1
|
Rainio O, Klén R. Compartmental modeling for blood flow quantification from dynamic 15 O-water PET images of humans: a systematic review. Ann Nucl Med 2025; 39:231-246. [PMID: 39832118 PMCID: PMC11829939 DOI: 10.1007/s12149-025-02014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025]
Abstract
Dynamic positron emission tomography (PET) can be used to non-invasively estimate the blood flow of different organs via compartmental modeling. Out of different PET tracers, water labeled with the radioactive15 O isotope of oxygen (half-life of 2.04 min) is freely diffusable, and therefore, very well-suited for blood flow quantification. While the earlier15 O-water PET research has primarily focused on cerebral or myocardial blood flow quantification, the recent emergence of total-body PET scanners has enabled greater application possibilities for both PET imaging in general and also15 O-water PET based blood flow quantification in particular. However, to validate new methods, it is necessary to compare them to earlier research. To help in this process, we systematically review 53 articles quantifying blood flow via compartmental modeling. We introduce the articles organized within subcategories of cerebral, myocardial, renal, pulmonary, pancreatic, hepatic, muscle, and tumor blood flow and summarize their results so that they can easily be evaluated in terms of population characteristics of the patients such as age or sex ratio and their potential diagnoses. We compare how both the compartment model used and the potential corrections for arterial blood volume, non-perfusable tissue, spill-over from the heart cavities, and time delay caused while the tracer travels between different areas of interest are generally implemented in the articles. We also analyze the differences in the data pre-processing techniques. According to our results, the estimates of cerebral and tumor blood flow vary considerably more between the articles than those of myocardial blood flow. This might be caused by differences in the model approaches or the study populations. We also note that the choice of the unit for these estimates is quite inconsistent as certain researchers seem to prefer mL/min/g over mL/min/mL even if no weight or density parameter is present in the modeling. We encourage more research on sex- and age-based differences in blood flow estimates and organ-specific blood flow quantification studies for kidneys, lungs, liver, and other important organs besides brain and heart.
Collapse
Affiliation(s)
- Oona Rainio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland.
| | - Riku Klén
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Huang Y, Nishikawa Y, Mori T, Nogami M, Makino A, Kiyono Y, Toyama T, Okazawa H. Relationship between renal oxidative stress levels and disease severity in patients with chronic kidney disease assessed by [Cu-64]ATSM PET/MRI. Sci Rep 2025; 15:7227. [PMID: 40021767 PMCID: PMC11871321 DOI: 10.1038/s41598-024-85027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025] Open
Abstract
The purpose of the study was to investigate renal oxidative stress (OS) and its relationship with disease severity in patients with chronic kidney disease (CKD) using positron emission tomography coupled with magnetic resonance imaging (PET/MRI), employing 64Cu-diacetyl-bis(N4-methylthiosemicarbazonate) (64Cu-ATSM) as the PET tracer for OS imaging. Thirty patients with CKD (66.4 ± 8.2 y.o.) and seven healthy controls (HC) subjects (58.3 ± 3.8 y.o.) underwent 64Cu-ATSM PET/MRI. Participants were categorized into three groups based on their estimated glomerular filtration rate (eGFR): HC, mild CKD (stages 2-3a), and advanced CKD (stages 3b-5). All subjects underwent 30-min dynamic PET/MRI starting with the injection of 64Cu-ATSM to evaluate renal blood flow (RBF) and OS levels. RBF (mL/min/100 g) images were calculated from the first 3 min PET data, and standardized uptake value (SUV) images were obtained from delayed frames of 15-30 min after injection. The 64Cu-ATSM SUV images were corrected to RBF-adjusted SUV using individual RBF images to estimate the OS levels of individual kidneys using the following equation: adjusted OS index (aOSi) = (SUV/RBF)x100. Significant correlation was observed between eGFR and RBF (r = 0.81, P < 0.001). RBF in patients with advanced CKD is significantly lower than that in HC (P < 0.001) and patients with mild CKD (P = 0.004). 64Cu-ATSM SUV did not differ significantly among the three groups (P = 0.171). 64Cu-ATSM SUVs did not correlate with creatinine in the HC subjects or in the patients with CKD. However, these values did correlate with eGFR (r = 0.33, P = 0.049) in all subjects, whereas the CKD patients showed no significant correlation. Following RBF correction, the aOSi demonstrated significant correlations with creatinine (r = 0.75, P < 0.001), eGFR (r= -0.65, P < 0.001), and CKD stages (r = 0.57, P < 0.001) in all subjects. This preliminary study has revealed that 64Cu-ATSM PET may provide a estimate of renal OS reasonably in CKD patients noninvasively. Increased aOSi values were correlated with the CKD stages and creatinine levels, suggesting that OS increases with the severity of renal dysfunction.
Collapse
Affiliation(s)
- Ya'nan Huang
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Radiology, Shaoxing People's Hospital, Shaoxing, China
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Munenobu Nogami
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tadashi Toyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| |
Collapse
|
3
|
Bach MJ, Larsen ME, Kellberg AO, Henriksen AC, Fuglsang S, Rasmussen IL, Lonsdale MN, Lubberink M, Marner L. Non-invasive [ 15O]H 2O PET measurements of cerebral perfusion and cerebrovascular reactivity using an additional heart scan. J Cereb Blood Flow Metab 2025:271678X251313743. [PMID: 39829334 PMCID: PMC11748137 DOI: 10.1177/0271678x251313743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
Obtaining the arterial input function (AIF) is essential for quantitative regional cerebral perfusion (rCBF) measurements using [15O]H2O PET. However, arterial blood sampling is invasive and complicates the scanning procedure. We propose a new non-invasive dual scan technique with an image derived input function (IDIF) from an additional heart scan. Six patients and two healthy subjects underwent [15O]H2O PET imaging of 1) heart and brain during baseline, and 2) heart and brain after infusion of acetazolamide. The IDIF was extracted from the left ventricle of the heart and compared to the AIF. The rCBF was compared for six bilateral cortical regions. AIFs and IDIFs showed strong agreement. rCBF with AIF and IDIF showed strong correlation for both baseline rCBF (R2 = 0.99, slope = 0.89 CI: [0.87; 0.91], p < 0.0001) and acetazolamide rCBF (R2 = 0.98, slope = 0.93, CI:[0.90;0.97], p < 0.0001) but showed a positive bias of 0.047 mL/(g·min) [-0.025; +0.119] for baseline and 0.024 [-1.04, +1.53] mL/(g·min) for acetazolamide. In conclusion, the invasive arterial cannulation can be replaced by an additional scan of the heart with a minor bias of rCBF estimation. The method is applicable to all scanner systems.
