1
|
Cui QX, Zhou LQ, Wang XY, Zhang HX, Li JJ, Xiong MC, Shi HY, Zhu YM, Sang XQ, Kuai ZX. Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer. Acad Radiol 2025; 32:2477-2488. [PMID: 39765433 DOI: 10.1016/j.acra.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 04/23/2025]
Abstract
RATIONALE AND OBJECTIVES To propose a novel MRI-based hyper-fused radiomic approach to predict pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer (BC). MATERIALS AND METHODS Pretreatment dynamic contrast-enhanced (DCE) MRI and ultra-multi-b-value (UMB) diffusion-weighted imaging (DWI) data were acquired in BC patients who received NAT followed by surgery at two centers. Hyper-fused radiomic features (RFs) and conventional RFs were extracted from DCE-MRI or UMB-DWI. After feature selection, the following models were built using logistic regression and the retained RFs: hyper-fused model, conventional model, and compound model that integrates the hyper-fused and conventional RFs. The output probability of each model was used to generate a radiomic signature. The model's performance was quantified by the area under the receiver-operating characteristic curve (AUC). Multivariable logistic regression was used to identify variables (clinicopathological variables and the generated radiomic signatures) associated with pCR. RESULTS The training/external test set (center 1/2) included 547/295 women. The hyper-fused models (AUCs=0.81-0.85) outperformed (p<0.05) the conventional models (AUCs=0.74-0.80) in predicting pCR. The compound models (AUCs=0.88-0.93) outperformed (p<0.05) the hyper-fused models and conventional models for pCR prediction. The hyper-fused radiomic signatures (odds ratios=5.70-12.98; p<0.05) and compound radiomic signatures (odds ratios=1.57-7.71; p<0.05) were independently associated with pCR. These are true for the training and external test sets. CONCLUSION The hyper-fused radiomic approach had significantly better performance for predicting pCR to NAT than the conventional radiomic approach, and the hyper-fused RFs provided incremental discrimination of pCR beyond the conventional RFs. The generated hyper-fused radiomic signatures were independent predictors of pCR.
Collapse
Affiliation(s)
- Quan-Xiang Cui
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Liang-Qin Zhou
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Xin-Yi Wang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Jing-Jing Li
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Ming-Cong Xiong
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Hai-Yang Shi
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.)
| | - Yue-Min Zhu
- Division of Respiratory Disease, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China (Y-M.Z.)
| | - Xi-Qiao Sang
- CREATIS, CNRS UMR 5220-INSERM U1206-University Lyon 1-INSA Lyon-University Jean Monnet Saint-Etienne, Lyon 69621, France (X-Q.S.)
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Haping Road No.150, Nangang District, Harbin 150081, China (Q-X.C., L-Q.Z., X-Y.W., H-X.Z., J-J.L., M-C.X., H-Y.S., Z-X.K.).
| |
Collapse
|
2
|
D'Anna A, Aranzulla C, Carnaghi C, Caruso F, Castiglione G, Grasso R, Gueli AM, Marino C, Pane F, Pulvirenti A, Stella G. Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach. Phys Med 2025; 131:104931. [PMID: 39946952 DOI: 10.1016/j.ejmp.2025.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/11/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
PURPOSE The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHOD The study included 55 patients with breast cancer, among whom 18 achieved pCR and 37 did not respond completely to NAC (non-pCR). After some pre-processing steps, 1446 features were extracted and corrected for batch effects using ComBat. Five machine learning algorithms, namely random forest (RF), decision tree (DT), logistic regression (LR), k-nearest neighbors (k-NN), and extreme gradient boosting (XGB), were evaluated using area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, and F1 score as classification metrics. A Leave-Group-Out cross validation (LGOCV) was applied in the outer loop. RESULTS RF and DT models exhibited the highest performances compared to the other algorithms. DT achieved an accuracy of 0.96 ± 0.07, and RF achieved 0.95 ± 0.05. The AUC values for RF and DT were 0.98 ± 0.06 and 0.94 ± 0.07, respectively. LR and k-NN demonstrated lower performance across all metrics, while XGB showed competitive results but slightly lower than RF and DT. CONCLUSIONS This study demonstrates the potential of radiomics and machine learning for predicting pCR to NAC in breast cancer. RF and DT models proved to be the most effective in capturing underlying patterns in radiomics data. Further research is required to validate and strengthen the proposed approach and explore its applicability in diverse radiomics datasets and clinical scenarios.
Collapse
Affiliation(s)
- Alessia D'Anna
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy
| | - Carlo Aranzulla
- Department of Biomedicine, Neuroscience and Advanced Diagnostics - Section of Radiological Sciences, A.O.U. Policlinico "Paolo Giaccone", School of Specialization in Radiodiagnostics, University of Palermo, Via del Vespro 129, Palermo 90127, Italy
| | - Carlo Carnaghi
- Medical Oncology Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Francesco Caruso
- Oncological Surgery Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Gaetano Castiglione
- Oncological Surgery Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Roberto Grasso
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, Catania 95123, Italy
| | - Anna Maria Gueli
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy
| | - Carmelo Marino
- Medical Physics Department, Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Francesco Pane
- Breast Diagnostics Department - Humanitas Istituto Clinico Catanese, SP54 Contrada Cubba Marletta 11, Misterbianco 95045, Italy
| | - Alfredo Pulvirenti
- Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, via Santa Sofia 89, Catania 95123, Italy
| | - Giuseppe Stella
- Physics and Astronomy Department E. Majorana, University of Catania, Via S. Sofia 64, Catania 95123 Italy.
| |
Collapse
|
3
|
Pesapane F, Rotili A, Scalco E, Pupo D, Carriero S, Corso F, De Marco P, Origgi D, Nicosia L, Ferrari F, Penco S, Pizzamiglio M, Rizzo G, Cassano E. Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01969-1. [PMID: 39992329 DOI: 10.1007/s11547-025-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Neoadjuvant chemotherapy (NACT) improves surgical outcomes for breast cancer patients, with pathologic complete response (pCR) correlated with enhanced survival. The role of radiomics, particularly from peritumoral tissue, in predicting pCR remains under investigation. METHODS This retrospective study analyzed radiomic features from pretreatment dynamic contrast-enhanced breast MRI scans of 150 patients undergoing NACT. A proportional approach was used to define peritumoral zones, assessed both with a 10% and 30% extension, allowing more standardized assessments relative to the tumor size. Radiomic features were evaluated alongside clinical and biological data to predict pCR. The association of clinical/biological and radiomic features with pCR to NACT was evaluated using univariate and multivariate analysis, logistic regression, and a random forest model. A clinical/biological model, a radiomic model, and a combined clinical/biological and 4 radiomic models for predicting the response to NACT were constructed. Area under the curve (AUC) and 95% confidence intervals (CIs) were used to assess the performance of the models. RESULTS Ninety-five patients (average age 47 years) were finally included. HER2 + , basal-like molecular subtypes, and a high level of Ki67 (≥ 20%) were associated with a higher likelihood of pCR to NACT. The combined clinical-biological-radiomic model, especially with a 10% peritumoral extension, showed improved predictive accuracy (AUC 0.76, CI 0.65-0.85) compared to models using clinical-biological data alone (AUC 0.73, CI 0.63-0.83). CONCLUSIONS Integrating peritumoral radiomic features with clinical and biological data enhances the prediction of pCR to NACT, underscoring the potential of a multifaceted approach in treatment personalization.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Anna Rotili
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Scalco
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche (ITB-CNR), Segrate, MI, Italy
| | - Davide Pupo
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Serena Carriero
- Department of Radiology and Interventional Radiology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Corso
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paolo De Marco
- Medical Physics Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, European Institute of Oncology, IRCCS, Milan, Italy
| | - Luca Nicosia
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Pizzamiglio
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanna Rizzo
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), CNR, Segrate, MI, Italy
| | - Enrico Cassano
- Breast Imaging Division, Radiology Department, IEO European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
4
|
Hou X, Chen K, Wan X, Luo H, Li X, Xu W. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on 18F-FDG PET/CT. J Cancer Res Clin Oncol 2024; 150:484. [PMID: 39488636 PMCID: PMC11531439 DOI: 10.1007/s00432-024-05987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE To investigate the value of 18F-FDG PET/CT-based intratumoral and peritumoral radiomics in predicting the efficacy of neoadjuvant chemotherapy (NAC) for breast cancer. METHODS 190 patients who met the inclusion and exclusion criteria from 2017 to 2022 were studied. Features were extracted from the PET/CT intratumoral and peritumoral regions, feature selection was performed through the correlation analysis, t-tests, and least absolute shrinkage and selection operator regression (LASSO). Four classifiers, support vector machine (SVM), k-nearest neighbor (KNN), logistic regression (LR), and naive bayes (NB) were used to build the prediction models. The receiver operating characteristic (ROC) curves were plotted to measure the predictive performance of the models. Concurrent stratified analysis was conducted to establish subtype-specific features for each molecular subtype. RESULTS Compared to intratumoral features alone, intratumoral + peritumoral features achieved higher AUC values in each classifier. The SVM model constructed with intratumoral + peritumoral features achieved the highest AUC values in both the train and test set (train set: 0.95 and test set: 0.83). Subtype-specific features improve performance in predicting the efficacy of NAC (luminal group: 0.90; HER2 + group: 0.86; triple negative group: 0.92). CONCLUSION Intratumoral and peritumoral radiomics models based on 18F-FDG PET/CT can reliably forecast the efficacy of NAC, thereby assisting clinical decision-making.
Collapse
Affiliation(s)
- Xuefeng Hou
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Kun Chen
- Department of Nuclear Medicine, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xing Wan
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Huiwen Luo
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, Tianjin, 300060, China.
- Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
5
|
Zhang L, Ning N, Liang H, Zhao S, Gao X, Liu A, Song Q, Duan X, Yang J, Xie L. The contrast-free diffusion MRI multiple index for the early prediction of pathological response to neoadjuvant chemotherapy in breast cancer. NMR IN BIOMEDICINE 2024; 37:e5176. [PMID: 38884131 DOI: 10.1002/nbm.5176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024]
Abstract
Early tumor response prediction can help avoid overtreatment with unnecessary chemotherapy sessions. It is important to determine whether multiple apparent diffusion coefficient indices (S index, ADC-diff) are effective in the early prediction of pathological response to neoadjuvant chemotherapy (NAC) in breast cancer (BC). Patients with stage II and III BCs who underwent T1WI, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI using a 3 T system were included. They were divided into two groups: major histological responders (MHRs, Miller-Payne G4/5) and nonmajor histological responders (nMHRs, Miller-Payne G1-3). Three b values were used for DWI to derive the S index; ADC-diff values were obtained using b = 0 and 1000 s/mm2. The different interquartile ranges of percentile S-index and ADC-diff values after treatment were calculated and compared. The assessment was performed at baseline and after two and four NAC cycles. A total of 59 patients were evaluated. There are some correlations of interquartile ranges of S-index parameters and ADC-diff values with histopathological prognostic factors (such as estrogen receptor and human epidermal growth factor receptor 2 expression, all p < 0.05), but no significant differences were found in some other interquartile ranges of S-index parameters or ADC-diff values between progesterone receptor positive and negative or for Ki-67 tumors (all P > 0.05). No differences were found in the dynamic contrast-enhanced MRI characteristics between the two groups. HER-2 expression and kurtosis of the S-index distribution were screened out as independent risk factors for predicting MHR group (p < 0.05, area under the curve (AUC) = 0.811) before NAC. After early NAC (two cycles), only the 10th percentile S index was statistically significant between the two groups (p < 0.05, AUC = 0.714). No significant differences were found in ADC-diff value at any time point of NAC between the two groups (P > 0.1). These findings demonstrate that the S-index value may be used as an early predictor of pathological response to NAC in BC; the value of ADC-diff as an imaging biomarker of NAC needs to be further confirmed by ongoing multicenter prospective trials.
