1
|
Mingkwansook V, Wangprasertkul U, Tarathipmon W, Watcharakorn A. Iodine Density of Lymphoma, Metastatic SCCA, and Normal Cervical lymph nodes: A Comparative Analysis Based on DLSCT. F1000Res 2025; 13:498. [PMID: 39830626 PMCID: PMC11739862 DOI: 10.12688/f1000research.146149.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Objective To compare iodine density (ID) and contrast-enhanced attenuation value (CEAV) from dual-layer spectral computed tomography (DLSCT) scans of lymphomatous, metastatic squamous cell carcinoma (SCCA), and normal cervical lymph nodes. Methods Data including ID and CEAV were retrospectively collected from patients who underwent DLSCT of the neck between January 2020 and August 2023. Results from each group (lymphomatous, metastatic SCCA, and normal) were compared and analyzed using one-way ANOVA and receiver operating characteristic curve. Results 129 cervical lymph nodes were collected from patients who met the inclusion criteria (50, 41, and 38 nodes from the lymphomatous, metastatic SCCA, and normal group, respectively). The mean ID of lymphomatous, metastatic SCCA, and normal nodes was 1.01±0.27, 1.36±0.28, and 1.45±0.29 mg/mL, respectively. Comparing lymphomatous nodes with metastatic SCCA nodes, the lymphomatous nodes had significantly lower values of ID (p<0.002) and CEAV (p<0.001). Similarly, when comparing lymphomatous nodes with normal nodes, the lymphomatous nodes had significantly lower values of ID (p<0.001) and CEAV (p<0.001). The optimal ID cut-off value for distinguishing between lymphomatous and metastatic SCCA nodes was 1.175 mg/ml (specificity of 84.2%, sensitivity 77.8%, AUC 0.788, P = 0.003). The optimal CEAV cut-off value was 77.5 HU (specificity 88.9%, sensitivity 78.9%, AUC 0.851, P<0.001). Conclusions The ID and CEAV measurements from DLSCT were significantly different between lymphomatous, metastatic SCCA, and normal lymph nodes. These findings indicate that DLSCT can be used to distinguish between these conditions in the diagnosis of cervical lymph nodes.
Collapse
|
2
|
Sun X, Niwa T, Kazama T, Okazaki T, Koyanagi K, Kumaki N, Hashimoto J, Ozawa S. Preoperative dual-energy computed tomography and positron-emission tomography evaluation of lymph node metastasis in esophageal squamous cell carcinoma. PLoS One 2024; 19:e0309653. [PMID: 39302928 PMCID: PMC11414887 DOI: 10.1371/journal.pone.0309653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To investigate the detectability of lymph node metastasis in patients with esophageal squamous cell carcinoma using a combination of dual-energy computed tomography (CT) and positron-emission tomography (PET) parameters. METHODS We analyzed dual-energy CT and PET preoperative data in 27 consecutive patients with esophageal squamous cell carcinoma (23 men, 4 women; mean age, 73.7 years). We selected lymph nodes with a short-axis diameter of ≥5 mm and measured CT values, iodine concentrations, fat fractions, long- and short-axis diameters, and ratio of long- and short-axis diameters. We performed visual assessment of lymph node characteristics based on dual-energy CT and determined the maximum standardized uptake value via PET. The measured values were postoperatively compared between pathologically confirmed metastatic and nonmetastatic lymph nodes. Stepwise logistic regression analysis was performed to determine factors associated with lymph node metastasis. Diagnostic accuracy was assessed via receiver operating characteristic curve analysis. RESULTS Overall, 18 metastatic and 37 nonmetastatic lymph nodes were detected. CT values, iodine concentrations, fat fractions, and the maximum standardized uptake values differed significantly between metastatic and nonmetastatic lymph nodes (p < 0.05). Stepwise logistic regression showed that iodine concentration and the maximum standardized uptake value were significant predictors of metastatic lymph nodes. The areas under the curve of iodine concentrations and maximum standardized uptake values were 0.809 and 0.833, respectively. The area under the curve of the combined parameters was 0.884, with 83.3% sensitivity and 86.5% specificity. CONCLUSION Combined dual-energy CT and PET parameters improved the diagnosis of lymph node metastasis in patients with esophageal cancer.
Collapse
Affiliation(s)
- Xuyang Sun
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Tetsu Niwa
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Toshiki Kazama
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Okazaki
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Kazuo Koyanagi
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Nobue Kumaki
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Soji Ozawa
- Department of Surgery, Tamakyuryo Hospital, Machida, Japan
| |
Collapse
|
3
|
Yel I, Booz C, D’Angelo T, Koch V, Gruenewald LD, Eichler K, Gökduman A, Giardino D, Gaeta M, Mazziotti S, Herrmann E, Vogl TJ, Mahmoudi S, Lanzafame LRM. Standardization of Dual-Energy CT Iodine Uptake of the Abdomen and Pelvis: Defining Reference Values in a Big Data Cohort. Diagnostics (Basel) 2024; 14:2051. [PMID: 39335730 PMCID: PMC11431114 DOI: 10.3390/diagnostics14182051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: To establish dual-energy-derived iodine density reference values in abdominopelvic organs in a large cohort of healthy subjects. Methods: 597 patients who underwent portal venous phase dual-energy CT scans of the abdomen were retrospectively enrolled. Iodine distribution maps were reconstructed, and regions of interest measurements were placed in abdominal and pelvic structures to obtain absolute iodine values. Subsequently, normalization of the abdominal aorta was conducted to obtain normalized iodine ratios. The values obtained were subsequently analyzed and differences were investigated in subgroups defined by sex, age and BMI. Results: Overall mean iodine uptake values and normalized iodine ratios ranged between 0.31 and 6.08 mg/mL and 0.06 and 1.20, respectively. Women exhibited higher absolute iodine concentration across all organs. With increasing age, normalized iodine ratios mostly tend to decrease, being most significant in the uterus, prostate, and kidneys (p < 0.015). BMI was the parameter less responsible for variations in iodine concentrations; normal weighted patients demonstrated higher values of both absolute and normalized iodine. Conclusions: Iodine concentration values and normalized iodine ratios of abdominal and pelvic organs reveal significant gender-, age-, and BMI-related differences, underscoring the necessity to integrate these variables into clinical practice.