Collapse
Affiliation(s)
- Mathias Jacobsen Bach
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mia E Larsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Amanda O Kellberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Alexander C Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Stefan Fuglsang
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Inge Lise Rasmussen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Markus Nowak Lonsdale
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Mark Lubberink
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ishida S, Fujiwara Y, Takei N, Kimura H, Tsujikawa T. Comparison between supervised and physics-informed unsupervised deep neural networks for estimating cerebral perfusion using multi-delay arterial spin labeling MRI. NMR IN BIOMEDICINE 2024; 37:e5177. [PMID: 38751142 DOI: 10.1002/nbm.5177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 10/12/2024]
Abstract
This study aimed to implement a physics-informed unsupervised deep neural network (DNN) to estimate cerebral blood flow (CBF) and arterial transit time (ATT) from multi-delay arterial spin labeling (ASL), and compare its performance with that of a supervised DNN and the conventional method. Supervised and unsupervised DNNs were trained using simulation data. The accuracy and noise immunity of the three methods were compared using simulations and in vivo data. The simulation study investigated the differences between the predicted and ground-truth values and their variations with the noise level. The in vivo study evaluated the predicted values from the original images and noise-induced variations in the predicted values from the synthesized noisy images by adding Rician noise to the original images. The simulation study showed that CBF estimated using the supervised DNN was not biased by noise, whereas that estimated using other methods had a positive bias. Although the ATT with all methods exhibited a similar behavior with noise increase, the ATT with the supervised DNN was less biased. The in vivo study showed that CBF and ATT with the supervised DNN were the most accurate and that the supervised and unsupervised DNNs had the highest noise immunity in CBF and ATT estimations, respectively. Physics-informed unsupervised learning can estimate CBF and ATT from multi-delay ASL signals, and its performance is superior to that of the conventional method. Although noise immunity in ATT estimation was superior with unsupervised learning, other performances were superior with supervised learning.
Collapse
Affiliation(s)
- Shota Ishida
- Department of Radiological Technology, Faculty of Medical Sciences, Kyoto College of Medical Science, Nantan, Kyoto, Japan
| | - Yasuhiro Fujiwara
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Hirohiko Kimura
- Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
- Radiology Section, National Health Insurance Echizen-cho Ota Hospital, Echizen, Fukui, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, Japan
| |
Collapse
|
5
|
Okazawa H, Nogami M, Ishida S, Makino A, Mori T, Kiyono Y, Ikawa M. PET/MRI multimodality imaging to evaluate changes in glymphatic system function and biomarkers of Alzheimer's disease. Sci Rep 2024; 14:12310. [PMID: 38811627 PMCID: PMC11137097 DOI: 10.1038/s41598-024-62806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
The glymphatic system is considered to play a pivotal role in the clearance of disease-causing proteins in neurodegenerative diseases. This study employed MR diffusion tensor imaging (DTI) to evaluate glymphatic system function and its correlation with brain amyloid accumulation levels measured using [11C]Pittsburgh compound-B (PiB) PET/MRI. Fifty-six patients with mild cognitive impairment and early Alzheimer's disease (AD: 70 ± 11 y) underwent [11C]PiB PET/MRI to assess amyloid deposition and were compared with 27 age-matched cognitively normal volunteers (CN: 69 ± 10y). All participants were evaluated for cognitive function using the Mini Mental State Examination (MMSE) before [11C]PiB PET/MRI. DTI images were acquired during the PET/MRI scan with several other MR sequences. The DTI analysis along the perivascular space index (DTI-ALPS index) was calculated to estimate the functional activity of the glymphatic system. Centiloid scale was applied to quantify amyloid deposition levels from [11C]PiB PET images. All patients in the AD group showed positive [11C]PiB accumulation, whereas all CN participants were negative. ALPS-index for all subjects linearly correlated with PiB centiloid, MMSE scores, and hippocampal volume. The correlation between the ALPS-index and PiB accumulation was more pronounced than with any other biomarkers. These findings suggest that glymphatic system dysfunction is a significant factor in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| | - Munenobu Nogami
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Radiology, Kobe University Hospital, Kobe, Japan
| | | | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Community Health Science, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
6
|
Moradi H, Vashistha R, Ghosh S, O'Brien K, Hammond A, Rominger A, Sari H, Shi K, Vegh V, Reutens D. Automated extraction of the arterial input function from brain images for parametric PET studies. EJNMMI Res 2024; 14:33. [PMID: 38558200 PMCID: PMC11372015 DOI: 10.1186/s13550-024-01100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Accurate measurement of the arterial input function (AIF) is crucial for parametric PET studies, but the AIF is commonly derived from invasive arterial blood sampling. It is possible to use an image-derived input function (IDIF) obtained by imaging a large blood pool, but IDIF measurement in PET brain studies performed on standard field of view scanners is challenging due to lack of a large blood pool in the field-of-view. Here we describe a novel automated approach to estimate the AIF from brain images. RESULTS Total body 18F-FDG PET data from 12 subjects were split into a model adjustment group (n = 6) and a validation group (n = 6). We developed an AIF estimation framework using wavelet-based methods and unsupervised machine learning to distinguish arterial and venous activity curves, compared to the IDIF from the descending aorta. All of the automatically extracted AIFs in the validation group had similar shape to the IDIF derived from the descending aorta IDIF. The average area under the curve error and normalised root mean square error across validation data were - 1.59 ± 2.93% and 0.17 ± 0.07. CONCLUSIONS Our automated AIF framework accurately estimates the AIF from brain images. It reduces operator-dependence, and could facilitate the clinical adoption of parametric PET.
