• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4809497)   Today's Articles (1127)
For: Fan M, Wu G, Cheng H, Zhang J, Shao G, Li L. Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients. Eur J Radiol 2017;94:140-147. [DOI: 10.1016/j.ejrad.2017.06.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/29/2017] [Accepted: 06/26/2017] [Indexed: 01/31/2023]
Number Cited by Other Article(s)
1
Cui QX, Zhou LQ, Wang XY, Zhang HX, Li JJ, Xiong MC, Shi HY, Zhu YM, Sang XQ, Kuai ZX. Novel MRI-based Hyper-Fused Radiomics for Predicting Pathologic Complete Response to Neoadjuvant Therapy in Breast Cancer. Acad Radiol 2025;32:2477-2488. [PMID: 39765433 DOI: 10.1016/j.acra.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 12/18/2024] [Indexed: 04/23/2025]
2
D'Anna A, Aranzulla C, Carnaghi C, Caruso F, Castiglione G, Grasso R, Gueli AM, Marino C, Pane F, Pulvirenti A, Stella G. Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach. Phys Med 2025;131:104931. [PMID: 39946952 DOI: 10.1016/j.ejmp.2025.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/11/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]  Open
3
Pesapane F, Rotili A, Scalco E, Pupo D, Carriero S, Corso F, De Marco P, Origgi D, Nicosia L, Ferrari F, Penco S, Pizzamiglio M, Rizzo G, Cassano E. Predictive value of tumoral and peritumoral radiomic features in neoadjuvant chemotherapy response for breast cancer: a retrospective study. LA RADIOLOGIA MEDICA 2025:10.1007/s11547-025-01969-1. [PMID: 39992329 DOI: 10.1007/s11547-025-01969-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
4
Hou X, Chen K, Wan X, Luo H, Li X, Xu W. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on 18F-FDG PET/CT. J Cancer Res Clin Oncol 2024;150:484. [PMID: 39488636 PMCID: PMC11531439 DOI: 10.1007/s00432-024-05987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
5
Zhang L, Ning N, Liang H, Zhao S, Gao X, Liu A, Song Q, Duan X, Yang J, Xie L. The contrast-free diffusion MRI multiple index for the early prediction of pathological response to neoadjuvant chemotherapy in breast cancer. NMR IN BIOMEDICINE 2024;37:e5176. [PMID: 38884131 DOI: 10.1002/nbm.5176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/21/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024]
6
Zhan T, Yi C, Lang Y. Predicting efficacy of neoadjuvant chemotherapy in breast cancer patients with synthetic magnetic resonance imaging method MAGiC: An observational cohort study. Eur J Radiol 2024;179:111666. [PMID: 39128250 DOI: 10.1016/j.ejrad.2024.111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
7
Lee HJ, Lee JH, Lee JE, Na YM, Park MH, Lee JS, Lim HS. Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI. Sci Rep 2024;14:21691. [PMID: 39289507 PMCID: PMC11408492 DOI: 10.1038/s41598-024-72581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]  Open
8
Yang Z, Liu C. Research on the application of radiomics in breast cancer: A bibliometrics and visualization analysis. Medicine (Baltimore) 2024;103:e39463. [PMID: 39213225 PMCID: PMC11365679 DOI: 10.1097/md.0000000000039463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]  Open
9
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024;22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]  Open
10
Li Z, Liu X, Gao Y, Lu X, Lei J. Ultrasound-based radiomics for early predicting response to neoadjuvant chemotherapy in patients with breast cancer: a systematic review with meta-analysis. LA RADIOLOGIA MEDICA 2024;129:934-944. [PMID: 38630147 DOI: 10.1007/s11547-024-01783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/10/2024] [Indexed: 06/13/2024]
11
Zhang X, Teng X, Zhang J, Lai Q, Cai J. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Breast Cancer Res 2024;26:77. [PMID: 38745321 PMCID: PMC11094888 DOI: 10.1186/s13058-024-01836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]  Open
12
Lo Gullo R, Marcus E, Huayanay J, Eskreis-Winkler S, Thakur S, Teuwen J, Pinker K. Artificial Intelligence-Enhanced Breast MRI: Applications in Breast Cancer Primary Treatment Response Assessment and Prediction. Invest Radiol 2024;59:230-242. [PMID: 37493391 PMCID: PMC10818006 DOI: 10.1097/rli.0000000000001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