Collapse
Affiliation(s)
- Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Leon D. Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Katrin Eichler
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Aynur Gökduman
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Davide Giardino
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Scherwin Mahmoudi
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Ludovica R. M. Lanzafame
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| |
Collapse
|
4
|
Zhu G, Wang JA, Xiao D, Guo X, Huang Y, Guo L, Li M, Wu H, Zhang Y, Wang Y. Spectral CT for preoperative diagnosis of N2 station lymph node metastasis in solid T1 non-small cell lung cancer. Eur J Radiol 2024; 177:111553. [PMID: 38878500 DOI: 10.1016/j.ejrad.2024.111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE To evaluate the diagnostic value of spectral CT for the preoperative diagnosis of N2 station lymph nodes metastasis in solid T1 non-small cell lung cancer (NSCLC). METHOD For this retrospective study, dual-phase contrast agent-enhanced CT was performed in patients with NSCLC from September 2019 to June 2023. Quantitative spectral CT parameters measurements were performed by 2 radiologists independently. Logistic regression analysis and Delong test were performed. RESULTS 60 NSCLC patients (mean age, 62.85 years ± 8.49, 44men) were evaluated. A total of 121 lymph nodes (38 with metastasis) were enrolled. There was no significant difference in the slope of the spectral Hounsfield unit curve (λHu) on arterial phase (AP) or venous phase (VP) between primary lesions and metastatic lymph nodes (P > 0.05), but significant difference in VP λHu between primary lesions and non-metastatic lymph nodes (P < 0.001). The CT40KeV, λHu, normalized iodine concentration (nIC), normalized effective atomic number (nZeff) measured during both AP and VP were lower in metastatic lymph nodes than in non-metastatic lymph nodes (all P < 0.05). Short-axis diameter (S) of metastatic lymph nodes was higher than non-metastatic lymph nodes (P < 0.001). Area under the curve (AUC) for S performed the highest (0.788) in diagnosing metastatic lymph nodes. When combined with VP λHu, VP nZeff, AUC increased to 0.871. CONCLUSION Spectral CT is a complementary means for the preoperative diagnosis of N2 station lymph nodes metastasis in solid T1 NSCLC. The combined parameters have higher diagnostic efficiency.
Collapse
Affiliation(s)
- Guanbin Zhu
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jin-An Wang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Dongjian Xiao
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoxi Guo
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yimin Huang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Luxin Guo
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Minjie Li
- Department of Thoracic Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huita Wu
- Department of Oncology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yongjun Zhang
- Department of Pathology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yong Wang
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Abu-Omar A, Murray N, Ali IT, Khosa F, Barrett S, Sheikh A, Nicolaou S, Tamburrini S, Iacobellis F, Sica G, Granata V, Saba L, Masala S, Scaglione M. Utility of Dual-Energy Computed Tomography in Clinical Conundra. Diagnostics (Basel) 2024; 14:775. [PMID: 38611688 PMCID: PMC11012177 DOI: 10.3390/diagnostics14070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Advancing medical technology revolutionizes our ability to diagnose various disease processes. Conventional Single-Energy Computed Tomography (SECT) has multiple inherent limitations for providing definite diagnoses in certain clinical contexts. Dual-Energy Computed Tomography (DECT) has been in use since 2006 and has constantly evolved providing various applications to assist radiologists in reaching certain diagnoses SECT is rather unable to identify. DECT may also complement the role of SECT by supporting radiologists to confidently make diagnoses in certain clinically challenging scenarios. In this review article, we briefly describe the principles of X-ray attenuation. We detail principles for DECT and describe multiple systems associated with this technology. We describe various DECT techniques and algorithms including virtual monoenergetic imaging (VMI), virtual non-contrast (VNC) imaging, Iodine quantification techniques including Iodine overlay map (IOM), and two- and three-material decomposition algorithms that can be utilized to demonstrate a multitude of pathologies. Lastly, we provide our readers commentary on examples pertaining to the practical implementation of DECT's diverse techniques in the Gastrointestinal, Genitourinary, Biliary, Musculoskeletal, and Neuroradiology systems.
Collapse
Affiliation(s)
- Ahmad Abu-Omar
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Nicolas Murray
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Ismail T. Ali
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Faisal Khosa
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Sarah Barrett
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Adnan Sheikh
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Savvas Nicolaou
- Department of Emergency Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC V5Z 1M9, Canada (I.T.A.)
| | - Stefania Tamburrini
- Department of Radiology, Ospedale del Mare-ASL NA1 Centro, Via Enrico Russo 11, 80147 Naples, Italy
| | - Francesca Iacobellis
- Department of General and Emergency Radiology, A. Cardarelli Hospital, Via A. Cardarelli 9, 80131 Naples, Italy;
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS Di Napoli, 80131 Naples, Italy
| | - Luca Saba
- Medical Oncology Department, AOU Cagliari, Policlinico Di Monserrato (CA), 09042 Monserrato, Italy
| | - Salvatore Masala
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale S. Pietro, 07100 Sassari, Italy; (S.M.)
| | - Mariano Scaglione
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Viale S. Pietro, 07100 Sassari, Italy; (S.M.)