Collapse
Affiliation(s)
- Hamed Moradi
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Rajat Vashistha
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Soumen Ghosh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| | - Kieran O'Brien
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Amanda Hammond
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
- Siemens Healthcare Pty Ltd, Melbourne, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Hasan Sari
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, 3010, Bern, Switzerland
| | - Viktor Vegh
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia.
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia.
| | - David Reutens
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Nishikawa Y, Takahashi N, Nishikawa S, Shimamoto Y, Nishimori K, Kobayashi M, Kimura H, Tsujikawa T, Kasuno K, Mori T, Kiyono Y, Okazawa H, Iwano M. Feasibility of Renal Blood Flow Measurement Using 64Cu-ATSM PET/MRI: A Quantitative PET and MRI Study. Diagnostics (Basel) 2023; 13:diagnostics13101685. [PMID: 37238171 DOI: 10.3390/diagnostics13101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to evaluate the renal blood flow (RBF) in patients with chronic kidney disease (CKD) using 64Cu(II)-diacetyl-bis(4-methylthiosemicarbazonate) (64Cu-ATSM) for positron emission tomography (PET)/magnetic resonance imaging (MRI). We included five healthy controls (HCs) and ten patients with CKD. The estimated glomerular filtration rate (eGFR) was calculated from the serum creatinine (cr) and cystatin C (cys) levels. The estimated RBF (eRBF) was calculated using the eGFR, hematocrit, and filtration fraction. A single dose of 64Cu-ATSM (300-400 MBq) was administered for RBF evaluation, and a 40 min dynamic PET scan was performed with simultaneous arterial spin labeling (ASL) imaging. PET-RBF images were obtained from the dynamic PET images at 3 min after injection using the image-derived input function method. The mean eRBF values calculated from various eGFR values differed significantly between the patients and HCs; both groups also differed significantly in terms of the RBF values (mL/min/100 g) measured using PET (151 ± 20 vs. 124 ± 22, p < 0.05) and ASL-MRI (172 ± 38 vs. 125 ± 30, p < 0.001). The ASL-MRI-RBF was positively correlated with the eRBFcr-cys (r = 0.858, p < 0.001). The PET-RBF was positively correlated with the eRBFcr-cys (r = 0.893, p < 0.001). The ASL-RBF was positively correlated with the PET-RBF (r = 0.849, p < 0.001). 64Cu-ATSM PET/MRI demonstrated the reliability of PET-RBF and ASL-RBF by comparing them with eRBF. This is the first study to demonstrate that 64Cu-ATSM-PET is useful for assessing the RBF and is well correlated with ASL-MRI.
Collapse
Affiliation(s)
- Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Naoki Takahashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yuki Shimamoto
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hideki Kimura
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Young P, Appel L, Tolf A, Kosmidis S, Burman J, Rieckmann A, Schöll M, Lubberink M. Image-derived input functions from dynamic 15O-water PET scans using penalised reconstruction. EJNMMI Phys 2023; 10:15. [PMID: 36881266 PMCID: PMC9992469 DOI: 10.1186/s40658-023-00535-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Quantitative positron emission tomography (PET) scans of the brain typically require arterial blood sampling but this is complicated and logistically challenging. One solution to remove the need for arterial blood sampling is the use of image-derived input functions (IDIFs). Obtaining accurate IDIFs, however, has proved to be challenging, mainly due to the limited resolution of PET. Here, we employ penalised reconstruction alongside iterative thresholding methods and simple partial volume correction methods to produce IDIFs from a single PET scan, and subsequently, compare these to blood-sampled input curves (BSIFs) as ground truth. Retrospectively we used data from sixteen subjects with two dynamic 15O-labelled water PET scans and continuous arterial blood sampling: one baseline scan and another post-administration of acetazolamide. RESULTS IDIFs and BSIFs agreed well in terms of the area under the curve of input curves when comparing peaks, tails and peak-to-tail ratios with R2 values of 0.95, 0.70 and 0.76, respectively. Grey matter cerebral blood flow (CBF) values showed good agreement with an average difference between the BSIF and IDIF CBF values of 2% ± and a coefficient of variation (CoV) of 7.3%. CONCLUSION Our results show promising results that a robust IDIF can be produced for dynamic 15O-water PET scans using only the dynamic PET scan images with no need for a corresponding MRI or complex analytical techniques and thereby making routine clinical use of quantitative CBF measurements with 15O-water feasible.
Collapse
Affiliation(s)
- Peter Young
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Wallinsgatan 6, 41341, Mölndal, Gothenburg, Sweden. .,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Tolf
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Savvas Kosmidis
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Anna Rieckmann
- Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Munich Center for the Economic of Aging, Max Planck Institute for Social Law and Social Policy, Munich, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Wallinsgatan 6, 41341, Mölndal, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| | - Mark Lubberink
- Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Takata K, Kimura H, Ishida S, Isozaki M, Higashino Y, Kikuta KI, Okazawa H, Tsujikawa T. Assessment of Arterial Transit Time and Cerebrovascular Reactivity in Moyamoya Disease by Simultaneous PET/MRI. Diagnostics (Basel) 2023; 13:diagnostics13040756. [PMID: 36832244 PMCID: PMC9955140 DOI: 10.3390/diagnostics13040756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We investigated the relationship between MRI-arterial spin labeling (ASL) parameters and PET-cerebral blood flow (CBF)/cerebrovascular reactivity (CVR) simultaneously obtained by PET/MRI in Moyamoya disease. Twelve patients underwent 15O-water PET/MRI with the acetazolamide (ACZ) challenge test. PET-CBF and PET-CVR were measured using 15O-water PET. Pseudo-continuous ASL obtained the robust arterial transit time (ATT) and ASL-CBF estimation. ASL parameters were compared with PET-CBF and PET-CVR. Before ACZ loading, absolute and relative ASL-CBF were significantly correlated with absolute and relative PET-CBF (r = 0.44, p < 0.0001, and r = 0.55, p < 0.0001, respectively). After ACZ loading, absolute and relative ASL-CBF were significantly correlated with absolute and relative PET-CBF (r = 0.56, p < 0.001, and r = 0.75, p < 0.0001, respectively), and ΔASL-CBF was significantly correlated with ΔPET-CBF (r = 0.65, p < 0.0001). Baseline ASL-ATT had strong negative correlations with ΔPET-CBF and PET-CVR (r = -0.72, p < 0.0001, and r = -0.66, p < 0.0001, respectively). Baseline ASL-ATT of MCA territories with CVR <30% (1546 ± 79 ms) was significantly higher than that with CVR > 30% (898 ± 197 ms). ASL-ATT ratio of MCA territories with CVR < 30% (94.0 ± 10.5%) was significantly higher than that with CVR > 30% (81.4 ± 11.3%). ATT correction using multiple postlabeling delays increased the accuracy of ASL-CBF quantitation. Baseline ASL-ATT is a hemodynamic parameter and may represent an efficient alternative to PET-CVR.