13
Yang Y, Xiang T, Lv X, Li L, Lui LM, Zeng T. Double Transformer Super-Resolution for Breast Cancer ADC Images. IEEE J Biomed Health Inform 2024;28:917-928. [PMID: 38079366 DOI: 10.1109/jbhi.2023.3341250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
14
Lv T, Hong X, Liu Y, Miao K, Sun H, Li L, Deng C, Jiang C, Pan X. AI-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024;243:107857. [PMID: 37865058 DOI: 10.1016/j.cmpb.2023.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/23/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
15
Janse MHA, Janssen LM, van der Velden BHM, Moman MR, Wolters-van der Ben EJM, Kock MCJM, Viergever MA, van Diest PJ, Gilhuijs KGA. Deep Learning-Based Segmentation of Locally Advanced Breast Cancer on MRI in Relation to Residual Cancer Burden: A Multi-Institutional Cohort Study. J Magn Reson Imaging 2023;58:1739-1749. [PMID: 36928988 DOI: 10.1002/jmri.28679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]  Open
16
Elsayed B, Alksas A, Shehata M, Mahmoud A, Zaky M, Alghandour R, Abdelwahab K, Abdelkhalek M, Ghazal M, Contractor S, El-Din Moustafa H, El-Baz A. Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2023;15:5288. [PMID: 37958461 PMCID: PMC10648987 DOI: 10.3390/cancers15215288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]  Open
17
Panthi B, Mohamed RM, Adrada BE, Boge M, Candelaria RP, Chen H, Hunt KK, Huo L, Hwang KP, Korkut A, Lane DL, Le-Petross HC, Leung JWT, Litton JK, Pashapoor S, Perez F, Son JB, Sun J, Thompson A, Tripathy D, Valero V, Wei P, White J, Xu Z, Yang W, Zhou Z, Yam C, Rauch GM, Ma J. Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Front Oncol 2023;13:1264259. [PMID: 37941561 PMCID: PMC10628525 DOI: 10.3389/fonc.2023.1264259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023]  Open
18
Wang M, Mei T, Gong Y. The quality and clinical translation of radiomics studies based on MRI for predicting Ki-67 levels in patients with breast cancer. Br J Radiol 2023;96:20230172. [PMID: 37724784 PMCID: PMC10546437 DOI: 10.1259/bjr.20230172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/13/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023]  Open
19
Hwang KP, Elshafeey NA, Kotrotsou A, Chen H, Son JB, Boge M, Mohamed RM, Abdelhafez AH, Adrada BE, Panthi B, Sun J, Musall BC, Zhang S, Candelaria RP, White JB, Ravenberg EE, Tripathy D, Yam C, Litton JK, Huo L, Thompson AM, Wei P, Yang WT, Pagel MD, Ma J, Rauch GM. A Radiomics Model Based on Synthetic MRI Acquisition for Predicting Neoadjuvant Systemic Treatment Response in Triple-Negative Breast Cancer. Radiol Imaging Cancer 2023;5:e230009. [PMID: 37505106 PMCID: PMC10413296 DOI: 10.1148/rycan.230009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 06/03/2023] [Indexed: 07/29/2023]
20
Wang X, Hua H, Han J, Zhong X, Liu J, Chen J. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Clin Breast Cancer 2023:S1526-8209(23)00134-9. [PMID: 37321954 DOI: 10.1016/j.clbc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
21
Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy. Eur Radiol 2023;33:2965-2974. [PMID: 36418622 DOI: 10.1007/s00330-022-09264-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 10/22/2022] [Indexed: 11/25/2022]
22
Duan Y, Yang G, Miao W, Song B, Wang Y, Yan L, Wu F, Zhang R, Mao Y, Wang Z. Computed Tomography-Based Radiomics Analysis for Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. J Comput Assist Tomogr 2023;47:199-204. [PMID: 36790871 DOI: 10.1097/rct.0000000000001426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
23
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023;12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]  Open
24
Fan M, Wu X, Yu J, Liu Y, Wang K, Xue T, Zeng T, Chen S, Li L. Multiparametric MRI radiomics fusion for predicting the response and shrinkage pattern to neoadjuvant chemotherapy in breast cancer. Front Oncol 2023;13:1057841. [PMID: 37207135 PMCID: PMC10189126 DOI: 10.3389/fonc.2023.1057841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/19/2023] [Indexed: 05/21/2023]  Open
25