- Department of Radiology, Pineta Grande Hospital, 81030 Castel Volturno, Italy
- Department of Radiology, James Cook University Hospital, Marton Road, Middlesbrough TS4 3BW, UK
| |
Collapse
|
6
|
Yel I, D’Angelo T, Gruenewald LD, Koch V, Golbach R, Mahmoudi S, Ascenti G, Blandino A, Vogl TJ, Booz C, Bucolo GM. Dual-Energy CT Material Decomposition: The Value in the Detection of Lymph Node Metastasis from Breast Cancer. Diagnostics (Basel) 2024; 14:466. [PMID: 38472939 PMCID: PMC10930895 DOI: 10.3390/diagnostics14050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To evaluate the diagnostic performance of a dual-energy computed tomography (DECT)-based material decomposition algorithm for iodine quantification and fat fraction analysis to detect lymph node metastases in breast cancer patients. MATERIALS AND METHODS 30 female patients (mean age, 63.12 ± 14.2 years) diagnosed with breast cancer who underwent pre-operative chest DECT were included. To establish a reference standard, the study correlated histologic repots after lymphadenectomy or confirming metastasis in previous/follow-up examinations. Iodine concentration and fat fraction were determined through region-of-interest measurements on venous DECT iodine maps. Receiver operating characteristic curve analysis was conducted to identify the optimal threshold for differentiating between metastatic and non-metastatic lymph nodes. RESULTS A total of 168 lymph nodes were evaluated, divided into axillary (metastatic: 46, normal: 101) and intramammary (metastatic: 10, normal: 11). DECT-based fat fraction values exhibited significant differences between metastatic (9.56 ± 6.20%) and non-metastatic lymph nodes (41.52 ± 19.97%) (p < 0.0001). Absolute iodine concentrations showed no significant differences (2.25 ± 0.97 mg/mL vs. 2.08 ± 0.97 mg/mL) (p = 0.7999). The optimal fat fraction threshold for diagnosing metastatic lymph nodes was determined to be 17.75%, offering a sensitivity of 98% and a specificity of 94%. CONCLUSIONS DECT fat fraction analysis emerges as a promising method for identifying metastatic lymph nodes, overcoming the morpho-volumetric limitations of conventional CT regarding lymph node assessment. This innovative approach holds potential for improving pre-operative lymph node evaluation in breast cancer patients, offering enhanced diagnostic accuracy.
Collapse
Affiliation(s)
- Ibrahim Yel
- Division of Experimental Imaging, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.D.G.); (C.B.); (G.M.B.)
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Tommaso D’Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, 98122 Messina, Italy (G.A.); (A.B.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Leon D. Gruenewald
- Division of Experimental Imaging, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.D.G.); (C.B.); (G.M.B.)
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Vitali Koch
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Rejane Golbach
- Institute of Biostatistics and Mathematical Modelling, University Hospital Frankfurt, 60596 Frankfurt am Main, Germany;
| | - Scherwin Mahmoudi
- Division of Experimental Imaging, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.D.G.); (C.B.); (G.M.B.)
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, 98122 Messina, Italy (G.A.); (A.B.)
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, 98122 Messina, Italy (G.A.); (A.B.)
| | - Thomas J. Vogl
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Christian Booz
- Division of Experimental Imaging, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.D.G.); (C.B.); (G.M.B.)
- Clinic for Radiology and Nuclear Medicine, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (V.K.)
| | - Giuseppe M. Bucolo
- Division of Experimental Imaging, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (L.D.G.); (C.B.); (G.M.B.)
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, 98122 Messina, Italy (G.A.); (A.B.)
| |
Collapse
|
7
|
Winkelmann MT, Gassenmaier S, Walter SS, Artzner C, Nikolaou K, Bongers MN. Differentiation of Hamartomas and Malignant Lung Tumors in Single-Phased Dual-Energy Computed Tomography. Tomography 2024; 10:255-265. [PMID: 38393288 PMCID: PMC10892507 DOI: 10.3390/tomography10020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the efficacy of single-phase dual-energy CT (DECT) in differentiating pulmonary hamartomas from malignant lung lesions using virtual non-contrast (VNC), iodine, and fat quantification. Forty-six patients with 47 pulmonary lesions (mean age: 65.2 ± 12.1 years; hamartomas-to-malignant lesions = 22:25; male: 67%) underwent portal venous DECT using histology, PET-CT and follow-up CTs as a reference. Quantitative parameters such as VNC, fat fraction, iodine density and CT mixed values were statistically analyzed. Significant differences were found in fat fractions (hamartomas: 48.9%; malignancies: 22.9%; p ≤ 0.0001) and VNC HU values (hamartomas: -20.5 HU; malignancies: 17.8 HU; p ≤ 0.0001), with hamartomas having higher fat content and lower VNC HU values than malignancies. CT mixed values also differed significantly (p ≤ 0.0001), but iodine density showed no significant differences. ROC analysis favored the fat fraction (AUC = 96.4%; sensitivity: 100%) over the VNC, CT mixed value and iodine density for differentiation. The study concludes that the DECT-based fat fraction is superior to the single-energy CT in differentiating between incidental pulmonary hamartomas and malignant lesions, while post-contrast iodine density is ineffective for differentiation.
Collapse
Affiliation(s)
- Moritz T. Winkelmann
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Sebastian Gassenmaier
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Sven S. Walter
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Christoph Artzner
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
- Institute of Radiology: Diakonie Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Konstantin Nikolaou
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| | - Malte N. Bongers
- Department for Diagnostic and Interventional Radiology, University Hospital Tuebingen, 72076 Tuebingen, Germany; (S.G.); (S.S.W.); (C.A.); (K.N.); (M.N.B.)
| |
Collapse
|
8
|
Chen H, Fang Y, Gu J, Sun P, Yang L, Pan F, Wu H, Ye T. Dual-Layer Spectral Detector Computed Tomography Quantitative Parameters: A Potential Tool for Lymph Node Activity Determination in Lymphoma Patients. Diagnostics (Basel) 2024; 14:149. [PMID: 38248026 PMCID: PMC10814325 DOI: 10.3390/diagnostics14020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Dual-energy CT has shown promising results in determining tumor characteristics and treatment effectiveness through spectral data by assessing normalized iodine concentration (nIC), normalized effective atomic number (nZeff), normalized electron density (nED), and extracellular volume (ECV). This study explores the value of quantitative parameters in contrast-enhanced dual-layer spectral detector CT (SDCT) as a potential tool for detecting lymph node activity in lymphoma patients. A retrospective analysis of 55 lymphoma patients with 289 lymph nodes, assessed through 18FDG-PET/CT and the Deauville five-point scale, revealed significantly higher values of nIC, nZeff, nED, and ECV in active lymph nodes compared to inactive ones (p < 0.001). Generalized linear mixed models showed statistically significant fixed-effect parameters for nIC, nZeff, and ECV (p < 0.05). The area under the receiver operating characteristic curve (AUROC) values of nIC, nZeff, and ECV reached 0.822, 0.845, and 0.811 for diagnosing lymph node activity. In conclusion, the use of g nIC, nZeff, and ECV as alternative imaging biomarkers to PET/CT for identifying lymph node activity in lymphoma holds potential as a reliable diagnostic tool that can guide treatment decisions.