Collapse
Affiliation(s)
- Kenji Takata
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shota Ishida
- Department of Radiological Technology, Faculty of Medical Sciences, Kyoto College of Medical Science, Kyoto 622-0041, Japan
| | - Makoto Isozaki
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yoshifumi Higashino
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Ken-Ichiro Kikuta
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-776-61-3111; Fax: +81-776-61-8137
| |
Collapse
|
10
|
Evaluation of (R)-[ 11C]PK11195 PET/MRI for Spinal Cord-Related Neuropathic Pain in Patients with Cervical Spinal Disorders. J Clin Med 2022; 12:jcm12010116. [PMID: 36614916 PMCID: PMC9821277 DOI: 10.3390/jcm12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Activated microglia are involved in secondary injury after acute spinal cord injury (SCI) and in development of spinal cord-related neuropathic pain (NeP). The aim of the study was to assess expression of translocator protein 18 kDa (TSPO) as an indicator of microglial activation and to investigate visualization of the dynamics of activated microglia in the injured spinal cord using PET imaging with (R)-[11C]PK11195, a specific ligand for TSPO. In SCI chimeric animal models, TSPO was expressed mainly in activated microglia. Accumulation of (R)-[3H]PK11195 was confirmed in autoradiography and its dynamics in the injured spinal cord were visualized by (R)-[11C]PK11195 PET imaging in the acute phase after SCI. In clinical application of (R)-[11C]PK11195 PET/MRI of the cervical spinal cord in patients with NeP related to cervical disorders, uptake was found in cases up to 10 months after injury or surgery. No uptake could be visualized in the injured spinal cord in patients with chronic NeP at more than 1 year after injury or surgery, regardless of the degree of NeP. However, a positive correlation was found between standardized uptake value ratio and the severity of NeP, suggesting the potential of clinical application for objective evaluation of chronic NeP.
Collapse
|
11
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
12
|
Okazawa H, Ikawa M, Tsujikawa T, Mori T, Makino A, Kiyono Y, Nakamoto Y, Kosaka H, Yoneda M. Cerebral Oxidative Stress in Early Alzheimer's Disease Evaluated by 64Cu-ATSM PET/MRI: A Preliminary Study. Antioxidants (Basel) 2022; 11:1022. [PMID: 35624886 PMCID: PMC9138060 DOI: 10.3390/antiox11051022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer's disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. They underwent dynamic PET/MRI using 11C-PiB and 64Cu-ATSM with multiple MRI sequences. To evaluate cerebral oxidative stress, three parameters of 64Cu-ATSM PET were compared: standardized uptake value (SUV), tracer influx rate (Kin), and a rate constant k3. The input functions were estimated by the image-derived input function method. The relative differences were analyzed by statistical parametric mapping (SPM) using SUV and Kin images. All eAD patients had positive and HC subjects had negative PiB accumulation, and MMSE scores were significantly different between them. The 64Cu-ATSM accumulation tended to be higher in eAD than in HCs for both SUV and Kin. When comparing absolute values, eAD patients had a greater Kin in the posterior cingulate cortex and a greater k3 in the hippocampus compared with lobar cortical values of HCs. In SPM analysis, eAD had an increased left operculum and decreased bilateral hippocampus and anterior cingulate cortex compared to HCs. 64Cu-ATSM PET/MRI and tracer kinetic analysis elucidated cerebral oxidative stress in the eAD patients, particularly in the cingulate cortex and hippocampus.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
13
|
Kuttner S, Wickstrøm KK, Lubberink M, Tolf A, Burman J, Sundset R, Jenssen R, Appel L, Axelsson J. Cerebral blood flow measurements with 15O-water PET using a non-invasive machine-learning-derived arterial input function. J Cereb Blood Flow Metab 2021; 41:2229-2241. [PMID: 33557691 PMCID: PMC8392760 DOI: 10.1177/0271678x21991393] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/30/2020] [Accepted: 01/03/2021] [Indexed: 11/17/2022]
Abstract
Cerebral blood flow (CBF) can be measured with dynamic positron emission tomography (PET) of 15O-labeled water by using tracer kinetic modelling. However, for quantification of regional CBF, an arterial input function (AIF), obtained from arterial blood sampling, is required. In this work we evaluated a novel, non-invasive approach for input function prediction based on machine learning (MLIF), against AIF for CBF PET measurements in human subjects.Twenty-five subjects underwent two 10 min dynamic 15O-water brain PET scans with continuous arterial blood sampling, before (baseline) and following acetazolamide medication. Three different image-derived time-activity curves were automatically segmented from the carotid arteries and used as input into a Gaussian process-based AIF prediction model, considering both baseline and acetazolamide scans as training data. The MLIF approach was evaluated by comparing AIF and MLIF curves, as well as whole-brain grey matter CBF values estimated by kinetic modelling derived with either AIF or MLIF.The results showed that AIF and MLIF curves were similar and that corresponding CBF values were highly correlated and successfully differentiated before and after acetazolamide medication. In conclusion, our non-invasive MLIF method shows potential to replace the AIF obtained from blood sampling for CBF measurements using 15O-water PET and kinetic modelling.