Collapse
Affiliation(s)
- Lina Zhang
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Ning
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongbing Liang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Siqi Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyi Duan
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yang
- School of Public Health, Dalian Medical University, Dalian, China
| | - Lizhi Xie
- GE Healthcare, MR Research China, Beijing, China
| |
Collapse
|
6
|
Zhan T, Yi C, Lang Y. Predicting efficacy of neoadjuvant chemotherapy in breast cancer patients with synthetic magnetic resonance imaging method MAGiC: An observational cohort study. Eur J Radiol 2024; 179:111666. [PMID: 39128250 DOI: 10.1016/j.ejrad.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE MAGnetic resonance Imaging Compilation (MAGiC) is typical method of synthetic magnetic resonance imaging (MRI). The present aimed to investigate the role of MAGiC parameters of relaxation time (T1), transverse relaxation time (T2) and proton density (PD) to predict the treatment efficacy of breast cancer patients after neoadjuvant chemotherapy (NAC). METHODS The present prospective cohort study enrolled 120 breast cancer patients who received NAC during 2021-2023. Demographic data and clinical characteristics including tumor node metastasis (TNM) stage, pathological type, molecular classification and lymph node metastasis were collected. The levels of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) were measured. Patients were divided by treatment efficacy using the Miller-Payne grading as partial pathological response (pPR) group and pathological complete response (pCR). The values of MAGiC parameters of longitudinal T1, T2, and PD values were recorded. RESULTS In all 120 patients, 73 (60.83%) cases were with pPR and 47 (39.17%) cases were with pCR after treatment. T2 values were markedly lower in pPR patients compared with pCR patients. However, no significant difference was found for T1 and PD values. No significant correlation was observed between any of MAGiC parameters and HER-2, ER or PR. ROC curve showed T2 could be used for prediction of pPR with AUC 0.780. Lymph node metastasis and low levels of T2 were found as independent risk factors for pPR after treatment. CONCLUSION The T2 value parameter from MAGiC is an independent risk factor for pPR following NAC in breast cancer patients, suggesting its potential as a biomarker for predicting treatment efficacy.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Chenghao Yi
- Department of Breast Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuanyuan Lang
- Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
7
|
Lee HJ, Lee JH, Lee JE, Na YM, Park MH, Lee JS, Lim HS. Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI. Sci Rep 2024; 14:21691. [PMID: 39289507 PMCID: PMC11408492 DOI: 10.1038/s41598-024-72581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
This study assessed pretreatment breast MRI coupled with machine learning for predicting early clinical responses to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC), focusing on identifying non-responders. A retrospective analysis of 135 TNBC patients (107 responders, 28 non-responders) treated with NAC from January 2015 to October 2022 was conducted. Non-responders were defined according to RECIST guidelines. Data included clinicopathologic factors and clinical MRI findings, with radiomics features from contrast-enhanced T1-weighted images, to train a stacking ensemble of 13 machine learning models. For subgroup analysis, propensity score matching was conducted to adjust for clinical disparities in NAC response. The efficacy of the models was evaluated using the area under the receiver-operating-characteristic curve (AUROC) before and after matching. The model combining clinicopathologic factors and clinical MRI findings achieved an AUROC of 0.752 (95% CI 0.644-0.860) for predicting non-responders, while radiomics-based models showed 0.749 (95% CI 0.614-0.884). An integrated model of radiomics, clinicopathologic factors, and clinical MRI findings reached an AUROC of 0.802 (95% CI 0.699-0.905). After propensity score matching, the hierarchical order of key radiomics features remained consistent. Our study demonstrated the potential of using machine learning models based on pretreatment MRI to non-invasively predict TNBC non-responders to NAC.
Collapse
Affiliation(s)
- Hyo-Jae Lee
- Department of Radiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Jeong Hoon Lee
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jong Eun Lee
- Department of Radiology and the Research Institute of Radiology, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Min Na
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ji Shin Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyo Soon Lim
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea.
- Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
8
|
Yang Z, Liu C. Research on the application of radiomics in breast cancer: A bibliometrics and visualization analysis. Medicine (Baltimore) 2024; 103:e39463. [PMID: 39213225 PMCID: PMC11365679 DOI: 10.1097/md.0000000000039463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer worldwide. Therefore, improved disease detection has emerged as a focal point in clinical studies. At the forefront of innovation, radiomics has the capability to extract comprehensive insights from medical images, ultimately enhancing the accuracy of diagnostic procedures. There has been rapid growth in the field of radiomics research on breast cancer in the past few years. We explored pertinent research articles in the Web of Science Core Collection database to gain a thorough understanding of breast cancer radiomics. We used CiteSpace to conduct a bibliometric analysis of the annual distribution of different nations, institutions, journals, authors, keywords, and references in the field of breast cancer radiomics. GraphPad Prism software was used to examine and graph yearly and country-specific trends and the proportions of publications. The tools utilized for the visualization of science mapping included CiteSpace and VOSviewer. Of the 891 publications, most were original articles (731, 91.09%) and a few were reviews (160, 8.91%). Most academic research has been published in China and the United States. The study centers predominantly consisted of major academic institutions, such as Fudan University and the Chinese Academy of Sciences, with some of their members being prominent figures in the field. Pinker, Katja has published the largest number of research papers. The majority of these studies have been published in medical journals focusing on radiology and oncology in recent years. In the realm of cutting-edge medical research, the top two keywords, magnetic resonance imaging and machine learning stand at the forefront as current areas of intense focus. Breast cancer radiomics is advancing rapidly, presenting numerous opportunities and obstacles. Our study of the literature in this academic area aimed to pinpoint the primary themes addressed in the studies and anticipate prospective avenues for research.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chenglong Liu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
9
|
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024; 22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Da Pan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xuan Cao
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhihao Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Songlin He
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
10
|
Li Z, Liu X, Gao Y, Lu X, Lei J. Ultrasound-based radiomics for early predicting response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review with meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:934-944. [PMID: 38630147 DOI: 10.1007/s11547-024-01783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/10/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE This study aims to evaluate the diagnostic accuracy of ultrasound imaging (US)-based radiomics for the early prediction of response to neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS We comprehensively searched PubMed, Cochrane Library, Embase, and Web of Science databases up to 1 January 2023 for eligible studies. We assessed the methodological quality of the enrolled studies with Radiomics Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. We performed meta-analyses to summarize the diagnostic efficacy of US-based radiomics in response to NAC in breast cancer patients. RESULTS Eight studies proved eligible. Eligible studies exhibited an average RQS score of 12.88 (35.8% of the total score), with the RQS score ranging from 8 to 19. In the meta-analyses, the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 0.87 (95% CI 0.81-0.92), 0.78 (95% CI 0.72-0.83), 4.02 (95% CI 3.18-5.08), 0.16 (95% CI 0.10-0.25), and 25.17 (95% CI 15.10-41.95), respectively. Results from subgroup analyses indicated that prospective studies apparently exhibited more optimal sensitivity than retrospective studies. Sensitivity analyses exhibited similar results to the primary analyses. CONCLUSION US-based radiomics may be a potentially crucial adjuvant method for evaluating the response of breast cancer to NAC. Due to limited data available and low quality of eligible studies, more multicenter prospective studies with rigorous methods are required to confirm our findings.
Collapse
Affiliation(s)
- Zhifan Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xinran Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Ya Gao
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Xingru Lu
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Junqiang Lei
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Department of Radiology, the First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Zhang X, Teng X, Zhang J, Lai Q, Cai J. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Breast Cancer Res 2024; 26:77. [PMID: 38745321 PMCID: PMC11094888 DOI: 10.1186/s13058-024-01836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Early prediction of pathological complete response (pCR) is important for deciding appropriate treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its association with tumor heterogeneity in breast cancer patients. METHODS The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal combination and the significance of each components was evaluated. All the models were evaluated in independent test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model to identify differentially expressed genes (DEGs) and enriched pathways. RESULTS A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 0.635-0.741 and AUC = 0.650, 95%CI: 0.595-0.705) and tested (AUC = 0.686, 95%CI: 0.594-0.778 and AUC = 0.626, 95%CI: 0.529-0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 95%CI: 0.722-0.816 and test: 0.762, 95%CI: 0.679-0.845). Compared with clinical-radiomic combined model (train AUC = 0.716, 95%CI: 0.665-0.767 and test AUC = 0.695, 95%CI: 0.656-0.714), adding the dynamic component brought significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways related to immune system. CONCLUSION Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-related gene expression and immune-related pathways.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qingpei Lai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
12
|
Lo Gullo R, Marcus E, Huayanay J, Eskreis-Winkler S, Thakur S, Teuwen J, Pinker K. Artificial Intelligence-Enhanced Breast MRI: Applications in Breast Cancer Primary Treatment Response Assessment and Prediction. Invest Radiol 2024; 59:230-242. [PMID: 37493391 PMCID: PMC10818006 DOI: 10.1097/rli.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
ABSTRACT Primary systemic therapy (PST) is the treatment of choice in patients with locally advanced breast cancer and is nowadays also often used in patients with early-stage breast cancer. Although imaging remains pivotal to assess response to PST accurately, the use of imaging to predict response to PST has the potential to not only better prognostication but also allow the de-escalation or omission of potentially toxic treatment with undesirable adverse effects, the accelerated implementation of new targeted therapies, and the mitigation of surgical delays in selected patients. In response to the limited ability of radiologists to predict response to PST via qualitative, subjective assessments of tumors on magnetic resonance imaging (MRI), artificial intelligence-enhanced MRI with classical machine learning, and in more recent times, deep learning, have been used with promising results to predict response, both before the start of PST and in the early stages of treatment. This review provides an overview of the current applications of artificial intelligence to MRI in assessing and predicting response to PST, and discusses the challenges and limitations of their clinical implementation.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| | - Eric Marcus
- AI for Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jorge Huayanay
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
- Department of Radiology, National Institute of Neoplastic Diseases, Lima, Peru
| | - Sarah Eskreis-Winkler
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| | - Sunitha Thakur
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jonas Teuwen
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
- AI for Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66 Street, New York, NY 10065, USA
| |
Collapse
|
13
|
Yang Y, Xiang T, Lv X, Li L, Lui LM, Zeng T. Double Transformer Super-Resolution for Breast Cancer ADC Images. IEEE J Biomed Health Inform 2024; 28:917-928. [PMID: 38079366 DOI: 10.1109/jbhi.2023.3341250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Diffusion-weighted imaging (DWI) has been extensively explored in guiding the clinic management of patients with breast cancer. However, due to the limited resolution, accurately characterizing tumors using DWI and the corresponding apparent diffusion coefficient (ADC) is still a challenging problem. In this paper, we aim to address the issue of super-resolution (SR) of ADC images and evaluate the clinical utility of SR-ADC images through radiomics analysis. To this end, we propose a novel double transformer-based network (DTformer) to enhance the resolution of ADC images. More specifically, we propose a symmetric U-shaped encoder-decoder network with two different types of transformer blocks, named as UTNet, to extract deep features for super-resolution. The basic backbone of UTNet is composed of a locally-enhanced Swin transformer block (LeSwin-T) and a convolutional transformer block (Conv-T), which are responsible for capturing long-range dependencies and local spatial information, respectively. Additionally, we introduce a residual upsampling network (RUpNet) to expand image resolution by leveraging initial residual information from the original low-resolution (LR) images. Extensive experiments show that DTformer achieves superior SR performance. Moreover, radiomics analysis reveals that improving the resolution of ADC images is beneficial for tumor characteristic prediction, such as histological grade and human epidermal growth factor receptor 2 (HER2) status.