Collapse
Affiliation(s)
- Hebing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Yuxiang Fang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Jin Gu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Peng Sun
- Clinical & Technical Support, Philips Healthcare, Floor 7, Building 2, World Profit Center, Beijing 100000, China;
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Feng Pan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Hongying Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| | - Tianhe Ye
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue #1277, Wuhan 430022, China; (H.C.); (Y.F.); (J.G.); (L.Y.); (F.P.)
- Hubei Province Key Laboratory of Molecular Imaging, Jiefang Avenue #1277, Wuhan 430022, China
| |
Collapse
|
9
|
Mahmoudi S, Gruenewald LD, Eichler K, Althoff FC, Martin SS, Bernatz S, Booz C, Yel I, Kinzler MN, Ziegengeist NS, Torgashov K, Mohammed H, Geyer T, Scholtz JE, Hammerstingl RM, Weber C, Hardt SE, Sommer CM, Gruber-Rouh T, Leistner DM, Vogl TJ, Koch V. Multiparametric Evaluation of Radiomics Features and Dual-Energy CT Iodine Maps for Discrimination and Outcome Prediction of Thymic Masses. Acad Radiol 2023; 30:3010-3021. [PMID: 37105804 DOI: 10.1016/j.acra.2023.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023]
Abstract
RATIONALE AND OBJECTIVES To investigate the diagnostic value of radiomics features and dual-source dual-energy CT (DECT) based material decomposition in differentiating low-risk thymomas, high-risk thymomas, and thymic carcinomas. MATERIALS AND METHODS This retrospective study included 32 patients (16 males, mean age 66 ± 14 years) with pathologically confirmed thymic masses who underwent contrast-enhanced DECT between 10/2014 and 01/2023. Two experienced readers evaluated all patients regarding conventional radiomics features, as well as DECT-based features, including attenuation (HU), iodine density (mg/mL), and fat fraction (%). Data comparisons were performed using analysis of variance and chi-square statistic tests. Receiver operating characteristic curve analysis and Cox-regression tests were used to discriminate between low-risk/high-risk thymomas and thymic carcinomas. RESULTS Of the 32 thymic tumors, 12 (38%) were low-risk thymomas, 11 (34%) were high-risk thymomas, and 9 (28%) were thymic carcinomas. Values differed significantly between low-risk thymoma, high-risk thymoma, and thymic carcinoma regarding DECT-based features (p ≤ 0.023) and 30 radiomics features (p ≤ 0.037). The area under the curve to differentiate between low-risk/high-risk thymomas and thymic cancer was 0.998 (95% CI, 0.915-1.000; p < 0.001) for the combination of DECT imaging parameters and radiomics features, yielding a sensitivity of 100% and specificity of 96%. During a follow-up of 60 months (IQR, 35-60 months), the multiparametric approach including radiomics features, DECT parameters, and clinical parameters showed an excellent prognostic power to predict all-cause mortality (c-index = 0.978 [95% CI, 0.958-0.998], p = 0.003). CONCLUSION A multiparametric approach including conventional radiomics features and DECT-based features facilitates accurate, non-invasive discrimination between low-risk/high-risk thymomas and thymic carcinomas.
Collapse
Affiliation(s)
- Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.).
| | - Leon D Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Katrin Eichler
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Friederike C Althoff
- Department of Internal Medicine II, University Hospital Frankfurt, Frankfurt am Main, Germany (F.C.A.)
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Frankfurt am Main, Germany (M.N.K.)
| | - Nicole Suarez Ziegengeist
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Katerina Torgashov
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Hanin Mohammed
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Tobias Geyer
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Renate M Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Christophe Weber
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany (C.W., S.E.H.)
| | - Stefan E Hardt
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Heidelberg, Germany (C.W., S.E.H.)
| | - Christof M Sommer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany (C.M.S.)
| | - Tatjana Gruber-Rouh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - David M Leistner
- Department of Internal Medicine III, University Hospital Frankfurt, Frankfurt am Main, Germany (D.M.L.)
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany (S.M., L.D.G., K.E., S.S.M., S.B., C.B., I.Y., N.S.Z., K.T., H.M., T.G., J.-E.S., R.M.H., T.G.-R., T.J.V., V.K.)
| |
Collapse
|
10
|
Bernatz S, Koch V, Dos Santos DP, Ackermann J, Grünewald LD, Weitkamp I, Yel I, Martin SS, Lenga L, Scholtz JE, Vogl TJ, Mahmoudi S. Comparison of radiomics models and dual-energy material decomposition to decipher abdominal lymphoma in contrast-enhanced CT. Int J Comput Assist Radiol Surg 2023; 18:1829-1839. [PMID: 36877288 PMCID: PMC10497439 DOI: 10.1007/s11548-023-02854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/10/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE The radiologists' workload is increasing, and computational imaging techniques may have the potential to identify visually unequivocal lesions, so that the radiologist can focus on equivocal and critical cases. The purpose of this study was to assess radiomics versus dual-energy CT (DECT) material decomposition to objectively distinguish visually unequivocal abdominal lymphoma and benign lymph nodes. METHODS Retrospectively, 72 patients [m, 47; age, 63.5 (27-87) years] with nodal lymphoma (n = 27) or benign abdominal lymph nodes (n = 45) who had contrast-enhanced abdominal DECT between 06/2015 and 07/2019 were included. Three lymph nodes per patient were manually segmented to extract radiomics features and DECT material decomposition values. We used intra-class correlation analysis, Pearson correlation and LASSO to stratify a robust and non-redundant feature subset. Independent train and test data were applied on a pool of four machine learning models. Performance and permutation-based feature importance was assessed to increase the interpretability and allow for comparison of the models. Top performing models were compared by the DeLong test. RESULTS About 38% (19/50) and 36% (8/22) of the train and test set patients had abdominal lymphoma. Clearer entity clusters were seen in t-SNE plots using a combination of DECT and radiomics features compared to DECT features only. Top model performances of AUC = 0.763 (CI = 0.435-0.923) were achieved for the DECT cohort and AUC = 1.000 (CI = 1.000-1.000) for the radiomics feature cohort to stratify visually unequivocal lymphomatous lymph nodes. The performance of the radiomics model was significantly (p = 0.011, DeLong) superior to the DECT model. CONCLUSIONS Radiomics may have the potential to objectively stratify visually unequivocal nodal lymphoma versus benign lymph nodes. Radiomics seems superior to spectral DECT material decomposition in this use case. Therefore, artificial intelligence methodologies may not be restricted to centers with DECT equipment.