Collapse
Affiliation(s)
- Samuel Kuttner
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | | | - Mark Lubberink
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Andreas Tolf
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Joachim Burman
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Rune Sundset
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Robert Jenssen
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Lieuwe Appel
- Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Phys 2021; 8:62. [PMID: 34436671 PMCID: PMC8390737 DOI: 10.1186/s40658-021-00408-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Phantoms are commonly used throughout medical imaging and medical physics for a multitude of applications, the designs of which vary between modalities and clinical or research requirements. Within positron emission tomography (PET) and nuclear medicine, phantoms have a well-established role in the validation of imaging protocols so as to reduce the administration of radioisotope to volunteers. Similarly, phantoms are used within magnetic resonance imaging (MRI) to perform quality assurance on clinical scanners, and gel-based phantoms have a longstanding use within the MRI research community as tissue equivalent phantoms. In recent years, combined PET/MRI scanners for simultaneous acquisition have entered both research and clinical use. This review explores the designs and applications of phantom work within the field of simultaneous acquisition PET/MRI as published over the period of a decade. Common themes in the design, manufacture and materials used within phantoms are identified and the solutions they provided to research in PET/MRI are summarised. Finally, the challenges remaining in creating multimodal phantoms for use with simultaneous acquisition PET/MRI are discussed. No phantoms currently exist commercially that have been designed and optimised for simultaneous PET/MRI acquisition. Subsequently, commercially available PET and nuclear medicine phantoms are often utilised, with CT-based attenuation maps substituted for MR-based attenuation maps due to the lack of MR visibility in phantom housing. Tissue equivalent and anthropomorphic phantoms are often developed by research groups in-house and provide customisable alternatives to overcome barriers such as MR-based attenuation correction, or to address specific areas of study such as motion correction. Further work to characterise materials and manufacture methods used in phantom design would facilitate the ability to reproduce phantoms across sites.
Collapse
Affiliation(s)
- Eve Lennie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Charalampos Tsoumpas
- Biomedical Imaging Science Department, University of Leeds, Leeds, UK
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Sourbron
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging. Br J Radiol 2021; 94:20201450. [PMID: 34106749 PMCID: PMC9327770 DOI: 10.1259/bjr.20201450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. Methods: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000–31/12/2019. Studies measuring blood flow in adult Grade II–IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. Results: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). Conclusion: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. Advances in knowledge: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.
Collapse
Affiliation(s)
- Mueez Waqar
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Gittins
- Department of Biostatistics, Division of Population Health, Health Services Research& Primary Care, The University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neuroradiology, Salford Royal NHS Foundation Trust, Salford, UK
| | - David Coope
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
16
|
Evaluation of Arterial Spin Labeling MRI-Comparison with 15O-Water PET on an Integrated PET/MR Scanner. Diagnostics (Basel) 2021; 11:diagnostics11050821. [PMID: 34062847 PMCID: PMC8147295 DOI: 10.3390/diagnostics11050821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebral blood flow (CBF) measurements are of high clinical value and can be acquired non-invasively with no radiation exposure using pseudo-continuous arterial spin labeling (ASL). The aim of this study was to evaluate accordance in resting state CBF between ASL (CBFASL) and 15O-water positron emission tomography (PET) (CBFPET) acquired simultaneously on an integrated 3T PET/MR system. The data comprised ASL and dynamic 15O-water PET data with arterial blood sampling of eighteen subjects (eight patients with focal epilepsy and ten healthy controls, age 21 to 61 years). 15O-water PET parametric CBF images were generated using a basis function implementation of the single tissue compartment model. Cortical and subcortical regions were automatically segmented using Freesurfer. Average CBFASL and CBFPET in grey matter were 60 ± 20 and 75 ± 22 mL/100 g/min respectively, with a relatively high correlation (r = 0.78, p < 0.001). Bland-Altman analysis revealed poor agreement (bias = −15 mL/100 g/min, lower and upper limits of agreements = −16 and 45 mL/100 g/min, respectively) with a negative relationship. Accounting for the negative relationship, the width of the limits of agreement could be narrowed from 61 mL/100 g/min to 35 mL/100 g/min using regression-based limits of agreements. Although a high correlation between CBFASL and CBFPET was found, the agreement in absolute CBF values was not sufficient for ASL to be used interchangeably with 15O-water PET.
Collapse
|
17
|
Abstract
Clinical MRI systems have continually improved over the years since their introduction in the 1980s. In MRI technical development, the developments in each MRI system component, including data acquisition, image reconstruction, and hardware systems, have impacted the others. Progress in each component has induced new technology development opportunities in other components. New technologies outside of the MRI field, for example, computer science, data processing, and semiconductors, have been immediately incorporated into MRI development, which resulted in innovative applications. With high performance computing and MR technology innovations, MRI can now provide large volumes of functional and anatomical image datasets, which are important tools in various research fields. MRI systems are now combined with other modalities, such as positron emission tomography (PET) or therapeutic devices. These hybrid systems provide additional capabilities. In this review, MRI advances in the last two decades will be considered. We will discuss the progress of MRI systems, the enabling technology, established applications, current trends, and the future outlook.
Collapse
Affiliation(s)
- Hiroyuki Kabasawa
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare
| |
Collapse
|
18
|
Okazawa H, Ikawa M, Tsujikawa T, Makino A, Mori T, Kiyono Y, Kosaka H. Noninvasive Measurement of [ 11C]PiB Distribution Volume Using Integrated PET/MRI. Diagnostics (Basel) 2020; 10:diagnostics10120993. [PMID: 33255169 PMCID: PMC7760725 DOI: 10.3390/diagnostics10120993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 11/16/2022] Open
Abstract
A noninvasive image-derived input function (IDIF) method using PET/MRI was applied to quantitative measurements of [11C] Pittsburgh compound-B (PiB) distribution volume (DV) and compared with other metrics. Fifty-three patients suspected of early dementia (71 ± 11 y) underwent 70 min [11C]PiB PET/MRI. Nineteen of them (68 ± 11 y) without head motion during the scan were enrolled in this study and compared with 16 age-matched healthy controls (CTL: 68 ± 11 y). The dynamic frames reconstructed from listmode PET data were used for DV calculation. IDIF with metabolite correction was applied to the Logan plot method, and DV was normalized into DV ratio (DVR) images using the cerebellar reference (DVRL). DVR and standardized uptake value ratio (SUVR) images were also calculated using the reference tissue graphical method (DVRr) and the 50–70 min static data with cerebellar reference, respectively. Cortical values were compared using the 3D-T1WI MRI segmentation. All patients were assigned to the early Alzheimer’s disease (eAD) group because of positive [11C]PiB accumulation. The correlations of regional values were better for DVRL vs. DVRr (r2 = 0.97) than for SUVR vs. DVRr (r2 = 0.88). However, all metrics clearly differentiated eAD from CTL with appropriate thresholds. Noninvasive quantitative [11C]PiB PET/MRI measurement provided equivalent DVRs with the two methods. SUVR images showed acceptable results despite inferior variability and image quality to DVR images.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
- Correspondence: ; Tel.: +81-776-61-8491
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
- Department of Advanced Medicine for Community Healthcare, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Eiheiji-cho 910-1193, Japan; (M.I.); (T.T.); (A.M.); (T.M.); (Y.K.)
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| |
Collapse
|
19
|
Hyperpolarized 129Xe Time-of-Flight MR Imaging of Perfusion and Brain Function. Diagnostics (Basel) 2020; 10:diagnostics10090630. [PMID: 32854196 PMCID: PMC7554935 DOI: 10.3390/diagnostics10090630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023] Open
Abstract
Perfusion measurements can provide vital information about the homeostasis of an organ and can therefore be used as biomarkers to diagnose a variety of cardiovascular, renal, and neurological diseases. Currently, the most common techniques to measure perfusion are 15O positron emission tomography (PET), xenon-enhanced computed tomography (CT), single photon emission computed tomography (SPECT), dynamic contrast enhanced (DCE) MRI, and arterial spin labeling (ASL) MRI. Here, we show how regional perfusion can be quantitively measured with magnetic resonance imaging (MRI) using time-resolved depolarization of hyperpolarized (HP) xenon-129 (129Xe), and the application of this approach to detect changes in cerebral blood flow (CBF) due to a hemodynamic response in response to brain stimuli. The investigated HP 129Xe Time-of-Flight (TOF) technique produced perfusion images with an average signal-to-noise ratio (SNR) of 10.35. Furthermore, to our knowledge, the first hemodynamic response (HDR) map was acquired in healthy volunteers using the HP 129Xe TOF imaging. Responses to visual and motor stimuli were observed. The acquired HP TOF HDR maps correlated well with traditional proton blood oxygenation level-dependent functional MRI. Overall, this study expands the field of HP MRI with a novel dynamic imaging technique suitable for rapid and quantitative perfusion imaging.
Collapse
|
20
|
Ya J, Zhou D, Ding J, Rajah GB, Wu Y, Yang X, Hou Y, Jin K, Pan L, Wu Y, Du J, Ding Y, Ji X, Yang Q, Meng R. Arterial spin labeling-MR may be an alternative to SPECT for evaluating cerebral perfusion in patients with unilateral middle cerebral artery stenosis. Neurol Res 2020; 42:621-629. [PMID: 32657247 DOI: 10.1080/01616412.2020.1782080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Cerebral blood flow (CBF) mapping of single-photon emission tomography (SPECT) is considered a gold standard for evaluating cerebral perfusion. However, invasiveness, high costs and strict technical requirements can limit its clinical use. We aimed to evaluate the concordance of CBF maps obtained from SPECT and pseudo-continuous arterial spin labeling magnetic resonance (PCASL-MR) imaging for evaluating cerebral perfusion. METHODS PCASL-MR/SPECT-CBF maps were obtained from 16 eligible patients with unilateral middle cerebral artery stenosis (MCAS). Three slices (basal ganglia, semi-oval center and cerebellum) on both PCASL-MR and SPECT maps were divided into different regions of interest (ROIs) according to the ASPECT criterion, arterial territories, and cerebral hemispheres, respectively. The concordance of the two types of CBF maps and the specificity and sensitivity of PCASL-MR imaging on predicting regional hypoperfusion were calculated. RESULTS A total of 448 ROIs were divided according to the ASPECT criterion, 192 ROIs partitioned in accordance with arterial territories, and 96 ROIs delineated based on cerebral hemispheres were analyzed. PCASL-MR imaging exhibited 83.78% to 100% sensitivity, 90.19% to 95.83% specificity for detection of hypoperfusion. Qualitative analyses revealed a strong concordance between PCASL-MR and SPECT on reflecting regional cerebral hypoperfusion (Kappa coefficient = 0.662-0.920, p < 0.01). Semi-quantitative analysis by ΔCBF revealed moderate consistency (Spearman correlation coefficient = 0.610-0.571). CONCLUSIONS Our findings suggest that PCASL-MR may be a promising non-invasive, inexpensive alternative to SPECT for evaluating cerebral perfusion accurately in patients with symptomatic MCAS.