Collapse
|
14
|
Lv T, Hong X, Liu Y, Miao K, Sun H, Li L, Deng C, Jiang C, Pan X. AI-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107857. [PMID: 37865058 DOI: 10.1016/j.cmpb.2023.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/23/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor microenvironment (TME) is a determining factor in decision-making and personalized treatment for breast cancer, which is highly intra-tumor heterogeneous (ITH). However, the noninvasive imaging phenotypes of TME are poorly understood, even invasive genotypes have been largely known in breast cancer. METHODS Here, we develop an artificial intelligence (AI)-driven approach for noninvasively characterizing TME by integrating the predictive power of deep learning with the explainability of human-interpretable imaging phenotypes (IMPs) derived from 4D dynamic imaging (DCE-MRI) of 342 breast tumors linked to genomic and clinical data, which connect cancer phenotypes to genotypes. An unsupervised dual-attention deep graph clustering model (DGCLM) is developed to divide bulk tumor into multiple spatially segregated and phenotypically consistent subclusters. The IMPs ranging from spatial heterogeneity to kinetic heterogeneity are leveraged to capture architecture, interaction, and proximity between intratumoral subclusters. RESULTS We demonstrate that our IMPs correlate with well-known markers of TME and also can predict distinct molecular signatures, including expression of hormone receptor, epithelial growth factor receptor and immune checkpoint proteins, with the performance of accuracy, reliability and transparency superior to recent state-of-the-art radiomics and 'black-box' deep learning methods. Moreover, prognostic value is confirmed by survival analysis accounting for IMPs. CONCLUSIONS Our approach provides an interpretable, quantitative, and comprehensive perspective to characterize TME in a noninvasive and clinically relevant manner.
Collapse
Affiliation(s)
- Tianxu Lv
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Xiaoyan Hong
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Yuan Liu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Chunjuan Jiang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
15
|
Janse MHA, Janssen LM, van der Velden BHM, Moman MR, Wolters-van der Ben EJM, Kock MCJM, Viergever MA, van Diest PJ, Gilhuijs KGA. Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study. J Magn Reson Imaging 2023; 58:1739-1749. [PMID: 36928988 DOI: 10.1002/jmri.28679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions. PURPOSE To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy. STUDY TYPE Retrospective. SUBJECTS Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years). FIELD STRENGTH/SEQUENCE Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences. ASSESSMENT A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed. STATISTICAL TESTS The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant. RESULTS Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84). DATA CONCLUSION Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 4.
Collapse
Affiliation(s)
- Markus H A Janse
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liselore M Janssen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Bas H M van der Velden
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maaike R Moman
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Alexander Monro Hospital, Bilthoven, The Netherlands
| | | | - Marc C J M Kock
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kenneth G A Gilhuijs
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023; 15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Breast cancer retains its position as the most prevalent form of malignancy among females on a global scale. The careful selection of appropriate treatment for each patient holds paramount importance in effectively managing breast cancer. Neoadjuvant chemotherapy (NACT) plays a pivotal role in the comprehensive treatment of this disease. Administering chemotherapy before surgery, NACT becomes a powerful tool in reducing tumor size, potentially enabling fewer invasive surgical procedures and even rendering initially inoperable tumors amenable to surgery. However, a significant challenge lies in the varying responses exhibited by different patients towards NACT. To address this challenge, researchers have focused on developing prediction models that can identify those who would benefit from NACT and those who would not. Such models have the potential to reduce treatment costs and contribute to a more efficient and accurate management of breast cancer. Therefore, this review has two objectives: first, to identify the most effective radiomic markers correlated with NACT response, and second, to explore whether integrating radiomic markers extracted from radiological images with pathological markers can enhance the predictive accuracy of NACT response. This review will delve into addressing these research questions and also shed light on the emerging research direction of leveraging artificial intelligence techniques for predicting NACT response, thereby shaping the future landscape of breast cancer treatment.
Collapse
Affiliation(s)
- Basma Elsayed
- Biomedical Engineering Program, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed Alksas
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| | - Mona Zaky
- Diagnostic Radiology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Reham Alghandour
- Medical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt;
| | - Khaled Abdelwahab
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohamed Abdelkhalek
- Surgical Oncology Department, Mansoura Oncology Center, Mansoura University, Mansoura 35516, Egypt; (K.A.); (M.A.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | | | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA; (A.A.); (M.S.); (A.M.)
| |
Collapse
|
17
|
Panthi B, Mohamed RM, Adrada BE, Boge M, Candelaria RP, Chen H, Hunt KK, Huo L, Hwang KP, Korkut A, Lane DL, Le-Petross HC, Leung JWT, Litton JK, Pashapoor S, Perez F, Son JB, Sun J, Thompson A, Tripathy D, Valero V, Wei P, White J, Xu Z, Yang W, Zhou Z, Yam C, Rauch GM, Ma J. Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Front Oncol 2023; 13:1264259. [PMID: 37941561 PMCID: PMC10628525 DOI: 10.3389/fonc.2023.1264259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
Collapse
Affiliation(s)
- Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rania M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Koc University Hospital, Istanbul, Türkiye
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deanna L. Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huong C. Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica W. T. Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frances Perez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gaiane M. Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Wang M, Mei T, Gong Y. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Br J Radiol 2023; 96:20230172. [PMID: 37724784 PMCID: PMC10546437 DOI: 10.1259/bjr.20230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE To evaluate the methodological quality of radiomics literature predicting Ki-67 levels based on MRI in patients with breast cancer (BC) and to propose suggestions for clinical translation. METHODS In this review, we searched PubMed, Embase, and Web of Science for studies published on radiomics in patients with BC. We evaluated the methodological quality of the studies using the Radiomics Quality Score (RQS). The Cochrane Collaboration's software (RevMan 5.4), Meta-DiSc (v. 1.4) and IBM SPSS (v. 26.0) were used for all statistical analyses. RESULTS Eighteen studies met our inclusion criteria, and the average RQS was 10.17 (standard deviation [SD]: 3.54). None of these studies incorporated any of the following items: a phantom study on all scanners, cut-off analyses, prospective study, cost-effectiveness analysis, or open science and data. In the meta-analysis, it showed apparent diffusion coefficient (ADC) played a better role to predict Ki-67 level than dynamic contrast-enhanced (DCE) MRI in the radiomics, with the pooled area under the curve (AUC) of 0.969. CONCLUSION Ki-67 index is a common tumor biomarker with high clinical value. Radiomics is an ever-growing quantitative data-mining method helping predict tumor biomarkers from medical images. However, the quality of the reviewed studies evaluated by the RQS was not so satisfactory and there are ample opportunities for improvement. Open science and data, external validation, phantom study, publicly open radiomics database and standardization in the radiomics practice are what researchers should pay more attention to in the future. ADVANCES IN KNOWLEDGE The RQS tool considered the radiomics used to predict the Ki-67 level was of poor quality. ADC performed better than DCE in radiomic prediction. We propose some measures to facilitate the clinical translation of radiomics.
Collapse
Affiliation(s)
- Min Wang
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Mei
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Youling Gong
- Division of Thoracic Tumor Multidisciplinary Treatment, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Hwang KP, Elshafeey NA, Kotrotsou A, Chen H, Son JB, Boge M, Mohamed RM, Abdelhafez AH, Adrada BE, Panthi B, Sun J, Musall BC, Zhang S, Candelaria RP, White JB, Ravenberg EE, Tripathy D, Yam C, Litton JK, Huo L, Thompson AM, Wei P, Yang WT, Pagel MD, Ma J, Rauch GM. A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer. Radiol Imaging Cancer 2023; 5:e230009. [PMID: 37505106 PMCID: PMC10413296 DOI: 10.1148/rycan.230009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023]
Abstract
Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.
Collapse
Affiliation(s)
- Ken-Pin Hwang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Nabil A. Elshafeey
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Aikaterini Kotrotsou
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Huiqin Chen
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jong Bum Son
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Medine Boge
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rania M. Mohamed
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Abeer H. Abdelhafez
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Beatriz E. Adrada
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Bikash Panthi
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jia Sun
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Benjamin C. Musall
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Shu Zhang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Rosalind P. Candelaria
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jason B. White
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Elizabeth E. Ravenberg
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Debu Tripathy
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Clinton Yam
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jennifer K. Litton
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Lei Huo
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Alastair M. Thompson
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Peng Wei
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Wei T. Yang
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Mark D. Pagel
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Jingfei Ma
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| | - Gaiane M. Rauch
- From the Departments of Imaging Physics (K.P.H., A.K., J.B.S., B.P.,
B.C.M., J.M.), Breast Imaging (N.A.E., M.B., R.M.M., A.H.A., B.E.A., R.P.C.,
W.T.Y., G.M.R.), Biostatistics (H.C., J.S., P.W.), Cancer Systems Imaging (S.Z.,
M.D.P.), Moon Shots Operations (J.B.W.), Breast Medical Oncology (E.E.R., D.T.,
C.Y.), Clinical Research (J.K.L.), Pathology (L.H.), and Abdominal Imaging
(G.M.R.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Division of Surgical Oncology, Baylor College of
Medicine, Houston, Tex (A.M.T.)
| |
Collapse
|
20
|
Wang X, Hua H, Han J, Zhong X, Liu J, Chen J. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Clin Breast Cancer 2023:S1526-8209(23)00134-9. [PMID: 37321954 DOI: 10.1016/j.clbc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION This study evaluated the performance of primary foci of breast cancer on multiparametric magnetic resonance imaging (MRI) contributing to establish and validate radiomics-based nomograms for predicting the different pathological outcome of breast cancer patients after neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS Retrospectively collected 387 patients with locally advanced breast cancer, all treated with NAC and received breast dynamic contrast-enhanced MRI (DCE-MRI) before NAC. Radiomics signatures were extracted from region of interest (ROI) on multiparametric MRI to build rad score. Clinical-pathologic data and radiological features established the clinical model. The comprehensive model featured rad-score, predictive clinical-pathologic data and radiological features, which was ultimately displayed as a nomogram. Patients were grouped in 2 different ways in accordance with the Miller-Payne (MP) grading of surgical specimens. The first grouping method: 181 patients with pathological reaction grades Ⅳ∼Ⅴ were included in the significant remission group, while 206 patients with pathological reaction grades Ⅰ∼Ⅲ were included in the nonsignificant remission group. The second grouping method: 117 patients with pathological complete response (pCR) were assigned to the pCR group, and 270 patients who failed to meet pCR were assigned to in the non-pCR group. Two combined nomograms are created from 2 grouped data for predicting different pathological responses to NAC. The area under the curves (AUC) of the receiver operating characteristic curves (ROC) were used to evaluate the performance of each model. While decision curve analysis (DCA) and calibration curves were used for estimating the clinical application value of the nomogram. RESULTS Two combined nomograms embodying rad score and clinical-pathologic data outperformed, showing good calibrations for predicting response to NAC. The combined nomogram predicting pCR showed the best performance with the AUC values of 0.97, 0.90 and 0.86 in the training, testing, and external validation cohorts respectively. The AUC values of another combined nomogram predicting significant remission: 0.98, 0.88 0.80 in the training, testing and external validation cohorts. DCA showed the comprehensive model nomogram obtained the most clinical benefit. CONCLUSIONS The combined nomogram could preoperatively predict significant remission or even pCR to NAC in breast cancer based on multiparametric MRI and clinical-pathologic data.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Hua
- Department of Thyroid Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqi Han
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Zhong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Liu
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Chen
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy. Eur Radiol 2023; 33:2965-2974. [PMID: 36418622 DOI: 10.1007/s00330-022-09264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Recent studies have revealed the change of molecular subtypes in breast cancer (BC) after neoadjuvant therapy (NAT). This study aims to construct a non-invasive model for predicting molecular subtype alteration in breast cancer after NAT. METHODS Eighty-two estrogen receptor (ER)-negative/ human epidermal growth factor receptor 2 (HER2)-negative or ER-low-positive/HER2-negative breast cancer patients who underwent NAT and completed baseline MRI were retrospectively recruited between July 2010 and November 2020. Subtype alteration was observed in 21 cases after NAT. A 2D-DenseUNet machine-learning model was built to perform automatic segmentation of breast cancer. 851 radiomic features were extracted from each MRI sequence (T2-weighted imaging, ADC, DCE, and contrast-enhanced T1-weighted imaging), both in the manual and auto-segmentation masks. All samples were divided into a training set (n = 66) and a test set (n = 16). XGBoost model with 5-fold cross-validation was performed to predict molecular subtype alterations in breast cancer patients after NAT. The predictive ability of these models was subsequently evaluated by the AUC of the ROC curve, sensitivity, and specificity. RESULTS A model consisting of three radiomics features from the manual segmentation of multi-sequence MRI achieved favorable predictive efficacy in identifying molecular subtype alteration in BC after NAT (cross-validation set: AUC = 0.908, independent test set: AUC = 0.864); whereas an automatic segmentation approach of BC lesions on the DCE sequence produced good segmentation results (Dice similarity coefficient = 0.720). CONCLUSIONS A machine learning model based on baseline MRI is proven useful for predicting molecular subtype alterations in breast cancer after NAT. KEY POINTS • Machine learning models using MRI-based radiomics signature have the ability to predict molecular subtype alterations in breast cancer after neoadjuvant therapy, which subsequently affect treatment protocols. • The application of deep learning in the automatic segmentation of breast cancer lesions from MRI images shows the potential to replace manual segmentation..