Collapse
Affiliation(s)
- Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute for Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Daniel Pinto Dos Santos
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Department of Diagnostic and Interventional Radiology, University of Cologne, Faculty of Medicine, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Jörg Ackermann
- Department of Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, Robert-Mayer-Str. 11-15, 60325 Frankfurt am Main, Germany
| | - Leon D. Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Inga Weitkamp
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon S. Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Seah HM, Choi HC, Bajic N, Oakden‐Rayner L, Gormly KL. Assessment of a single‐pass venous phase
CT
chest, abdomen and pelvis and dual‐energy
CT
in general oncology outpatients. J Med Imaging Radiat Oncol 2022. [DOI: 10.1111/1754-9485.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Huey Ming Seah
- South Australia Medical Imaging Adelaide South Australia Australia
| | - Hau Cher Choi
- South Australia Medical Imaging Adelaide South Australia Australia
| | - Nicholas Bajic
- South Australia Medical Imaging Adelaide South Australia Australia
- Jones Radiology Adelaide South Australia Australia
| | - Lauren Oakden‐Rayner
- South Australia Medical Imaging Adelaide South Australia Australia
- Jones Radiology Adelaide South Australia Australia
- Australian Institute for Machine Learning University of Adelaide Adelaide South Australia Australia
- The University of Adelaide Adelaide South Australia Australia
| | - Kirsten L Gormly
- Jones Radiology Adelaide South Australia Australia
- The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
12
|
Mahmoudi S, Bernatz S, Althoff FC, Koch V, Grünewald LD, Scholtz JE, Walter D, Zeuzem S, Wild PJ, Vogl TJ, Kinzler MN. Dual-energy CT based material decomposition to differentiate intrahepatic cholangiocarcinoma from hepatocellular carcinoma. Eur J Radiol 2022; 156:110556. [PMID: 36270195 DOI: 10.1016/j.ejrad.2022.110556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/29/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE To assess the potential of material decomposition in dual-energy CT (DECT) to differentiate intrahepatic cholangiocarcinoma (iCCA) from hepatocellular carcinoma (HCC). METHOD In this retrospective study, we included 94 patients (26 female (27.7 %), median age 64.5 (interquartile range 55.5-74.5) years) with either iCCA or HCC who underwent abdominal contrast-enhanced DECT in arterial phase. To test for differences between iCCA (n = 47) and HCC (n = 47), we evaluated mean attenuation and DECT material density values including iodine density (ID), normalized iodine uptake (NIU), fat fraction, and lesion-to-liver parenchyma ratio. Histopathology served as reference standard for all lesions. We used univariate logistic regression models for the outcome iCCA versus HCC. ROC curve analysis was applied to assess discriminative ability of the model. Model accuracy was evaluated by calculating the Brier score. Youden index was applied to establish thresholds to differentiate between iCCA and HCC. RESULTS Comparison of quantitative image parameters revealed significant differences between iCCA and HCC for ID (1.6 ± 0.5 mg/ml vs 2.8 ± 0.8 mg/ml, p < 0.001), NIU (14.5 ± 4.8 vs 24.8 ± 10.3, p < 0.001), attenuation (41.9 ± 10.1 HU vs 47.9 ± 8.9 HU, p = 0.003), and fat fraction (12.0 ± 7.8 % vs 9.0 ± 6.4 %, p = 0.045). ROC curve analysis revealed highest ability to differentiate iCCA from HCC for ID (AUC = 0.93, 95 % CI 0.89-0.98). For ID, an optimal threshold of 2.33 mg/dl was determined to discriminate between iCCA and HCC (sensitivity 89.4 %, specificity 76.6 %). CONCLUSIONS DECT-based iodine quantification can serve as a tool for the differentiation of iCCA and HCC in contrast-enhanced CT. ID yielded the highest diagnostic performance and may assist in clinical routine CT diagnostics.
Collapse
Affiliation(s)
- Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Friederike C Althoff
- Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Leon D Grünewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany; Wildlab, University Hospital Frankfurt MVZ GmbH, Frankfurt am Main, Germany.
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Sun X, Niwa T, Ozawa S, Endo J, Hashimoto J. Detecting lymph node metastasis of esophageal cancer on dual-energy computed tomography. Acta Radiol 2022; 63:3-10. [PMID: 33325727 PMCID: PMC9530532 DOI: 10.1177/0284185120980144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Using conventional computed tomography (CT), the accurate diagnosis of lymph
node (LN) metastasis of esophageal cancer is difficult. Purpose To examine dual-energy CT parameters to predict LN metastasis preoperatively
in patients with esophageal cancer. Material and Methods Twenty-six consecutive patients who underwent dual-energy CT before an
esophageal cancer surgery (19 patients with LN metastases) were analyzed.
The included LNs had a short-axis diameter of ≥4 mm and were confirmed to be
resected on postoperative CT. Their short-axis diameter, CT value, iodine
concentration (IC), and fat fraction were measured on early- and late-phase
contrast-enhanced dual-energy CT images and compared between pathologically
confirmed metastatic and non-metastatic LNs. Results In total, 51 LNs (34 metastatic and 17 non-metastatic) were included. In the
early phase, IC and fat fraction were significantly lower in the metastatic
than in the non-metastatic LNs (IC = 1.6 mg/mL vs. 2.2 mg/mL; fat
fraction = 20.3% vs. 32.5%; both P < 0.05). Furthermore,
in the late phase, IC and fat fraction were significantly lower in the
metastatic than in the non-metastatic LNs (IC = 2.0 mg/mL vs. 3.0 mg/mL; fat
fraction = 20.4% vs. 33.0%; both P < 0.05). Fat fraction
exhibited accuracies of 82.4% and 78.4% on early- and late-phase images,
respectively. Conversely, short-axis diameter and CT value on both early-
and late-phase images were not significantly different between the
metastatic and non-metastatic LNs (P > 0.05). Conclusion Using dual-energy CT images, IC and fat fraction are useful for diagnosing LN
metastasis in patients with esophageal cancer.
Collapse
Affiliation(s)
- Xuyang Sun
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Tetsu Niwa
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Jun Endo
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| | - Jun Hashimoto
- Department of Diagnostic Radiology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
14
|
Kruis MF. Improving radiation physics, tumor visualisation, and treatment quantification in radiotherapy with spectral or dual-energy CT. J Appl Clin Med Phys 2021; 23:e13468. [PMID: 34743405 PMCID: PMC8803285 DOI: 10.1002/acm2.13468] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, spectral or dual‐energy CT has gained relevancy, especially in oncological radiology. Nonetheless, its use in the radiotherapy (RT) clinic remains limited. This review article aims to give an overview of the current state of spectral CT and to explore opportunities for applications in RT. In this article, three groups of benefits of spectral CT over conventional CT in RT are recognized. Firstly, spectral CT provides more information of physical properties of the body, which can improve dose calculation. Furthermore, it improves the visibility of tumors, for a wide variety of malignancies as well as organs‐at‐risk OARs, which could reduce treatment uncertainty. And finally, spectral CT provides quantitative physiological information, which can be used to personalize and quantify treatment.
Collapse
|
15
|
Hamid S, Nasir MU, So A, Andrews G, Nicolaou S, Qamar SR. Clinical Applications of Dual-Energy CT. Korean J Radiol 2021; 22:970-982. [PMID: 33856133 PMCID: PMC8154785 DOI: 10.3348/kjr.2020.0996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/05/2023] Open
Abstract
Dual-energy CT (DECT) provides insights into the material properties of tissues and can differentiate between tissues with similar attenuation on conventional single-energy imaging. In the conventional CT scanner, differences in the X-ray attenuation between adjacent structures are dependent on the atomic number of the materials involved, whereas in DECT, the difference in the attenuation is dependent on both the atomic number and electron density. The basic principle of DECT is to obtain two datasets with different X-ray energy levels from the same anatomic region and material decomposition based on attenuation differences at different energy levels. In this article, we discuss the clinical applications of DECT and its potential robust improvements in performance and postprocessing capabilities.
Collapse
Affiliation(s)
- Saira Hamid
- Department of Radiology, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada.
| | - Muhammad Umer Nasir
- Department of Medical Imaging, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Aaron So
- Department of Medical Biophyics, Schulich School of Medicine and Dentistry Western University London, Ontario, Canada
| | - Gordon Andrews
- Department of Radiology, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada
| | - Savvas Nicolaou
- Department of Medical Imaging, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Sadia Raheez Qamar
- Department of Medical Imaging, Sunnybrook Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Zopfs D, Reimer RP, Sonnabend K, Rinneburger M, Hentschke CM, Persigehl T, Lennartz S, Große Hokamp N. Intraindividual Consistency of Iodine Concentration in Dual-Energy Computed Tomography of the Chest and Abdomen. Invest Radiol 2021; 56:181-187. [PMID: 32932376 DOI: 10.1097/rli.0000000000000724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Dual-energy computed tomography (DECT)-derived quantification of iodine concentration (IC) is increasingly used in oncologic imaging to characterize lesions and evaluate treatment response. However, only limited data are available on intraindividual consistency of IC and its variation. This study investigates the longitudinal reproducibility of IC in organs, vessels, and lymph nodes in a large cohort of healthy patients who underwent repetitive DECT imaging. MATERIALS AND METHODS A total of 159 patients, who underwent a total of 469 repetitive (range, 2-4), clinically indicated portal-venous phase DECT examinations of the chest and abdomen, were retrospectively included. At time of imaging, macroscopic tumor burden was excluded by follow-up imaging (≥3 months). Iodine concentration was measured region of interest-based (N = 43) in parenchymatous organs, vessels, lymph nodes, and connective tissue. Normalization of IC to the aorta and to the trigger delay as obtained from bolus tracking was performed. For statistical analysis, intraclass correlation coefficient and modified variation coefficient (MVC) were used to assess intraindividual agreement of IC and its variation between different time points, respectively. Furthermore, t tests and analysis of variance with Tukey-Kramer post hoc test were used. RESULTS The mean intraclass correlation coefficient over all regions of interest was good to excellent (0.642-0.936), irrespective of application of normalization or the normalization technique. Overall, MVC ranged from 1.8% to 25.4%, with significantly lower MVC in data normalized to the aorta (5.8% [1.8%-15.8%]) in comparison with the MVC of not normalized data and data normalized to the trigger delay (P < 0.01 and P = 0.04, respectively). CONCLUSIONS Our study confirms intraindividual, longitudinal variation of DECT-derived IC, which varies among vessels, lymph nodes, organs, and connective tissue, following different perfusion characteristics; normalizing to the aorta seems to improve reproducibility when using a constant contrast media injection protocol.