Collapse
Affiliation(s)
- Jingyuan Ya
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
| | - Jiayue Ding
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
| | - Gary B Rajah
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, Michigan, USA
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY, USA
- Department of Neurosurgery, Gates Vascular Institute at Kaleida Health , Buffalo, NY, USA
| | - Ye Wu
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Xiaoxu Yang
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yaqin Hou
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Kexin Jin
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
| | - Yu Wu
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Jingwen Du
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yuchuan Ding
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine , Detroit, Michigan, USA
| | - Xunming Ji
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Qi Yang
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- Department of Radiology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Department of Radiology, Chaoyang Hospital , China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University , Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders , Beijing, China
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University , Beijing, China
- National Clinical Research Center for Geriatric Diseases , Beijing, China
| |
Collapse
|
21
|
Puig O, Henriksen OM, Vestergaard MB, Hansen AE, Andersen FL, Ladefoged CN, Rostrup E, Larsson HB, Lindberg U, Law I. Comparison of simultaneous arterial spin labeling MRI and 15O-H 2O PET measurements of regional cerebral blood flow in rest and altered perfusion states. J Cereb Blood Flow Metab 2020; 40:1621-1633. [PMID: 31500521 PMCID: PMC7370368 DOI: 10.1177/0271678x19874643] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique that may provide fully quantitative regional cerebral blood flow (rCBF) images. However, before its application in clinical routine, ASL needs to be validated against the clinical gold standard, 15O-H2O positron emission tomography (PET). We aimed to compare the two techniques by performing simultaneous quantitative ASL-MRI and 15O-H2O-PET examinations in a hybrid PET/MRI scanner. Duplicate rCBF measurements were performed in healthy young subjects (n = 14) in rest, during hyperventilation, and after acetazolamide (post-ACZ), yielding 63 combined PET/MRI datasets in total. Average global CBF by ASL-MRI and 15O-H2O-PET was not significantly different in any state (40.0 ± 6.5 and 40.6 ± 4.1 mL/100 g/min, respectively in rest, 24.5 ± 5.1 and 23.4 ± 4.8 mL/100 g/min, respectively, during hyperventilation, and 59.1 ± 10.4 and 64.7 ± 10.0 mL/100 g/min, respectively, post-ACZ). Overall, strong correlation between the two methods was found across all states (slope = 1.01, R2 = 0.82), while the correlations within individual states and of reactivity measures were weaker, in particular in rest (R2 = 0.05, p = 0.03). Regional distribution was similar, although ASL yielded higher perfusion and absolute reactivity in highly vascularized areas. In conclusion, ASL-MRI and 15O-H2O-PET measurements of rCBF are highly correlated across different perfusion states, but with variable correlation within and between hemodynamic states, and systematic differences in regional distribution.
Collapse
Affiliation(s)
- Oriol Puig
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Mark B Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Adam E Hansen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Flemming L Andersen
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Claes N Ladefoged
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Egill Rostrup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Bw Larsson
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Hybrid PET- MRI is a technique that has the ability to improve diagnostic accuracy in many applications, whereas PET and MRI performed separately often fail to provide accurate responses to clinical questions. Here, we review recent studies and current developments in PET-MRI, focusing on clinical applications. RECENT FINDINGS The combination of PET and MRI imaging methods aims at increasing the potential of each individual modality. Combined methods of image reconstruction and correction of PET-MRI attenuation are being developed, and a number of applications are being introduced into clinical practice. To date, the value of PET-MRI has been demonstrated for the evaluation of brain tumours in epilepsy and neurodegenerative diseases. Continued advances in data analysis regularly improve the efficiency and the potential application of multimodal biomarkers. SUMMARY PET-MRI provides simultaneous of anatomical, functional, biochemical and metabolic information for the personalized characterization and monitoring of neurological diseases. In this review, we show the advantage of the complementarity of different biomarkers obtained using PET-MRI data. We also present the recent advances made in this hybrid imaging modality and its advantages in clinical practice compared with MRI and PET separately.
Collapse
|
23
|
Fan AP, An H, Moradi F, Rosenberg J, Ishii Y, Nariai T, Okazawa H, Zaharchuk G. Quantification of brain oxygen extraction and metabolism with [ 15O]-gas PET: A technical review in the era of PET/MRI. Neuroimage 2020; 220:117136. [PMID: 32634594 PMCID: PMC7592419 DOI: 10.1016/j.neuroimage.2020.117136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022] Open
Abstract
Oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2) are key cerebral physiological parameters to identify at-risk cerebrovascular patients and understand brain health and function. PET imaging with [15O]-oxygen tracers, either through continuous or bolus inhalation, provides non-invasive assessment of OEF and CMRO2. Numerous tracer delivery, PET acquisition, and kinetic modeling approaches have been adopted to map brain oxygenation. The purpose of this technical review is to critically evaluate different methods for [15O]-gas PET and its impact on the accuracy and reproducibility of OEF and CMRO2 measurements. We perform a meta-analysis of brain oxygenation PET studies in healthy volunteers and compare between continuous and bolus inhalation techniques. We also describe OEF metrics that have been used to detect hemodynamic impairment in cerebrovascular disease. For these patients, advanced techniques to accelerate the PET scans and potential synthesis with MRI to avoid arterial blood sampling would facilitate broader use of [15O]-oxygen PET for brain physiological assessment.
Collapse
Affiliation(s)
- Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Biomedical Engineering and Department of Neurology, University of California Davis, Davis, CA, USA.