Ghezzo S, Bezzi C, Neri I, Mapelli P, Presotto L, Gajate AMS, Bettinardi V, Garibotto V, De Cobelli F, Scifo P, Picchio M. Radiomics and artificial intelligence. CLINICAL PET/MRI 2023:365-401. [DOI: 10.1016/b978-0-323-88537-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
26
Zhang MQ, Du Y, Zha HL, Liu XP, Cai MJ, Chen ZH, Chen R, Wang J, Wang SJ, Zhang JL, Li CY. Construction and validation of a personalized nomogram of ultrasound for pretreatment prediction of breast cancer patients sensitive to neoadjuvant chemotherapy. Br J Radiol 2022;95:20220626. [PMID: 36378247 PMCID: PMC9733610 DOI: 10.1259/bjr.20220626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]  Open
27
Basran PS, Porter I. Radiomics in veterinary medicine: Overview, methods, and applications. Vet Radiol Ultrasound 2022;63 Suppl 1:828-839. [PMID: 36514226 DOI: 10.1111/vru.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]  Open
28
Sheng W, Xia S, Wang Y, Yan L, Ke S, Mellisa E, Gong F, Zheng Y, Tang T. Invasive ductal breast cancer molecular subtype prediction by MRI radiomic and clinical features based on machine learning. Front Oncol 2022;12:964605. [PMID: 36172153 PMCID: PMC9510620 DOI: 10.3389/fonc.2022.964605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022]  Open
29
Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy. Cancers (Basel) 2022;14:cancers14143515. [PMID: 35884576 PMCID: PMC9316501 DOI: 10.3390/cancers14143515] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022]  Open
30
Herrero Vicent C, Tudela X, Moreno Ruiz P, Pedralva V, Jiménez Pastor A, Ahicart D, Rubio Novella S, Meneu I, Montes Albuixech Á, Santamaria MÁ, Fonfria M, Fuster-Matanzo A, Olmos Antón S, Martínez de Dueñas E. Machine Learning Models and Multiparametric Magnetic Resonance Imaging for the Prediction of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers (Basel) 2022;14:cancers14143508. [PMID: 35884572 PMCID: PMC9317428 DOI: 10.3390/cancers14143508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023]  Open
31
MRI Radiogenomics in Precision Oncology: New Diagnosis and Treatment Method. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022;2022:2703350. [PMID: 35845886 PMCID: PMC9282990 DOI: 10.1155/2022/2703350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022]
32
Martin MJS, Frouin F, Malhaire C, Orlhac F. Decrypting the information captured by MRI-radiomic features in predicting the response to neoadjuvant chemotherapy in breast cancer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022;2022:3227-3230. [PMID: 36085726 DOI: 10.1109/embc48229.2022.9871844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
33
Yoshida K, Kawashima H, Kannon T, Tajima A, Ohno N, Terada K, Takamatsu A, Adachi H, Ohno M, Miyati T, Ishikawa S, Ikeda H, Gabata T. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI. Magn Reson Imaging 2022;92:19-25. [PMID: 35636571 DOI: 10.1016/j.mri.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 12/29/2022]
34
Breast Tumor Identification in Ultrafast MRI Using Temporal and Spatial Information. Cancers (Basel) 2022;14:cancers14082042. [PMID: 35454949 PMCID: PMC9027362 DOI: 10.3390/cancers14082042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022]  Open
35
Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, Huo L, Wei P, Tripathy D, Valero V, Yam C, Hazle JD, Moulder SL, Yang WT, Rauch GM. A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol 2022;149:110220. [DOI: 10.1016/j.ejrad.2022.110220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
36
Choudhery S, Gomez-Cardona D, Favazza CP, Hoskin TL, Haddad TC, Goetz MP, Boughey JC. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy. Acad Radiol 2022;29 Suppl 1:S145-S154. [PMID: 33160859 PMCID: PMC8093323 DOI: 10.1016/j.acra.2020.10.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 01/03/2023]
37
Yurttakal AH, Erbay H, İkizceli T, Karaçavuş S, Biçer C. Diagnosing breast cancer tumors using stacked ensemble model. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
38
Yan S, Peng H, Yu Q, Chen X, Liu Y, Zhu Y, Chen K, Wang P, Li Y, Zhang X, Meng W. Computer-aided classification of MRI for pathological complete response to neoadjuvant chemotherapy in breast cancer. Future Oncol 2021;18:991-1001. [PMID: 34894719 DOI: 10.2217/fon-2021-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