Collapse
Affiliation(s)
- David Zopfs
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Robert Peter Reimer
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Kristina Sonnabend
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | - Miriam Rinneburger
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | | | - Thorsten Persigehl
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| | | | - Nils Große Hokamp
- From the Faculty of Medicine, University Cologne, and Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Germany
| |
Collapse
|
17
|
Shen H, Yuan X, Liu D, Huang Y, Wang Y, Jiang S, Zhang J. Multiparametric dual-energy CT for distinguishing nasopharyngeal carcinoma from nasopharyngeal lymphoma. Eur J Radiol 2021; 136:109532. [PMID: 33450663 DOI: 10.1016/j.ejrad.2021.109532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To determine the optimal kiloelectron volt of noise-optimized virtual monoenergetic images [VMI (+)] for visualization of nasopharyngeal carcinoma (NPC) and nasopharyngeal lymphoma (NPL), and to explore the clinical value of quantitative parameters derived from dual-energy computed tomography (DECT) for distinguishing the two entities. MATERIALS AND METHODS Eighty patients including 51 with NPC and 29 with NPL were enrolled. The VMIs (+) at 40-80 keV with an interval of 10 keV were reconstructed by contrast enhanced images. The overall image quality and demarcation of lesion margins, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed in VMIs (+) and polyenergetic images (PEI). Normalized iodine concentration (NIC), slope of the spectral Hounsfield unit curve (λHU) and effective atomic number (Zeff) were calculated. Diagnostic performance was assessed by receiver operating characteristic (ROC) curve. RESULTS The 40 keV VMI (+) yielded highest overall image quality scores, demarcation of lesion margins scores, SNR and CNR. The values of NIC, λHU and Zeff in NPL were higher than those in NPC (P < 0.001). Multivariate logistic regression model combining NIC, λHU and Zeff showed the best performance for distinguishing NPC from NPL (AUC: 0.947, sensitivity: 93.1 % and specificity: 92.2 %). CONCLUSION VMI (+) reconstruction at 40 keV was optimal for visualizing NPC and NPL. Quantitative parameters derived from DECT were helpful for differentiating NPC from NPL.
Collapse
Affiliation(s)
- Hesong Shen
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Xiaoqian Yuan
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Yuanying Huang
- Department of Oncology and Hematology, Chongqing General Hospital, No. 104 Pipashan Street, Yuzhong District, Chongqing, 400014, PR China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Shixi Jiang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
18
|
Zopfs D, Große Hokamp N, Reimer R, Bratke G, Maintz D, Bruns C, Mallmann C, Persigehl T, Haneder S, Lennartz S. Value of spectral detector CT for pretherapeutic, locoregional assessment of esophageal cancer. Eur J Radiol 2020; 134:109423. [PMID: 33302024 DOI: 10.1016/j.ejrad.2020.109423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/01/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the diagnostic value of spectral detector dual-energy CT-derived low-keV virtual monoenergetic images (VMI) and iodine overlays (IO) for locoregional, pretherapeutic assessment of esophageal cancer. METHOD 74 patients with biopsy-proven esophageal cancer who underwent pre-therapeutic, portal-venous-phase staging examinations of the chest and abdomen were retrospectively included. Quantitative image analysis was performed ROI-based within the tumor, healthy esophageal wall, peri-esophageal lymph nodes, azygos vein, aorta, liver, diaphragm, and mediastinal fat. Two radiologists evaluated delineation of the primary tumor and locoregional lymph nodes, assessment of the celiac trunk and diagnostic certainty regarding tumor infiltration in conventional images (CI), VMI from 40 to 70 keV and IO. Moreover, presence/absence of advanced tumor infiltration (T3/T4) was determined binary using all available images. RESULTS VMI40-60keV showed significantly higher attenuation and signal-to-noise ratio compared to CI for all assessed ROIs, peaking at VMI40keV (p < 0.05). Contrast-to-noise ratio of tumor/esophagus (VMI40keV/CI: 7.7 ± 4.7 vs. 2.3 ± 1.5), tumor/diaphragm (VMI40keV/CI: 9.0 ± 5.5 vs. 2.2 ± 1.7) and tumor/liver (4.3 ± 5.5 vs. 1.9 ± 2.1) were all significantly higher compared to CI (p < 0.05). Qualitatively, lymph node delineation and diagnostic certainty regarding tumor infiltration received highest ratings both in IO and VMI40keV, whereas vascular assessment was rated highest in VMI40keV and primary tumor delineation in IO. Sensitivity/Specificity/Accuracy for detecting advanced tumor infiltration using the combination of CI, VMI40-70keV and IO was 42.4 %/82.0 %/56.3 %. CONCLUSIONS IO and VMI40-60keV improve qualitative assessment of the primary tumor and depiction of lymph nodes and vessels at pretherapeutic SDCT of esophageal cancer patients yet do not mitigate the limitations of CT in determining tumor infiltration.
Collapse
Affiliation(s)
- David Zopfs
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nils Große Hokamp
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Robert Reimer
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Grischa Bratke
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - David Maintz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Christiane Bruns
- Department of General, Visceral and Cancer Surgery, University of Cologne, Kerpener Str. 32, 50937, Cologne, Germany
| | - Christoph Mallmann
- Department of General, Visceral and Cancer Surgery, University of Cologne, Kerpener Str. 32, 50937, Cologne, Germany
| | - Thorsten Persigehl
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Stefan Haneder
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Simon Lennartz
- University Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, Division of Abdominal Imaging and Intervention, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
19
|
Ji X, Zhang R, Li K, Chen GH. Dual Energy Differential Phase Contrast CT (DE-DPC-CT) Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3278-3289. [PMID: 32340940 PMCID: PMC7584735 DOI: 10.1109/tmi.2020.2990347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When more than two elemental materials are present in a given object, material quantification may not be robust and accurate when the routine two-material decomposition scheme in current dual energy CT imaging is employed. In this work, we present an innovative scheme to accomplish accurate three-material decomposition with measurements from a dual energy differential phase contrast CT (DE-DPC-CT) acquisition. A DE-DPC-CT system was constructed using a grating interferometer and a photon counting CT imaging system with two energy bins. The DE-DPC-CT system can simultaneously measure both the imaginary and the real part of the complex refractive index to enable a three-material decomposition. Physical phantom with 21 material inserts were constructed and measured using DE-DPC-CT system. Results demonstrated excellent accuracy in elemental material quantification. For example, relative root-mean-square errors of 4.5% for calcium and 5.2% for iodine were achieved using the proposed three-material decomposition scheme. Biological tissues with iodine inserts were used to demonstrate the potential utility of the proposed spectral CT imaging method. Experimental results showed that the proposed method correctly differentiates the bony structure, iodine, and the soft tissue in the biological specimen samples. A triple spectra CT scan was also performed to benchmark the performance of the DE-DPC-CT scan. Results demonstrated that the material decomposition from the DE-DPC-CT has a much lower quantification noise than that from the triple spectra CT scan.