Collapse
|
22
|
Duan Y, Yang G, Miao W, Song B, Wang Y, Yan L, Wu F, Zhang R, Mao Y, Wang Z. Computed Tomography-Based Radiomics Analysis for Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. J Comput Assist Tomogr 2023; 47:199-204. [PMID: 36790871 DOI: 10.1097/rct.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
PURPOSE Previous studies have pointed out that magnetic resonance- and fluorodeoxyglucose positron emission tomography-based radiomics had a high predictive value for the response of the neoadjuvant chemotherapy (NAC) in breast cancer by respectively characterizing tumor heterogeneity of the relaxation time and the glucose metabolism. However, it is unclear whether computed tomography (CT)-based radiomics based on density heterogeneity can predict the response of NAC. This study aimed to develop and validate a CT-based radiomics nomogram to predict the response of NAC in breast cancer. METHODS A total of 162 breast cancer patients (110 in the training cohort and 52 in the validation cohort) who underwent CT scans before receiving NAC and had pathological response results were retrospectively enrolled. Grades 4 to 5 cases were classified as response to NAC. According to the Miller-Payne grading system, grades 1 to 3 cases were classified as nonresponse to NAC. Radiomics features were extracted, and the optimal radiomics features were obtained to construct a radiomics signature. Multivariate logistic regression was used to develop the clinical prediction model and the radiomics nomogram that incorporated clinical characteristics and radiomics score. We assessed the performance of different models, including calibration and clinical usefulness. RESULTS Eight optimal radiomics features were obtained. Human epidermal growth factor receptor 2 status and molecular subtype showed statistical differences between the response group and the nonresponse group. The radiomics nomogram had more favorable predictive efficacy than the clinical prediction model (areas under the curve, 0.82 vs 0.70 in the training cohort; 0.79 vs 0.71 in the validation cohort). The Delong test showed that there are statistical differences between the clinical prediction model and the radiomics nomogram ( z = 2.811, P = 0.005 in the training cohort). The decision curve analysis showed that the radiomics nomogram had higher overall net benefit than the clinical prediction model. CONCLUSION The radiomics nomogram based on CT radiomics signature and clinical characteristics has favorable predictive efficacy for the response of NAC in breast cancer.
Collapse
Affiliation(s)
- Yanli Duan
- From the Departments of Nuclear Medicine
| | | | | | - Bingxue Song
- Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong
| | | | - Lei Yan
- From the Departments of Nuclear Medicine
| | - Fengyu Wu
- From the Departments of Nuclear Medicine
| | - Ran Zhang
- Huiying Medical Technology Co, Ltd, Beijing
| | - Yan Mao
- Diagnosis and Treatment Centre of Breast Diseases, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | | |
Collapse
|
23
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
24
|
Fan M, Wu X, Yu J, Liu Y, Wang K, Xue T, Zeng T, Chen S, Li L. Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer. Front Oncol 2023; 13:1057841. [PMID: 37207135 PMCID: PMC10189126 DOI: 10.3389/fonc.2023.1057841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Purpose During neoadjuvant chemotherapy (NACT), breast tumor morphological and vascular characteristics are usually changed. This study aimed to evaluate the tumor shrinkage pattern and response to NACT by preoperative multiparametric magnetic resonance imaging (MRI), including dynamic contrast-enhanced MRI (DCE-MRI), diffuse weighted imaging (DWI) and T2 weighted imaging (T2WI). Method In this retrospective analysis, female patients with unilateral unifocal primary breast cancer were included for predicting tumor pathologic/clinical response to NACT (n=216, development set, n=151 and validation set, n=65) and for discriminating the tumor concentric shrinkage (CS) pattern from the others (n=193; development set, n=135 and validation set, n=58). Radiomic features (n=102) of first-order statistical, morphological and textural features were calculated on tumors from the multiparametric MRI. Single- and multiparametric image-based features were assessed separately and were further combined to feed into a random forest-based predictive model. The predictive model was trained in the testing set and assessed on the testing dataset with an area under the curve (AUC). Molecular subtype information and radiomic features were fused to enhance the predictive performance. Results The DCE-MRI-based model showed higher performance (AUCs of 0.919, 0.830 and 0.825 for tumor pathologic response, clinical response and tumor shrinkage patterns, respectively) than either the T2WI or the ADC image-based model. An increased prediction performance was achieved by a model with multiparametric MRI radiomic feature fusion. Conclusions All these results demonstrated that multiparametric MRI features and their information fusion could be of important clinical value for the preoperative prediction of treatment response and shrinkage pattern.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Xilin Wu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Jiadong Yu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Yueyue Liu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tailong Xue
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Tieyong Zeng
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shujun Chen
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Shujun Chen, ; Lihua Li,
| |
Collapse
|
25
|
Ghezzo S, Bezzi C, Neri I, Mapelli P, Presotto L, Gajate AMS, Bettinardi V, Garibotto V, De Cobelli F, Scifo P, Picchio M. Radiomics and artificial intelligence. CLINICAL PET/MRI 2023:365-401. [DOI: 10.1016/b978-0-323-88537-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
26
|
Zhang MQ, Du Y, Zha HL, Liu XP, Cai MJ, Chen ZH, Chen R, Wang J, Wang SJ, Zhang JL, Li CY. Construction and validation of a personalized nomogram of ultrasound for pretreatment prediction of breast cancer patients sensitive to neoadjuvant chemotherapy. Br J Radiol 2022; 95:20220626. [PMID: 36378247 PMCID: PMC9733610 DOI: 10.1259/bjr.20220626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To construct a combined radiomics model based on pre-treatment ultrasound for predicting of advanced breast cancers sensitive to neoadjuvant chemotherapy (NAC). METHODS A total of 288 eligible breast cancer patients who underwent NAC before surgery were enrolled in the retrospective study cohort. Radiomics features reflecting the phenotype of the pre-NAC tumors were extracted. With features selected using the least absolute shrinkage and selection operator (LASSO) regression, radiomics signature (Rad-score) was established based on the pre-NAC ultrasound. Then, radiomics nomogram of ultrasound (RU) was established on the basis of the best radiomic signature incorporating independent clinical features. The performance of RU was evaluated in terms of calibration curve, area under the curve (AUC), and decision curve analysis (DCA). RESULTS Nine features were selected to construct the radiomics signature in the training cohort. Combined with independent clinical characteristics, the performance of RU for identifying Grade 4-5 patients was significantly superior than the clinical model and Rad-score alone (p < 0.05, as per the Delong test), which achieved an AUC of 0.863 (95% CI, 0.814-0.963) in the training group and 0.854 (95% CI, 0.776-0.931) in the validation group. DCA showed that this model satisfactory clinical utility, suggesting its robustness as a response predictor. CONCLUSION This study demonstrated that RU has a potential role in predicting drug-sensitive breast cancers. ADVANCES IN KNOWLEDGE Aiming at early detection of Grade 4-5 breast cancer patients, the radiomics nomogram based on ultrasound has been approved as a promising indicator with high clinical utility. It is the first application of ultrasound-based radiomics nomogram to distinguish drug-sensitive breast cancers.
Collapse
Affiliation(s)
- Man-Qi Zhang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Du
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai-Ling Zha
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin-Pei Liu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Jun Cai
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhi-Hui Chen
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Chen
- Department of Breast surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Wang
- Department of Breast surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shou-Ju Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu-Lou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cui-Ying Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Basran PS, Porter I. Radiomics in veterinary medicine: Overview, methods, and applications. Vet Radiol Ultrasound 2022; 63 Suppl 1:828-839. [PMID: 36514226 DOI: 10.1111/vru.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
Radiomics, or quantitative image analysis from radiographic image data, borrows the suffix from other emerging -omics fields of study, such as genomics, proteomics, and metabolomics. This report provides an overview of the general principles of how radiomic features are computed, describes major types of morphological, first order, and texture features, and the applications, challenges, and opportunities of radiomics as applied in veterinary medicine. Some advantages radiomics has over traditional semantic radiological features include standardized methodology in computing semantic features, the ability to compute features in multi-dimensional images, their newfound associations with genomic and pathological abnormalities, and the number of perceptible and imperceptible features available for regression or classification modeling. Some challenges in deploying radiomics in a clinical setting include sensitivity to image acquisition settings and image artifacts, pre- and post-image reconstruction and calculation settings, variability in feature estimates stemming from inter- and intra-observer contouring errors, and challenges with software and data harmonization and generalizability of findings given the challenges of small sample size and patient selection bias in veterinary medicine. Despite this, radiomics has enormous potential in patient-centric diagnostics, prognosis, and theragnostics. Fully leveraging the utility of radiomics in veterinary medicine will require inter-institutional collaborations, data harmonization, and data sharing strategies amongst institutions, transparent and robust model development, and multi-disciplinary efforts within and outside the veterinary medical imaging community.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ian Porter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
28
|
Sheng W, Xia S, Wang Y, Yan L, Ke S, Mellisa E, Gong F, Zheng Y, Tang T. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning. Front Oncol 2022; 12:964605. [PMID: 36172153 PMCID: PMC9510620 DOI: 10.3389/fonc.2022.964605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMost studies of molecular subtype prediction in breast cancer were mainly based on two-dimensional MRI images, the predictive value of three-dimensional volumetric features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for predicting breast cancer molecular subtypes has not been thoroughly investigated. This study aimed to look into the role of features derived from DCE-MRI and how they could be combined with clinical data to predict invasive ductal breast cancer molecular subtypes.MethodsFrom January 2019 to December 2021, 190 Chinese women with invasive ductal breast cancer were studied (32 triple-negative, 59 HER2-enriched, and 99 luminal lesions) in this institutional review board-approved retrospective cohort study. The image processing software extracted 1130 quantitative radiomic features from the segmented lesion area, including shape-based, first-order statistical, texture, and wavelet features. Three binary classifications of the subtypes were performed: triple-negative vs. non-triple-negative, HER2-overexpressed vs. non-HER2-overexpressed, and luminal (A + B) vs. non-luminal. For the classification, five machine learning methods (random forest, logistic regression, support vector machine, naïve Bayes, and eXtreme Gradient Boosting) were employed. The classifiers were chosen using the least absolute shrinkage and selection operator method. The area evaluated classification performance under the receiver operating characteristic curve, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean.ResultsEXtreme Gradient Boosting model showed the best performance in luminal and non-luminal groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.8282, 0.7524, 0.6542, 0.6964, 0.6086, 0.3458, 0.8524 and 0.7016, respectively. Meanwhile, the random forest model showed the best performance in HER2-overexpressed and non-HER2-overexpressed groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.8054, 0.2941, 0.9744, 0.7679, 0.4348, 0.0256, 0.8333 and 0.5353, respectively. Furthermore, eXtreme Gradient Boosting model showed the best performance in the triple-negative and non-triple-negative groups, with AUC, sensitivity, specificity, accuracy, F1-Score, false positive rate, precision, and geometric mean of 0.9031, 0.9362, 0.4444, 0.8571, 0.9167, 0.5556, 0.8980 and 0.6450.ConclusionClinical data and three-dimension imaging features from DCE-MRI were identified as potential biomarkers for distinguishing between three molecular subtypes of invasive ductal carcinomas breast cancer. In the future, more extensive studies will be required to evaluate the findings.
Collapse
Affiliation(s)
- Weiyong Sheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Shouli Xia
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaru Wang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songqing Ke
- Department of Science and Technology Research Management, Wuhan Blood Center, Wuhan, China
| | - Evelyn Mellisa
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fen Gong
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun Zheng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yun Zheng, ; Tiansheng Tang,
| | - Tiansheng Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- *Correspondence: Yun Zheng, ; Tiansheng Tang,
| |
Collapse
|
29
|
Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022; 14:cancers14143515. [PMID: 35884576 PMCID: PMC9316501 DOI: 10.3390/cancers14143515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy (NAC) followed with surgery is the standard strategy in the treatment of locally advanced breast cancer, but the individual efficacy varies. Early and accurate prediction of complete responders determines the NAC regimens and prognosis. Breast MRI has been recommended to monitor NAC response before, during, and after treatment. Radiomics has been heralded as a breakthrough in medicine and regarded to have changed the landscape of biomedical research in oncology. Delta-radiomics characterizing the change in feature values by applying radiomics to multiple time points, is a promising strategy for predicting response after NAC. In our study, the delta-radiomics model built with the change of radiomic features before and after one cycle NAC could effectively predict pathological complete response (pCR) in breast cancer. The model provides strong support for clinical decision-making at the earliest stage and helps patients benefit the most from NAC. Abstract Objective: To investigate the value of delta-radiomics after the first cycle of neoadjuvant chemotherapy (NAC) using dynamic contrast-enhanced (DCE) MRI for early prediction of pathological complete response (pCR) in patients with breast cancer. Methods: From September 2018 to May 2021, a total of 140 consecutive patients (training, n = 98: validation, n = 42), newly diagnosed with breast cancer who received NAC before surgery, were prospectively enrolled. All patients underwent DCE-MRI at pre-NAC (pre-) and after the first cycle (1st-) of NAC. Radiomic features were extracted from the postcontrast early, peak, and delay phases. Delta-radiomics features were computed in each contrast phases. Least absolute shrinkage and selection operator (LASSO) and a logistic regression model were used to select features and build models. The model performance was assessed by receiver operating characteristic (ROC) analysis and compared by DeLong test. Results: The delta-radiomics model based on the early phases of DCE-MRI showed a highest AUC (0.917/0.842 for training/validation cohort) compared with that using the peak and delay phases images. The delta-radiomics model outperformed the pre-radiomics model (AUC = 0.759/0.617, p = 0.011/0.047 for training/validation cohort) in early phase. Based on the optimal model, longitudinal fusion radiomic models achieved an AUC of 0.871/0.869 in training/validation cohort. Clinical-radiomics model generated good calibration and discrimination capacity with AUC 0.934 (95%CI: 0.882, 0.986)/0.864 (95%CI: 0.746, 0.982) for training and validation cohort. Delta-radiomics based on early contrast phases of DCE-MRI combined clinicopathology information could predict pCR after one cycle of NAC in patients with breast cancer.
Collapse
|
30
|
Herrero Vicent C, Tudela X, Moreno Ruiz P, Pedralva V, Jiménez Pastor A, Ahicart D, Rubio Novella S, Meneu I, Montes Albuixech Á, Santamaria MÁ, Fonfria M, Fuster-Matanzo A, Olmos Antón S, Martínez de Dueñas E. Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2022; 14:cancers14143508. [PMID: 35884572 PMCID: PMC9317428 DOI: 10.3390/cancers14143508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Achieving pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer (BC) is crucial, as pCR is a surrogate marker for survival. However, only 10–30% of patients achieve it. It is therefore essential to develop tools that enable to accurately predict response. Recently, different studies have demonstrated the feasibility of applying machine learning approaches to non-invasively predict pCR before NAC administration from magnetic resonance imaging (MRI) data. Some of those models are based on radiomics, an emerging field that allows the automated extraction of clinically relevant information from radiologic images. However, the research is still at an early stage and further data are needed. Here, we determine whether the combination of imaging data (radiomic features and perfusion/diffusion imaging biomarkers) extracted from multiparametric MRIs and clinical variables can improve pCR prediction to NAC compared to models only including imaging or clinical data, potentially avoiding unnecessary treatment and delays to surgery. Abstract Background: Most breast cancer (BC) patients fail to achieve pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). The aim of this study was to evaluate whether imaging features (perfusion/diffusion imaging biomarkers + radiomic features) extracted from pre-treatment multiparametric (mp)MRIs were able to predict, alone or in combination with clinical data, pCR to NAC. Methods: Patients with stage II-III BC receiving NAC and undergoing breast mpMRI were retrospectively evaluated. Imaging features were extracted from mpMRIs performed before NAC. Three different machine learning models based on imaging features, clinical data or imaging features + clinical data were trained to predict pCR. Confusion matrices and performance metrics were obtained to assess model performance. Statistical analyses were conducted to evaluate differences between responders and non-responders. Results: Fifty-eight patients (median [range] age, 52 [45–58] years) were included, of whom 12 showed pCR. The combined model improved pCR prediction compared to clinical and imaging models, yielding 91.5% of accuracy with no false positive cases and only 17% false negative results. Changes in different parameters between responders and non-responders suggested a possible increase in vascularity and reduced tumour heterogeneity in patients with pCR, with the percentile 25th of time-to-peak (TTP), a classical perfusion parameter, being able to discriminate both groups in a 75% of the cases. Conclusions: A combination of mpMRI-derived imaging features and clinical variables was able to successfully predict pCR to NAC. Specific patient profiles according to tumour vascularity and heterogeneity might explain pCR differences, where TTP could emerge as a putative surrogate marker for pCR.
Collapse
Affiliation(s)
- Carmen Herrero Vicent
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
- Correspondence:
| | - Xavier Tudela
- Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain; (X.T.); (V.P.); (D.A.); (I.M.); (M.Á.S.)
| | - Paula Moreno Ruiz
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (P.M.R.); (A.J.P.); (A.F.-M.)
| | - Víctor Pedralva
- Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain; (X.T.); (V.P.); (D.A.); (I.M.); (M.Á.S.)
| | - Ana Jiménez Pastor
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (P.M.R.); (A.J.P.); (A.F.-M.)
| | - Daniel Ahicart
- Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain; (X.T.); (V.P.); (D.A.); (I.M.); (M.Á.S.)
| | - Silvia Rubio Novella
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
| | - Isabel Meneu
- Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain; (X.T.); (V.P.); (D.A.); (I.M.); (M.Á.S.)
| | - Ángela Montes Albuixech
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
| | - Miguel Ángel Santamaria
- Radiodiagnosis Department, The Provincial Hospital of Castellon, 12100 Castellon, Spain; (X.T.); (V.P.); (D.A.); (I.M.); (M.Á.S.)
| | - María Fonfria
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
| | - Almudena Fuster-Matanzo
- Quantitative Imaging Biomarkers in Medicine (Quibim), 46021 Valencia, Spain; (P.M.R.); (A.J.P.); (A.F.-M.)
| | - Santiago Olmos Antón
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
| | - Eduardo Martínez de Dueñas
- Medical Oncology Department, The Provincial Hospital of Castellon, 12002 Castellon, Spain; (S.R.N.); (Á.M.A.); (M.F.); (S.O.A.); (E.M.d.D.)
| |
Collapse
|
31
|
MRI Radiogenomics in Precision Oncology: New Diagnosis and Treatment Method. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2703350. [PMID: 35845886 PMCID: PMC9282990 DOI: 10.1155/2022/2703350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022]
Abstract
Precision medicine for cancer affords a new way for the most accurate and effective treatment to each individual cancer. Given the high time-evolving intertumor and intratumor heterogeneity features of personal medicine, there are still several obstacles hindering its diagnosis and treatment in clinical practice regardless of extensive exploration on it over the past years. This paper is to investigate radiogenomics methods in the literature for precision medicine for cancer focusing on the heterogeneity analysis of tumors. Based on integrative analysis of multimodal (parametric) imaging and molecular data in bulk tumors, a comprehensive analysis and discussion involving the characterization of tumor heterogeneity in imaging and molecular expression are conducted. These investigations are intended to (i) fully excavate the multidimensional spatial, temporal, and semantic related information regarding high-dimensional breast magnetic resonance imaging data, with integration of the highly specific structured data of genomics and combination of the diagnosis and cognitive process of doctors, and (ii) establish a radiogenomics data representation model based on multidimensional consistency analysis with multilevel spatial-temporal correlations.
Collapse
|
32
|
Martin MJS, Frouin F, Malhaire C, Orlhac F. Decrypting the information captured by MRI-radiomic features in predicting the response to neoadjuvant chemotherapy in breast cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3227-3230. [PMID: 36085726 DOI: 10.1109/embc48229.2022.9871844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MRI-based radiomic models have shown promises in predicting the response to neoadjuvant chemotherapy in breast cancer. However, it is difficult to determine which information from the images contributes the most to the prediction: the distribution of gray-levels, the tumour heterogeneity, the shape of the lesions or the intensities of peritumoural regions. The purpose of this study is to dissociate the different sources of information to improve prediction results. Based on pre-treatment MR images from 103 patients, four types of 3D Volumes Of Interest were defined and arranged in multiple combinations. Combining features extracted from different regions proved to increase prediction performances. Clinical relevance- This study proposes a method based on analyses of MRI tumor heterogeneity, margins and peritumoral regions to improve the prediction of the response to neoadjuvant chemotherapy in breast cancer, which would help personalize patient treatment.
Collapse
|
33
|
Yoshida K, Kawashima H, Kannon T, Tajima A, Ohno N, Terada K, Takamatsu A, Adachi H, Ohno M, Miyati T, Ishikawa S, Ikeda H, Gabata T. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI. Magn Reson Imaging 2022; 92:19-25. [PMID: 35636571 DOI: 10.1016/j.mri.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate if the pretreatment dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-based radiomics machine learning predicts the pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. METHODS Seventy-eight breast cancer patients who underwent DCE-MRI before NAC and confirmed as pCR or non-pCR were enrolled. Early enhancement mapping images of pretreatment DCE-MRI were created using subtraction formula as follows: Early enhancement mapping = (Signal 1 min - Signal pre)/Signal pre. Images of the whole tumors were manually segmented and radiomics features extracted. Five prediction models were built using five scenarios that included clinical information, subjective radiological findings, first order texture features, second order texture features, and their combinations. In texture analysis workflow, the corresponding variables were identified by mutual information for feature selection and random forest was used for model prediction. In five models, the area under the receiver operating characteristic curves (AUC) to predict the pCR and several metrics for model evaluation were analyzed. RESULTS The best diagnostic performance based on F-score was achieved when both first and second order texture features with clinical information and subjective radiological findings were used (AUC = 0.77). The second best diagnostic performance was achieved with an AUC of 0.76 for first order texture features followed by an AUC of 0.76 for first and second order texture features. CONCLUSIONS Pretreatment DCE-MRI can improve the prediction of pCR in breast cancer patients when all texture features with clinical information and subjective radiological findings are input to build the prediction model.
Collapse
Affiliation(s)
- Kotaro Yoshida
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroko Kawashima
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Naoki Ohno
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Kanako Terada
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Atsushi Takamatsu
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Hayato Adachi
- Division of Radiology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | - Masako Ohno
- Division of Radiology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Tosiaki Miyati
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Satoko Ishikawa
- Department of Breast Surgery, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Hiroko Ikeda
- Diagnostic Pathology, Kanazawa University Hospital, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|
34
|
Breast Tumor Identification in Ultrafast MRI Using Temporal and Spatial Information. Cancers (Basel) 2022; 14:cancers14082042. [PMID: 35454949 PMCID: PMC9027362 DOI: 10.3390/cancers14082042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The diagnosis of breast cancer with MRI is based on both morphological evaluation and kinetic curve assessment. Current computer-aided diagnosis methods for malignancy determination mainly focus on morphology features but ignored the temporal information in dynamic contrast-enhanced MRI sequences. Malignant and benign lesions usually have different enhancement patterns during the wash-in phase. Ultrafast breast MRI with high temporal resolution can capture the inflow of contrast in breast lesions. This advantage of ultrafast MRI enables the combination of both temporal and spatial information for automatic breast lesion analysis model development. We found that temporal information helps to significantly improve the performance of breast lesion classification. This suggests that ultrafast MRI provides useful information for malignancy identification and temporal information, which is indispensable for similar model development. Abstract Purpose: To investigate the feasibility of using deep learning methods to differentiate benign from malignant breast lesions in ultrafast MRI with both temporal and spatial information. Methods: A total of 173 single breasts of 122 women (151 examinations) with lesions above 5 mm were retrospectively included. A total of 109 out of 173 lesions were benign. Maximum intensity projection (MIP) images were generated from each of the 14 contrast-enhanced T1-weighted acquisitions in the ultrafast MRI scan. A 2D convolutional neural network (CNN) and a long short-term memory (LSTM) network were employed to extract morphological and temporal features, respectively. The 2D CNN model was trained with the MIPs from the last four acquisitions to ensure the visibility of the lesions, while the LSTM model took MIPs of an entire scan as input. The performance of each model and their combination were evaluated with 100-times repeated stratified four-fold cross-validation. Those models were then compared with models developed with standard DCE-MRI which followed the same data split. Results: In the differentiation between benign and malignant lesions, the ultrafast MRI-based 2D CNN achieved a mean AUC of 0.81 ± 0.06, and the LSTM network achieved a mean AUC of 0.78 ± 0.07; their combination showed a mean AUC of 0.83 ± 0.06 in the cross-validation. The mean AUC values were significantly higher for ultrafast MRI-based models than standard DCE-MRI-based models. Conclusion: Deep learning models developed with ultrafast breast MRI achieved higher performances than standard DCE-MRI for malignancy discrimination. The improved AUC values of the combined models indicate an added value of temporal information extracted by the LSTM model in breast lesion characterization.
Collapse
|
35
|
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022; 149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
|
36
|
Choudhery S, Gomez-Cardona D, Favazza CP, Hoskin TL, Haddad TC, Goetz MP, Boughey JC. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy. Acad Radiol 2022; 29 Suppl 1:S145-S154. [PMID: 33160859 PMCID: PMC8093323 DOI: 10.1016/j.acra.2020.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
Abstract
RATIONALE AND OBJECTIVES There are limited data on pretreatment imaging features that can predict response to neoadjuvant chemotherapy (NAC). To extract volumetric pretreatment MRI radiomics features and assess corresponding associations with breast cancer molecular subtypes, pathological complete response (pCR), and residual cancer burden (RCB) in patients treated with NAC. MATERIALS AND METHODS In this IRB-approved study, clinical and pretreatment MRI data from patients with biopsy-proven breast cancer who received NAC between September 2009 and July 2016 were retrospectively analyzed. Tumors were manually identified and semi-automatically segmented on first postcontrast images. Morphological and three-dimensional textural features were computed, including unfiltered and filtered image data, with spatial scaling factors (SSF) of 2, 4, and 6 mm. Wilcoxon rank-sum tests and area under the receiver operating characteristic curve were used for statistical analysis. RESULTS Two hundred and fifty nine patients with unilateral breast cancer, including 73 (28.2%) HER2+, 112 (43.2%) luminal, and 74 (28.6%) triple negative breast cancers (TNBC), were included. There was a significant difference in the median volume (p = 0.008), median longest axial tumor diameter (p = 0.009), and median longest volumetric diameter (p = 0.01) among tumor subtypes. There was also a significant difference in minimum signal intensity and entropy among the tumor subtypes with SSF = 4 mm (p = 0.009 and p = 0.02 respectively) and SSF = 6 mm (p = 0.007 and p < 0.001 respectively). Additionally, sphericity (p = 0.04) in HER2+ tumors and entropy with SSF = 2, 4, 6 mm (p = 0.004, 0.02, 0.047 respectively) in luminal tumors were significantly associated with pCR. Multiple features demonstrated significant association (p < 0.05) with pCR in TNBC and with RCB in luminal tumors and TNBC, with standard deviation of intensity with SSF = 6 mm achieving the highest AUC (AUC = 0.734) for pCR in TNBC. CONCLUSION MRI radiomics features are associated with different molecular subtypes of breast cancer, pCR, and RCB. These features may be noninvasive imaging biomarkers to identify cancer subtype and predict response to NAC.
Collapse
Affiliation(s)
| | | | | | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
37
|
Yurttakal AH, Erbay H, İkizceli T, Karaçavuş S, Biçer C. Diagnosing breast cancer tumors using stacked ensemble model. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Breast cancer is the most common cancer that progresses from cells in the breast tissue among women. Early-stage detection could reduce death rates significantly, and the detection-stage determines the treatment process. Mammography is utilized to discover breast cancer at an early stage prior to any physical sign. However, mammography might return false-negative, in which case, if it is suspected that lesions might have cancer of chance greater than two percent, a biopsy is recommended. About 30 percent of biopsies result in malignancy that means the rate of unnecessary biopsies is high. So to reduce unnecessary biopsies, recently, due to its excellent capability in soft tissue imaging, Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) has been utilized to detect breast cancer. Nowadays, DCE-MRI is a highly recommended method not only to identify breast cancer but also to monitor its development, and to interpret tumorous regions. However, in addition to being a time-consuming process, the accuracy depends on radiologists’ experience. Radiomic data, on the other hand, are used in medical imaging and have the potential to extract disease characteristics that can not be seen by the naked eye. Radiomics are hard-coded features and provide crucial information about the disease where it is imaged. Conversely, deep learning methods like convolutional neural networks(CNNs) learn features automatically from the dataset. Especially in medical imaging, CNNs’ performance is better than compared to hard-coded features-based methods. However, combining the power of these two types of features increases accuracy significantly, which is especially critical in medicine. Herein, a stacked ensemble of gradient boosting and deep learning models were developed to classify breast tumors using DCE-MRI images. The model makes use of radiomics acquired from pixel information in breast DCE-MRI images. Prior to train the model, radiomics had been applied to the factor analysis to refine the feature set and eliminate unuseful features. The performance metrics, as well as the comparisons to some well-known machine learning methods, state the ensemble model outperforms its counterparts. The ensembled model’s accuracy is 94.87% and its AUC value is 0.9728. The recall and precision are 1.0 and 0.9130, respectively, whereas F1-score is 0.9545.
Collapse
Affiliation(s)
- Ahmet Haşim Yurttakal
- Computer Engineering Department, EngineeringFaculty, Afyon Kocatepe University, Afyon-Turkey
| | - Hasan Erbay
- Computer Engineering Department, EngineeringFaculty, University of Turkish Aeronautical Association, 06790Etimesgut Ankara-Turkey
| | - Türkan İkizceli
- Haseki Training and Research Hospital, Departmentof Radiology, University of Health Sciences, İstanbul-Turkey
| | - Seyhan Karaçavuş
- Kayseri Training and Research Hospital, Departmentof Nuclear Medicine, University of Health Sciences, Kayseri-Turkey
| | - Cenker Biçer
- Statistcs Department, Arts & Science Faculty, Kırıkkale University, Kırıkkale-Turkey
| |
Collapse
|
38
|
Yan S, Peng H, Yu Q, Chen X, Liu Y, Zhu Y, Chen K, Wang P, Li Y, Zhang X, Meng W. Computer-aided classification of MRI for pathological complete response to neoadjuvant chemotherapy in breast cancer. Future Oncol 2021; 18:991-1001. [PMID: 34894719 DOI: 10.2217/fon-2021-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To determine suitable optimal classifiers and examine the general applicability of computer-aided classification to compare the differences between a computer-aided system and radiologists in predicting pathological complete response (pCR) from patients with breast cancer receiving neoadjuvant chemotherapy. Methods: We analyzed a total of 455 masses and used the U-Net network and ResNet to execute MRI segmentation and pCR classification. The diagnostic performance of radiologists, the computer-aided system and a combination of radiologists and computer-aided system were compared using receiver operating characteristic curve analysis. Results: The combination of radiologists and computer-aided system had the best performance for predicting pCR with an area under the curve (AUC) value of 0.899, significantly higher than that of radiologists alone (AUC: 0.700) and computer-aided system alone (AUC: 0.835). Conclusion: An automated classification system is feasible to predict the pCR to neoadjuvant chemotherapy in patients with breast cancer and can complement MRI.