39
Peng S, Chen L, Tao J, Liu J, Zhu W, Liu H, Yang F. Radiomics Analysis of Multi-Phase DCE-MRI in Predicting Tumor Response to Neoadjuvant Therapy in Breast Cancer. Diagnostics (Basel) 2021;11:diagnostics11112086. [PMID: 34829433 PMCID: PMC8625316 DOI: 10.3390/diagnostics11112086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022]  Open
40
Satake H, Ishigaki S, Ito R, Naganawa S. Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol Med 2021;127:39-56. [PMID: 34704213 DOI: 10.1007/s11547-021-01423-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022]
41
Li Z, Li J, Lu X, Qu M, Tian J, Lei J. The diagnostic performance of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in evaluating the pathological response of breast cancer to neoadjuvant chemotherapy: A meta-analysis. Eur J Radiol 2021;143:109931. [PMID: 34492627 DOI: 10.1016/j.ejrad.2021.109931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 12/24/2022]
42
Radiomics of MRI for the Prediction of the Pathological Response to Neoadjuvant Chemotherapy in Breast Cancer Patients: A Single Referral Centre Analysis. Cancers (Basel) 2021;13:cancers13174271. [PMID: 34503081 PMCID: PMC8428336 DOI: 10.3390/cancers13174271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]  Open
43
Multicontrast MRI-based radiomics for the prediction of pathological complete response to neoadjuvant chemotherapy in patients with early triple negative breast cancer. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021;34:833-844. [PMID: 34255206 DOI: 10.1007/s10334-021-00941-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 06/04/2021] [Accepted: 07/03/2021] [Indexed: 12/19/2022]
44
Li Q, Xiao Q, Li J, Wang Z, Wang H, Gu Y. Value of Machine Learning with Multiphases CE-MRI Radiomics for Early Prediction of Pathological Complete Response to Neoadjuvant Therapy in HER2-Positive Invasive Breast Cancer. Cancer Manag Res 2021;13:5053-5062. [PMID: 34234550 PMCID: PMC8253937 DOI: 10.2147/cmar.s304547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]  Open
45
Recent Radiomics Advancements in Breast Cancer: Lessons and Pitfalls for the Next Future. ACTA ACUST UNITED AC 2021;28:2351-2372. [PMID: 34202321 PMCID: PMC8293249 DOI: 10.3390/curroncol28040217] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
46
Zhang H, Li X, Zhang Y, Huang C, Wang Y, Yang P, Duan S, Mao N, Xie H. Diagnostic nomogram based on intralesional and perilesional radiomics features and clinical factors of clinically significant prostate cancer. J Magn Reson Imaging 2021;53:1550-1558. [PMID: 33851471 DOI: 10.1002/jmri.27486] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]  Open
47
Granzier RWY, Ibrahim A, Primakov SP, Samiei S, van Nijnatten TJA, de Boer M, Heuts EM, Hulsmans FJ, Chatterjee A, Lambin P, Lobbes MBI, Woodruff HC, Smidt ML. MRI-Based Radiomics Analysis for the Pretreatment Prediction of Pathologic Complete Tumor Response to Neoadjuvant Systemic Therapy in Breast Cancer Patients: A Multicenter Study. Cancers (Basel) 2021;13:cancers13102447. [PMID: 34070016 PMCID: PMC8157878 DOI: 10.3390/cancers13102447] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]  Open
48
Li C, Song L, Yin J. Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status. J Magn Reson Imaging 2021;54:703-714. [PMID: 33955619 DOI: 10.1002/jmri.27651] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022]  Open
49
Montemezzi S, Benetti G, Bisighin MV, Camera L, Zerbato C, Caumo F, Fiorio E, Zanelli S, Zuffante M, Cavedon C. 3T DCE-MRI Radiomics Improves Predictive Models of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer. Front Oncol 2021;11:630780. [PMID: 33959498 PMCID: PMC8093630 DOI: 10.3389/fonc.2021.630780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 12/16/2022]  Open
50
Jiang M, Li CL, Luo XM, Chuan ZR, Lv WZ, Li X, Cui XW, Dietrich CF. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer 2021;147:95-105. [PMID: 33639324 DOI: 10.1016/j.ejca.2021.01.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
PrevPage 1 of 3 123Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA