indexed: 12/11/2022] Open
Abstract
Accurate staging and response assessment is vital in the management of childhood malignancies. Fluorine-18 fluorodeoxyglucose positron emission tomography/CT (FDG PET-CT) provides complimentary anatomical and functional information. Oncological applications of FDG PET-CT are not as well-established within the paediatric population compared to adults. This article will comprehensively review established oncological PET-CT applications in paediatric oncology and provide an overview of emerging and future developments in this domain.
Collapse
Affiliation(s)
- Greg Chambers
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Russell Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chirag Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | |
Collapse
|
29
|
Marner L, Nysom K, Sehested A, Borgwardt L, Mathiasen R, Henriksen OM, Lundemann M, Munck Af Rosenschöld P, Thomsen C, Bøgeskov L, Skjøth-Rasmussen J, Juhler M, Kruse A, Broholm H, Scheie D, Lauritsen T, Forman JL, Wehner PS, Højgaard L, Law I. Early Postoperative 18F-FET PET/MRI for Pediatric Brain and Spinal Cord Tumors. J Nucl Med 2019; 60:1053-1058. [PMID: 30683767 DOI: 10.2967/jnumed.118.220293] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/11/2018] [Indexed: 11/16/2022] Open
Abstract
Complete resection is the treatment of choice for most pediatric brain tumors, but early postoperative MRI for detection of residual tumor may be misleading because of MRI signal changes caused by the operation. PET imaging with amino acid tracers in adults increases the diagnostic accuracy for brain tumors, but the literature in pediatric neurooncology is limited. A hybrid PET/MRI system is highly beneficial in children, reducing the number of scanning procedures, and this is to our knowledge the first larger study using PET/MRI in pediatric neurooncology. We evaluated if additional postoperative 18F-fluoro-ethyl-tyrosine (18F-FET) PET in children and adolescents would improve diagnostic accuracy for the detection of residual tumor as compared with MRI alone and would assist clinical management. Methods: Twenty-two patients (7 male; mean age, 9.5 y; range, 0-19 y) were included prospectively and consecutively in the study and had 27 early postoperative 18F-FET PET exams performed preferentially in a hybrid PET/MRI system (NCT03402425). Results: Using follow-up (93%) or reoperation (7%) as the reference standard, PET combined with MRI discriminated tumor from treatment effects with a lesion-based sensitivity/specificity/accuracy (95% confidence intervals) of 0.73 (0.50-1.00)/1.00 (0.74-1.00)/0.87 (0.73-1.00) compared with MRI alone: 0.80 (0.57-1.00)/0.75 (0.53-0.94)/0.77 (0.65-0.90); that is, the specificity for PET/MRI was 1.00 as compared with 0.75 for MRI alone (P = 0.13). In 11 of 27 cases (41%), results from the 18F-FET PET scans added relevant clinical information, including one scan that directly influenced clinical management because an additional residual tumor site was identified. 18F-FET uptake in reactive changes was frequent (52%), but correct interpretation was possible in all cases. Conclusion: The high specificity for detecting residual tumor suggests that supplementary 18F-FET PET is relevant in cases where reoperation for residual tumor is considered.
Collapse
Affiliation(s)
- Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Astrid Sehested
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Lise Borgwardt
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - René Mathiasen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Michael Lundemann
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Carsten Thomsen
- Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Department of Radiology, Zealand University Hospital, Køge, Denmark
| | - Lars Bøgeskov
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Anders Kruse
- Department of Orthopaedic Surgery, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - David Scheie
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Torsten Lauritsen
- Department of Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; and
| | - Peder Skov Wehner
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
| | - Liselotte Højgaard
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
30
|
Tiddens HAWM, Kuo W, van Straten M, Ciet P. Paediatric lung imaging: the times they are a-changin'. Eur Respir Rev 2018; 27:27/147/170097. [PMID: 29491035 DOI: 10.1183/16000617.0097-2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
Until recently, functional tests were the most important tools for the diagnosis and monitoring of lung diseases in the paediatric population. Chest imaging has gained considerable importance for paediatric pulmonology as a diagnostic and monitoring tool to evaluate lung structure over the past decade. Since January 2016, a large number of papers have been published on innovations in chest computed tomography (CT) and/or magnetic resonance imaging (MRI) technology, acquisition techniques, image analysis strategies and their application in different disease areas. Together, these papers underline the importance and potential of chest imaging and image analysis for today's paediatric pulmonology practice. The focus of this review is chest CT and MRI, as these are, and will be, the modalities that will be increasingly used by most practices. Special attention is given to standardisation of image acquisition, image analysis and novel applications in chest MRI. The publications discussed underline the need for the paediatric pulmonology community to implement and integrate state-of-the-art imaging and image analysis modalities into their structure-function laboratory for the benefit of their patients.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands .,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wieying Kuo
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands.,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marcel van Straten
- Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Pierluigi Ciet
- Pediatric Pulmonology and Allergology, Erasmus MC - Sophia Children's Hospital, University Medical Centre, Rotterdam, The Netherlands.,Radiology and Nuclear Medicine, Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Langerhans cell histiocytosis in children - a disease with many faces. Recent advances in pathogenesis, diagnostic examinations and treatment. Postepy Dermatol Alergol 2018; 35:6-17. [PMID: 29599667 PMCID: PMC5872238 DOI: 10.5114/pdia.2017.67095] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
Langerhans cell histiocytosis is a rare clonal disease characterized by the proliferation of CD1a-positive immature dendritic cells. The purpose of this article was to present an updated review of recent advances in the pathogenesis, clinical features, imaging and treatment of this disease. The discovery of oncogenic BRAF mutations and the presence of proinflammatory cytokines and chemokines confirmed the unusual characteristics of this disease. Currently, children with organ involvement who do not have a good response to chemotherapy and have neurodegeneration or diabetes insipidus are the most problematic patients. Further research is needed to improve the results of treatment.
Collapse
|
32
|
Colleran GC, Kwatra N, Oberg L, Grant FD, Drubach L, Callahan MJ, MacDougall RD, Fahey FH, Voss SD. How we read pediatric PET/CT: indications and strategies for image acquisition, interpretation and reporting. Cancer Imaging 2017; 17:28. [PMID: 29116015 PMCID: PMC5678769 DOI: 10.1186/s40644-017-0130-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
PET/CT plays an important role in the diagnosis, staging and management of many pediatric malignancies. The techniques for performing PET/CT examinations in children have evolved, with increasing attention focused on reducing patient exposure to ionizing radiation dose whenever possible and minimizing scan duration and sedation times, with a goal toward optimizing the overall patient experience. This review outlines our approach to performing PET/CT, including a discussion of the indications for a PET/CT exam, approaches for optimizing the exam protocol, and a review of different approaches for acquiring the CT portion of the PET/CT exam. Strategies for PACS integration, image display, interpretation and reporting are also provided. Most practices will develop a strategy for performing PET/CT that best meets their respective needs. The purpose of this article is to provide a comprehensive overview for radiologists who are new to pediatric PET/CT, and also to provide experienced PET/CT practitioners with an update on state-of-the art CT techniques that we have incorporated into our protocols and that have enabled us to make considerable improvements to our PET/CT practice.
Collapse
Affiliation(s)
- Gabrielle C Colleran
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Neha Kwatra
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Leah Oberg
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Frederick D Grant
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Laura Drubach
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Michael J Callahan
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert D MacDougall
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Frederic H Fahey
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Stephan D Voss
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|