| | - Hongyu An
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Farshad Moradi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Okazawa H, Ikawa M, Jung M, Maruyama R, Tsujikawa T, Mori T, Rahman MGM, Makino A, Kiyono Y, Kosaka H. Multimodal analysis using [ 11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer's disease. EJNMMI Res 2020; 10:30. [PMID: 32232573 PMCID: PMC7105527 DOI: 10.1186/s13550-020-00619-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multimodal PET/MRI image data simultaneously obtained from patients with early-stage of Alzheimer's disease (eAD) were assessed in order to observe pathophysiologic and functional changes, as well as alterations of morphology and connectivity in the brain. Fifty-eight patients with mild cognitive impairment and early dementia (29 males, 69 ± 12 years) underwent [11C]Pittsburgh compound-B (PiB) PET/MRI with 70-min PET and MRI scans. Sixteen age-matched healthy controls (CTL) (9 males, 68 ± 11 years) were also studied with the same scanning protocol. Cerebral blood flow (CBF) was calculated from the early phase PET images using the image-derived input function method. A standardized uptake value ratio (SUVr) was calculated from 50 to 70 min PET data with a reference region of the cerebellar cortex. MR images such as 3D-T1WI, resting-state functional MRI (RS-fMRI), diffusion tensor image (DTI), and perfusion MRI acquired during the dynamic PET scan were also analyzed to evaluate various brain functions on MRI. RESULTS Twenty-seven of the 58 patients were determined as eAD based on the results of PiB-PET and clinical findings, and a total of 43 subjects' data including CTL were analyzed in this study. PiB SUVr values in all cortical regions of eAD were significantly greater than those of CTL. The PiB accumulation intensity was negatively correlated with cognitive scores. The regional PET-CBF values of eAD were significantly lower in the bilateral parietal lobes and right temporal lobe compared with CTL, but not in MRI perfusion; however, SPM showed regional differences on both PET- and MRI-CBF. SPM analysis of RS-fMRI delineated regional differences between the groups in the anterior cingulate cortex and the left precuneus. VBM analysis showed atrophic changes in the AD group in a part of the bilateral hippocampus; however, analysis of fractional anisotropy calculated from DTI data did not show differences between the two groups. CONCLUSION Multimodal analysis conducted with various image data from PiB-PET/MRI scans showed differences in regional CBF, cortical volume, and neuronal networks in different regions, indicating that pathophysiologic and functional changes in the AD brain can be observed from various aspects of neurophysiologic parameters. Application of multimodal brain images using PET/MRI would be ideal for investigating pathophysiologic changes in patients with dementia and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Neurology, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Minyoung Jung
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Psychiatry, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Rikiya Maruyama
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Mahmudur G M Rahman
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.,Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Hirotaka Kosaka
- Department of Psychiatry, Faculty of Medical Sciences, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| |
Collapse
|
25
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ishii Y, Thamm T, Guo J, Khalighi MM, Wardak M, Holley D, Gandhi H, Park JH, Shen B, Steinberg GK, Chin FT, Zaharchuk G, Fan AP. Simultaneous phase-contrast MRI and PET for noninvasive quantification of cerebral blood flow and reactivity in healthy subjects and patients with cerebrovascular disease. J Magn Reson Imaging 2019; 51:183-194. [PMID: 31044459 DOI: 10.1002/jmri.26773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND H2 15 O-positron emission tomography (PET) is considered the reference standard for absolute cerebral blood flow (CBF). However, this technique requires an arterial input function measured through continuous sampling of arterial blood, which is invasive and has limitations with tracer delay and dispersion. PURPOSE To demonstrate a new noninvasive method to quantify absolute CBF with a PET/MRI hybrid scanner. This blood-free approach, called PC-PET, takes the spatial CBF distribution from a static H2 15 O-PET scan, and scales it to the whole-brain average CBF value measured by simultaneous phase-contrast MRI. STUDY TYPE Observational. SUBJECTS Twelve healthy controls (HC) and 13 patients with Moyamoya disease (MM) as a model of chronic ischemic disease. FIELD STRENGTH/SEQUENCES 3T/2D cardiac-gated phase-contrast MRI and H2 15 O-PET. ASSESSMENT PC-PET CBF values from whole brain (WB), gray matter (GM), and white matter (WM) in HCs were compared with literature values since 2000. CBF and cerebrovascular reactivity (CVR), which is defined as the percent CBF change between baseline and post-acetazolamide (vasodilator) scans, were measured by PC-PET in MM patients and HCs within cortical regions corresponding to major vascular territories. Statistical Tests: Linear, mixed effects models were created to compare CBF and CVR, respectively, between patients and controls, and between different degrees of stenosis. RESULTS The mean CBF values in WB, GM, and WM in HC were 42 ± 7 ml/100 g/min, 50 ± 7 ml/100 g/min, and 23 ± 3 ml/100 g/min, respectively, which agree well with literature values. Compared with normal regions (57 ± 23%), patients showed significantly decreased CVR in areas with mild/moderate stenosis (47 ± 17%, P = 0.011) and in severe/occluded areas (40 ± 16%, P = 0.016). Data Conclusion: PC-PET identifies differences in cerebrovascular reactivity between healthy controls and cerebrovascular patients. PC-PET is suitable for CBF measurement when arterial blood sampling is not accessible, and warrants comparison to fully quantitative H2 15 O-PET in future studies. LEVEL OF EVIDENCE 3 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;51:183-194.
Collapse
Affiliation(s)
- Yosuke Ishii
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Neurosurgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thoralf Thamm
- Department of Radiology, Stanford University, Stanford, California, USA.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jia Guo
- Department of Radiology, Stanford University, Stanford, California, USA.,Department of Bioengineering, University of California Riverside, Riverside, California, USA
| | | | - Mirwais Wardak
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Dawn Holley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Harsh Gandhi
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Bin Shen
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University, Stanford, California, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Audrey Peiwen Fan
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
27
|
No significant difference found in PET/MRI CBF values reconstructed with CT-atlas-based and ZTE MR attenuation correction. EJNMMI Res 2019; 9:26. [PMID: 30888559 PMCID: PMC6424990 DOI: 10.1186/s13550-019-0494-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background Accurate attenuation correction (AC) is one of the most important issues to be addressed in quantitative brain PET/MRI imaging. Atlas-based MRI AC (AB-MRAC), one of the representative MRAC methods, has been used to estimate the skull attenuation in brain scans. The zero echo time (ZTE) pulse sequence is also expected to provide a better MRAC estimation in brain PET scans. The difference in quantitative measurements of cerebral blood flow (CBF) using H215O-PET/MRI was compared between the two MRAC methods, AB and ZTE. Method Twelve patients with cerebrovascular disease (4 males, 43.2 ± 11.7 years) underwent H215O-PET/MRI studies with a 3-min PET scan and MRI scans including the ZTE sequence. Eleven of them were also studied under the conditions of baseline and 10 min after acetazolamide administration, and 2 of them were followed up after several months interval. A total of 25 PET images were reconstructed as dynamic data using 2 sets of reconstruction parameters to obtain the image-derived input function (IDIF), the time-activity curves of the major cerebral artery extracted from images, and CBF images. The CBF images from AB- and ZTE-MRAC were then compared for global and regional differences. Results The mean differences of IDIF curves at each point obtained from AB- and ZTE-MRAC dynamic data were less than 5%, and the differences in time-activity curves were very small. The means of CBF from AB- and ZTE-MRAC reconstructions calculated using each IDIF showed differences of less than 5% for all cortical regions. CBF images from AB-MRAC tended to show greater values in the parietal region and smaller values in the skull base region. Conclusion The CBF images from AB- and ZTE-MRAC reconstruction showed no significant differences in regional values, although the parietal region tended to show greater values in AB-MRAC reconstruction. Quantitative values in the skull base region were very close, and almost the same IDIFs were obtained.
Collapse
|