Collapse
Affiliation(s)
- Shaolei Yan
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Haiyong Peng
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Qiujie Yu
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Xiaodan Chen
- Department of Computer Technology, Harbin Institute of Technology University, 92 West Street, Harbin, Heilongjiang, 150000, China
| | - Yue Liu
- Department of Radiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Haiyuncang, Dongcheng District, Beijing, 100700, China
| | - Ye Zhu
- Department of Obstetrics & Gynecology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Kaige Chen
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Ping Wang
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Yujiao Li
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Xiushi Zhang
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| | - Wei Meng
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
39
|
Peng S, Chen L, Tao J, Liu J, Zhu W, Liu H, Yang F. Radiomics Analysis of Multi-Phase DCE-MRI in Predicting Tumor Response to Neoadjuvant Therapy in Breast Cancer. Diagnostics (Basel) 2021; 11:diagnostics11112086. [PMID: 34829433 PMCID: PMC8625316 DOI: 10.3390/diagnostics11112086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Objective: To explore whether the pretreatment dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) and radiomics signatures were associated with pathologic complete response (pCR) to neoadjuvant therapy (NAT) in breast cancer. Method: A retrospective review of 70 patients with breast invasive carcinomas proved by biopsy between June 2017 and October 2020 (26 patients were pathological complete response, and 44 patients were non-pathological complete response). Within the pre-contrast and five post-contrast dynamic series, a total of 1037 quantitative imaging features were extracted from in each phase. Additionally, the Δfeatures (the difference between the features before and after the comparison) were used for subsequent analysis. The least absolute shrinkage and selection operator (LASSO) regression method was used to select features related to pCR, and then use these features to train multiple machine learning classifiers to predict the probability of pCR for a given patient. The area under the curve (AUC), accuracy, sensitivity, and specificity were calculated to assess the predictive performances of the radiomics model for each of the five phases of time points. Result: Among the five phases, each individual phase performed with AUCs ranging from 0.845 to 0.919 in predicting pCR. The best single phases performance was given by the 3rd phase (AUC = 0.919, sensitivity 0.885, specificity 0.864). 5 of the features have significant differences between pCR and non-pCR groups in each phase, most features reach their maximum or minimum in the 2nd or 3rd phase. Conclusion: The radiomic features extracted from each phase of pre-treatment DCE-MRI possess discriminatory power to predict tumor response.
Collapse
Affiliation(s)
- Shuyi Peng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Juan Tao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenying Zhu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Huan Liu
- Precision Healthcare Institute, GE Healthcare, Shanghai 201203, China;
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.P.); (L.C.); (J.T.); (J.L.); (W.Z.)
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Correspondence: ; Tel.: +86-027-85726392
| |
Collapse
|
40
|
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021; 127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
Abstract
Breast magnetic resonance imaging (MRI) is the most sensitive imaging modality for breast cancer diagnosis and is widely used clinically. Dynamic contrast-enhanced MRI is the basis for breast MRI, but ultrafast images, T2-weighted images, and diffusion-weighted images are also taken to improve the characteristics of the lesion. Such multiparametric MRI with numerous morphological and functional data poses new challenges to radiologists, and thus, new tools for reliable, reproducible, and high-volume quantitative assessments are warranted. In this context, radiomics, which is an emerging field of research involving the conversion of digital medical images into mineable data for clinical decision-making and outcome prediction, has been gaining ground in oncology. Recent development in artificial intelligence has promoted radiomics studies in various fields including breast cancer treatment and numerous studies have been conducted. However, radiomics has shown a translational gap in clinical practice, and many issues remain to be solved. In this review, we will outline the steps of radiomics workflow and investigate clinical application of radiomics focusing on breast MRI based on published literature, as well as current discussion about limitations and challenges in radiomics.
Collapse
Affiliation(s)
- Hiroko Satake
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Satoko Ishigaki
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
41
|
Li Z, Li J, Lu X, Qu M, Tian J, Lei J. The diagnostic performance of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in evaluating the pathological response of breast cancer to neoadjuvant chemotherapy: A meta-analysis. Eur J Radiol 2021; 143:109931. [PMID: 34492627 DOI: 10.1016/j.ejrad.2021.109931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE To evaluate and compare the diagnostic performance of diffusion-weighted imaging (DWI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the pathological response of breast cancer to neoadjuvant chemotherapy (NAC). METHODS We searched PubMed, EMBASE, Cochrane Library, and Web of Science systematically to identify relevant studies from inception to December 2020. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was used to assess the methodological quality of the included studies. We extracted sufficient data to construct 2 × 2 tables and then used STATA 12.0 to perform data pooling, heterogeneity testing, meta-regression analysis and subgroup analysis. RESULTS A total of 41 articles were enrolled in this study, including 27 studies (2107 patients) on DCE-MRI and 23 studies (1321 patients) on DWI. The pooled sensitivity and specificity of DCE-MRI were 0.75 and 0.79, and the pooled sensitivity and specificity of DWI were 0.77 and 0.75. There was no significant difference in sensitivity (P = 0.598) and specificity (P = 0.218) between DCE-MRI and DWI. And meta-regression analysis showed that both magnetic field strength and the time of examination had significant effects on heterogeneity. CONCLUSIONS DWI might be a potential substitute for DCE-MRI in predicting the pathological response of breast cancer to NAC as there was no significant difference in the diagnostic performance between the two. However, considering that not all included studies directly compared the diagnostic performance of DWI and DCE-MRI in the same patients and the heterogeneity of the included studies, caution should be exercised in applying our results.
Collapse
Affiliation(s)
- Zhifan Li
- The first Clinical Medical College of Lanzhou University, Lanzhou 730000, China; First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinkui Li
- The first Clinical Medical College of Lanzhou University, Lanzhou 730000, China; First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xingru Lu
- First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Qu
- The first Clinical Medical College of Lanzhou University, Lanzhou 730000, China; First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinhui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Evidence-based Medicine and Knowledge Translation of Gansu Province, Lanzhou University, Lanzhou 730000, China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis. Cancers (Basel) 2021; 13:cancers13174271. [PMID: 34503081 PMCID: PMC8428336 DOI: 10.3390/cancers13174271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Nowadays, the only widely recognized method for evaluating the efficacy of neoadjuvant chemotherapy is the assessment of the pathological response through surgery. However, delivering chemotherapy to not-responders could expose them to unnecessary drug toxicity with delayed access to other potentially effective therapies. Radiomics could be useful in the early detection of resistance to chemotherapy, which is crucial for switching treatment strategy. We determined whether tumor radiomic features extracted from a highly homogeneous database of breast MRI can improve the prediction of response to chemotherapy in patients with breast cancer, in addiction to biological characteristics, potentially avoiding unnecessary treatment. Abstract Objectives: We aimed to determine whether radiomic features extracted from a highly homogeneous database of breast MRI could non-invasively predict pathological complete responses (pCR) to neoadjuvant chemotherapy (NACT) in patients with breast cancer. Methods: One hundred patients with breast cancer receiving NACT in a single center (01/2017–06/2019) and undergoing breast MRI were retrospectively evaluated. For each patient, radiomic features were extracted within the biopsy-proven tumor on T1-weighted (T1-w) contrast-enhanced MRI performed before NACT. The pCR to NACT was determined based on the final surgical specimen. The association of clinical/biological and radiomic features with response to NACT was evaluated by univariate and multivariable analysis by using random forest and logistic regression. The performances of all models were assessed using the areas under the receiver operating characteristic curves (AUC) with 95% confidence intervals (CI). Results: Eighty-three patients (mean (SD) age, 47.26 (8.6) years) were included. Patients with HER2+, basal-like molecular subtypes and Ki67 ≥ 20% presented a pCR to NACT more frequently; the clinical/biological model’s AUC (95% CI) was 0.81 (0.71–0.90). Using 136 representative radiomics features selected through cluster analysis from the 1037 extracted features, a radiomic score was calculated to predict the response to NACT, with AUC (95% CI): 0.64 (0.51–0.75). After combining the clinical/biological and radiomics models, the AUC (95% CI) was 0.83 (0.73–0.92). Conclusions: MRI-based radiomic features slightly improved the pre-treatment prediction of pCR to NACT, in addiction to biological characteristics. If confirmed on larger cohorts, it could be helpful to identify such patients, to avoid unnecessary treatment.
Collapse
|
43
|
Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:833-844. [PMID: 34255206 DOI: 10.1007/s10334-021-00941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION To assess pre-therapeutic MRI-based radiomic analysis to predict the pathological complete response to neoadjuvant chemotherapy (NAC) in women with early triple negative breast cancer (TN). MATERIALS AND METHODS This monocentric retrospective study included 75 TN female patients with MRI (T1-weighted, T2-weighted, diffusion-weighted and dynamic contrast enhancement images) performed before NAC. For each patient, the tumor(s) and the parenchyma were independently segmented and analyzed with radiomic analysis to extract shape, size, and texture features. Several sets of features were realized based on the 4 different sequence images. Performances of 4 classifiers (random forest, multilayer perceptron, support vector machine (SVM) with linear or quadratic kernel) were compared based on pathological complete response (defined on the excised tissues), on 100 draws with 75% as training set and 25% as test. RESULTS The combination of features extracted from different MR images improved the classifier performance (more precisely, the features from T1W, T2W and DWI). The SVM with quadratic kernel showed the best performance with a mean AUC of 0.83, a sensitivity of 0.85 and a specificity of 0.75 in the test set. CONCLUSION MRI-based radiomics may be relevant to predict NAC response in TN cancer. Our results promote the use of multi-contrast MRI sources for radiomics, providing enrich source of information to enhance model generalization.
Collapse
|
44
|
Li Q, Xiao Q, Li J, Wang Z, Wang H, Gu Y. Value of Machine Learning with Multiphases CE-MRI Radiomics for Early Prediction of Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Invasive Breast Cancer. Cancer Manag Res 2021; 13:5053-5062. [PMID: 34234550 PMCID: PMC8253937 DOI: 10.2147/cmar.s304547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background To assess the value of radiomics based on multiphases contrast-enhanced magnetic resonance imaging (CE-MRI) for early prediction of pathological complete response (pCR) to neoadjuvant therapy (NAT) in patients with human epithelial growth factor receptor 2 (HER2) positive invasive breast cancer. Methods A total of 127 patients with newly diagnosed primary HER2 positive invasive breast cancer underwent CE-MRI before NAT and performed surgery after NAT. Radiomic features were extracted from the 1st postcontrast CE-MRI phase (CE1) and multi-phases CE-MRI (CEm),respectively. With selected features using a forward stepwise regression, 23 machine learning classifiers based on CE1 and CEm were constructed respectively for differentiating pCR and non-pCR patients. The performances of classifiers were assessed and compared by their accuracy, sensitivity, specificity and AUC (area under curve). The optimal machine learning classification was used to discriminate pCR vs non-pCR in mass and non-mass groups, uni-focal and unilateral multi-focal groups, respectively. Results For the task of pCR classification, 6 radiomic features from CE1 and 6 from CEm were selected for the construction of machine learning models, respectively. The linear SVM based on CEm outperformed the logistic regression model using CE1 with an AUC of 0.84 versus 0.69. In mass and non-mass enhancement groups, the accuracy of linear SVM achieved 84% and 76%. Whereas in unifocal and unilateral multifocal cases, 79% and 75% accuracy were achieved by linear SVM. Conclusion Multiphases CE-MRI imaging may offer more heterogeneity information in the tumor and provide a non-invasive approach for early prediction of pCR to NAT in patients with HER2-positive invasive breast cancer.