Collapse
|
20
|
Böning G, Jahnke P, Feldhaus F, Fehrenbach U, Kahn J, Hamm B, Streitparth F. Stepwise analysis of potential accuracy-influencing factors of iodine quantification on a fast kVp-switching second-generation dual-energy CT: from 3D-printed phantom to a simple solution in clinical routine use. Acta Radiol 2020; 61:424-431. [PMID: 31319686 DOI: 10.1177/0284185119861312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background Measurement of iodine concentration from dual-energy or spectral computed tomography (CT) provides useful diagnostic information especially in patients suffering from malignant tumors of various origins. Purpose The purpose of this study was to systematically investigate the accuracy of the measurement of iodine concentration, focusing on potential influencing factors and assessing its suitability for routine clinical use. Material and Methods First, a 3D-printed cylindrical phantom was used to assess reliability of dual-energy CT-based iodine concentration measurement. Second, a semi-anthropomorphic phantom was used to evaluate the potential impact of positional variation of the target volume as typically seen in clinical scans. Finally, a reference vial was placed on the body surface of 38 patients undergoing abdominal dual-energy CT to analyze correlations between applied doses and patient diameters. Results The position of the target volume within the cylindrical phantom and the applied dose level significantly influenced the magnitude of measured iodine concentrations ( P < 0.001). We also found a significant difference in accuracy depending on target volume position in the semi-anthropomorphic phantom ( P = 0.028). In patient scans, we observed an error of 19.6 ± 5.6% in iodine concentration measurements of a reference and significant, moderate to strong, negative correlations between measured iodine concentration, maximum patient diameter, and applied dose (maximum sagittal diameter: r = −0.455, P = 0.004; maximum coronal diameter: r=−0.517, P = 0.001; CTDIvol: r = −0.385, P = 0.017) Conclusion Dual-energy CT-based iodine concentration measurement should be interpreted with caution. In clinical examinations, placement of a reference vial could be a potential solution to relativize errors.
Collapse
Affiliation(s)
- Georg Böning
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Paul Jahnke
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Felix Feldhaus
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Uli Fehrenbach
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Johannes Kahn
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| | - Florian Streitparth
- Department of Radiology, Charité – Universitätsmedizin Berlin, Humboldt University and Free University of Berlin Medical School, Berlin, Germany
| |
Collapse
|
21
|
Laukamp KR, Zopfs D, Wagner A, Lennartz S, Pennig L, Borggrefe J, Ramaiya N, Große Hokamp N. CT artifacts from port systems: Virtual monoenergetic reconstructions from spectral-detector CT reduce artifacts and improve depiction of surrounding tissue. Eur J Radiol 2019; 121:108733. [PMID: 31739270 DOI: 10.1016/j.ejrad.2019.108733] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/19/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE CT artifacts from port-systems are a common problem in staging- and restaging-examinations and reduce image quality and diagnostic assessment. The purpose of this study was to investigate the reduction of these artifacts using virtual monoenergetic images (VMI) from dual-energy spectral-detector CT (SDCT) in comparison to conventional CT-images (CI). METHOD 50 SDCT-datasets of patients with artifacts from port-chamber and port-catheters were included in this IRB-approved, retrospective study. CI and VMI (range, 40-200 keV, 10 keV increment) were reconstructed from the same acquisition. The quantitative image analysis was performed ROI-based assessing mean and standard deviation of attenuation (HU) in most pronounced hypo- and hyperdense artifacts surrounding to the port-chamber and the distal end of the port-catheter in the superior vena cava. Subjectively, artifact reduction and diagnostic assessment of surrounding soft tissue were rated on 5-point Likert-scales. RESULTS In comparison to CI, VMI of higher keV-values showed strong reduction of hypo- and hyperattenuating artifacts around the port-chamber and port-catheter (CI/VMI200keV: hypodense -104.7 ± 124.7HU/10.8 ± 58.1HU and -101.6 ± 101.5HU/-36.7 ± 32.9HU; hyperdense 240.8 ± 151.6HU/79.6 ± 81.3HU and 108.6 ± 129.3HU/25.9 ± 31.9HU; all p < 0.001). Image noise could also be reduced significantly. The subjective analysis showed significantly reduced artifacts around the port-chamber and port-catheter (CI/VMI200keV: hypodense 3(1-4)/5(4-5) and 3(2-4)/5(4-5); hyperdense 3(1-4)/5(4-5) and 3(2-3)/5(3-5); all p < 0.001) and improved diagnostic assessment of pectoral/subclavian soft tissue for VMI of ≥100keV. Ratings for diagnostic assessment were best between 140-200 keV. Overall interrater agreement was high (ICC = 0.79). CONCLUSIONS Higher keV VMI enabled a significant reduction of artifacts from port-systems around the chamber and the catheter leading to improved assessment of surrounding soft tissue.
Collapse
Affiliation(s)
- Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA.
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Nikhil Ramaiya
- Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA
| | - Nils Große Hokamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, 11000 Euclid Ave, 44106 Cleveland, OH, USA; Department of Radiology, Case Western Reserve University, 10900 Euclid Ave, 44106, Cleveland, OH, USA
| |
Collapse
|
22
|
Mellnick VM. Invited Commentary on "Spectral CT Imaging in the Differential Diagnosis of Small Bowel Adenocarcinoma From Primary Small Intestinal Lymphoma". Acad Radiol 2019; 26:e131-e133. [PMID: 30967333 DOI: 10.1016/j.acra.2019.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Vincent M Mellnick
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Blvd, Campus Box 8131, Saint Louis, MO 63110.
| |
Collapse
|
23
|
How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol 2018; 29:2069-2078. [DOI: 10.1007/s00330-018-5736-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|