Collapse
Affiliation(s)
- Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Qin Xiao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Jianwei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Zhe Wang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, People's Republic of China.,Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | - He Wang
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, People's Republic of China.,Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021; 28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
Collapse
|
46
|
Zhang H, Li X, Zhang Y, Huang C, Wang Y, Yang P, Duan S, Mao N, Xie H. Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer. J Magn Reson Imaging 2021; 53:1550-1558. [PMID: 33851471 DOI: 10.1002/jmri.27486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Previous studies on the value of radiomics for diagnosing clinically significant prostate cancer (csPCa) only utilized intralesional features. However, the role of tumor microenvironment is important in tumor generation and progression. The aim of this study is to build and validate a nomogram based on perilesional and intralesional radiomics features and clinical factors for csPCa. This is a retrospective study, which included 140 patients who underwent prostate magnetic resonance imaging (MRI). This study used 3.0T T2-weighted imaging, apparent diffusion coefficient maps (derived from diffusion-weighted images), and dynamic contrast-enhanced MRI. Region of interest (ROI)s were segmented by two radiologists. Intralesional and combined radiomics signatures were built based on radiomics features extracted from intralesional and the combination of radiomics features extracted from intralesional and perilesional volumes. Serum total prostate-specific antigen level and combined radiomics signature scores were used to construct a diagnostic nomogram. Intraclass correlation efficient analysis was used to test intra- and inter-rater agreement of radiomics features. Min-max scalar was used for normalization. One-way analysis of variance or the Mann-Whitney U-test was used for univariate analysis. Receiver operating characteristic curve analysis, accuracy, balanced accuracy, and F1-score were used to evaluate radiomics signatures and the nomogram. Also, the nomogram was evaluated using decision curve analysis in testing cohort. Delong test was used to compare area under the curves (AUCs). Statistical significance was set at p < 0.05. In testing cohort, AUC, accuracy, balanced accuracy, and F1-score of combined radiomics signature (0.94, 0.83, 0.80, and 0.87, respectively) were all higher than that of intralesional radiomics signature (0.90, 0.77, 0.74, and 0.83, respectively). The difference between AUCs was insignificant (p of 0.19). AUC, accuracy, balanced accuracy, and F1-score of the nomogram were 0.96, 0.94, 0.95, and 0.95, respectively. Nomogram was clinically useful when threshold probability of a patient is higher than 0.06. Perilesional radiomics features improved the discrimination ability of the radiomics signature. Diagnostic nomogram had a good performance. LEVEL OF EVIDENCE: 3. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Han Zhang
- School of Medical Imaging, Binzhou Medical University, Yantai, China.,Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xianglin Li
- School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Yongxia Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Cheng Huang
- Department of Radiology, Zhifu Branch of Yantai Yuhuangding Hospital (Yantai Zhifu Hospital), Yantai, China
| | - Yongqiang Wang
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ping Yang
- Department of Pathology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | | | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
47
|
Granzier RWY, Ibrahim A, Primakov SP, Samiei S, van Nijnatten TJA, de Boer M, Heuts EM, Hulsmans FJ, Chatterjee A, Lambin P, Lobbes MBI, Woodruff HC, Smidt ML. MRI-Based Radiomics Analysis for the Pretreatment Prediction of Pathologic Complete Tumor Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Multicenter Study. Cancers (Basel) 2021; 13:cancers13102447. [PMID: 34070016 PMCID: PMC8157878 DOI: 10.3390/cancers13102447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022] Open
Abstract
This retrospective study investigated the value of pretreatment contrast-enhanced Magnetic Resonance Imaging (MRI)-based radiomics for the prediction of pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients. A total of 292 breast cancer patients, with 320 tumors, who were treated with neo-adjuvant systemic therapy and underwent a pretreatment MRI exam were enrolled. As the data were collected in two different hospitals with five different MRI scanners and varying acquisition protocols, three different strategies to split training and validation datasets were used. Radiomics, clinical, and combined models were developed using random forest classifiers in each strategy. The analysis of radiomics features had no added value in predicting pathologic complete tumor response to neoadjuvant systemic therapy in breast cancer patients compared with the clinical models, nor did the combined models perform significantly better than the clinical models. Further, the radiomics features selected for the models and their performance differed with and within the different strategies. Due to previous and current work, we tentatively attribute the lack of improvement in clinical models following the addition of radiomics to the effects of variations in acquisition and reconstruction parameters. The lack of reproducibility data (i.e., test-retest or similar) meant that this effect could not be analyzed. These results indicate the need for reproducibility studies to preselect reproducible features in order to properly assess the potential of radiomics.
Collapse
Affiliation(s)
- Renée W. Y. Granzier
- Department of Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (S.S.); (E.M.H.); (M.L.S.)
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Correspondence: ; Tel.: +31-43-388-1575
| | - Abdalla Ibrahim
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-In Vivo Imaging, University of Liège, 4000 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Sergey P. Primakov
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Sanaz Samiei
- Department of Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (S.S.); (E.M.H.); (M.L.S.)
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
| | - Maaike de Boer
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Esther M. Heuts
- Department of Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (S.S.); (E.M.H.); (M.L.S.)
| | - Frans-Jan Hulsmans
- Department of Medical Imaging, Zuyderland Medical Center, P.O. Box 5500, 6130 MB Sittard-Geleen, The Netherlands;
| | - Avishek Chatterjee
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Philippe Lambin
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Marc B. I. Lobbes
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- Department of Medical Imaging, Zuyderland Medical Center, P.O. Box 5500, 6130 MB Sittard-Geleen, The Netherlands;
| | - Henry C. Woodruff
- GROW-School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (A.I.); (S.P.P.); (M.d.B.); (A.C.); (P.L.); (M.B.I.L.); (H.C.W.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
- The D-Lab, Department of Precision Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Marjolein L. Smidt
- Department of Surgery, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (S.S.); (E.M.H.); (M.L.S.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands;
| |
Collapse
|
48
|
Li C, Song L, Yin J. Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status. J Magn Reson Imaging 2021; 54:703-714. [PMID: 33955619 DOI: 10.1002/jmri.27651] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics has been applied to breast magnetic resonance imaging (MRI) for gene status prediction. However, the features of peritumoral regions were not thoroughly investigated. PURPOSE To evaluate the use of intratumoral and peritumoral regions from functional parametric maps based on breast dynamic contrast-enhanced MRI (DCE-MRI) for prediction of HER-2 and Ki-67 status. STUDY TYPE Retrospective. POPULATION A total of 351 female patients (average age, 51 years) with pathologically confirmed breast cancer were assigned to the training (n = 243) and validation (n = 108) cohorts. FIELD STRENGTH/SEQUENCE 3.0T, T1 gradient echo. ASSESSMENT Radiomic features were extracted from intratumoral and peritumoral regions on six functional parametric maps calculated using time-intensity curves of DCE-MRI. The intraclass correlation coefficients (ICCs) were used to determine the reproducibility of feature extraction. Based on the intratumoral, peritumoral, and combined intra- and peritumoral regions, three radiomics signatures (RSs) were built using the least absolute shrinkage and selection operator (LASSO) logistic regression model, respectively. STATISTICAL TESTS Wilcoxon rank-sum test, minimum redundancy maximum relevance, LASSO, receiver operating characteristic curve (ROC) analysis, and DeLong test. RESULTS The intratumoral and peritumoral RSs for prediction of HER-2 and Ki-67 status achieved areas under the ROC (AUCs) of 0.683 (95% confidence interval [CI], 0.574-0.793) and 0.690 (95% CI, 0.577-0.804), and 0.714 (95% CI, 0.616-0.812) and 0.692 (95% CI, 0.590-0.794) in the validation cohort, respectively. The combined RSs yielded AUCs of 0.713 (95% CI, 0.604-0.823) and 0.749 (95% CI, 0.656-0.841), respectively. There were no significant differences in prediction performance among intratumoral, peritumoral, and combined RSs. Most (69.7%) of the features had good agreement (ICCs >0.8). DATA CONCLUSION Radiomic features of intratumoral and peritumoral regions on functional parametric maps based on breast DCE-MRI had the potential to identify HER-2 and Ki-67 status. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2.
Collapse
Affiliation(s)
- Chunli Li
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China.,Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lirong Song
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
49
|
Montemezzi S, Benetti G, Bisighin MV, Camera L, Zerbato C, Caumo F, Fiorio E, Zanelli S, Zuffante M, Cavedon C. 3T DCE-MRI Radiomics Improves Predictive Models of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Front Oncol 2021; 11:630780. [PMID: 33959498 PMCID: PMC8093630 DOI: 10.3389/fonc.2021.630780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To test whether 3T MRI radiomics of breast malignant lesions improves the performance of predictive models of complete response to neoadjuvant chemotherapy when added to other clinical, histological and radiological information. METHODS Women who consecutively had pre-neoadjuvant chemotherapy (NAC) 3T DCE-MRI between January 2016 and October 2019 were retrospectively included in the study. 18F-FDG PET-CT and histological information obtained through lesion biopsy were also available. All patients underwent surgery and specimens were analyzed. Subjects were divided between complete responders (Pinder class 1i or 1ii) and non-complete responders to NAC. Geometric, first order or textural (higher order) radiomic features were extracted from pre-NAC MRI and feature reduction was performed. Five radiomic features were added to other available information to build predictive models of complete response to NAC using three different classifiers (logistic regression, support vector machines regression and random forest) and exploring the whole set of possible feature selections. RESULTS The study population consisted of 20 complete responders and 40 non-complete responders. Models including MRI radiomic features consistently showed better performance compared to combinations of other clinical, histological and radiological information. The AUC (ROC analysis) of predictors that did not include radiomic features reached up to 0.89, while all three classifiers gave AUC higher than 0.90 with the inclusion of radiomic information (range: 0.91-0.98). CONCLUSIONS Radiomic features extracted from 3T DCE-MRI consistently improved predictive models of complete response to neo-adjuvant chemotherapy. However, further investigation is necessary before this information can be used for clinical decision making.
Collapse
Affiliation(s)
| | - Giulio Benetti
- Medical Physics Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | - Lucia Camera
- Radiology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Chiara Zerbato
- Radiology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesca Caumo
- Radiology Unit, Istituto Oncologico Veneto – IRCCS, Padova, Italy
| | - Elena Fiorio
- Pathology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Sara Zanelli
- Pathology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Michele Zuffante
- Nuclear Medicine Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Carlo Cavedon
- Medical Physics Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|
50
|
Jiang M, Li CL, Luo XM, Chuan ZR, Lv WZ, Li X, Cui XW, Dietrich CF. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer 2021; 147:95-105. [PMID: 33639324 DOI: 10.1016/j.ejca.2021.01.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of the study was to develop and validate a deep learning radiomic nomogram (DLRN) for preoperatively assessing breast cancer pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) based on the pre- and post-treatment ultrasound. METHODS Patients with locally advanced breast cancer (LABC) proved by biopsy who proceeded to undergo preoperative NAC were enrolled from hospital #1 (training cohort, 356 cases) and hospital #2 (independent external validation cohort, 236 cases). Deep learning and handcrafted radiomic features reflecting the phenotypes of the pre-treatment (radiomic signature [RS] 1) and post-treatment tumour (RS2) were extracted. The minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression were used for feature selection and RS construction. A DLRN was then developed based on the RSs and independent clinicopathological risk factors. The performance of the model was assessed with regard to calibration, discrimination and clinical usefulness. RESULTS The DLRN predicted the pCR status with accuracy, yielded an area under the receiver operator characteristic curve of 0.94 (95% confidence interval, 0.91-0.97) in the validation cohort, with good calibration. The DLRN outperformed the clinical model and single RS within both cohorts (P < 0.05, as per the DeLong test) and performed better than two experts' prediction of pCR (both P < 0.01 for comparison of total accuracy). Besides, prediction within the hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative, HER2+ and triple-negative subgroups also achieved good discrimination performance, with an AUC of 0.90, 0.95 and 0.93, respectively, in the external validation cohort. Decision curve analysis confirmed that the model was clinically useful. CONCLUSION A deep learning-based radiomic nomogram had good predictive value for pCR in LABC, which could provide valuable information for individual treatment.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Chang-Li Li
- Department of Geratology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, 11 Lingjiaohu Avenue, Wuhan, 430015, PR China
| | - Xiao-Mao Luo
- Department of Medical Ultrasound, Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, PR China
| | - Zhi-Rui Chuan
- Department of Medical Ultrasound, Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, PR China
| | - Wen-Zhi Lv
- Department of Artificial Intelligence, Julei Technology, Wuhan, 430030, PR China
| | - Xu Li
- School of Biomedical Engineering, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, PR China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Christoph F Dietrich
- Department of Internal Medicine, Hirslanden Clinic, Schänzlihalde 11, Bern, 3013, Switzerland
| |
Collapse
|