1
|
Huflage H, Wech T, Rak K, Schindehuette M, Engert J, Hackenberg S, Pham M, Bley TA, Grunz JP, Spahn B. Influence of CT Radiation Dose and Field-of-View on Automatic Morphometry for Cochlear Implant Planning. Otol Neurotol 2025:00129492-990000000-00807. [PMID: 40360256 DOI: 10.1097/mao.0000000000004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
INTRODUCTION In cochlear implantation (CI), precise preoperative cochlear duct length (CDL) and angular insertion depth (AID) measurements are pivotal for individualized electrode carrier selection, since recipients benefit from sufficient cochlear coverage of the electrode carrier, enabling electric stimulation of all crucial frequency bands. Since the quality of temporal bone CT largely depends on acquisition and reconstruction settings and is limited by the technical capabilities of the CT scanner, this study aims to assess how radiation dose and reconstruction field-of-view (FOV) affect automatic cochlear morphometry and electrode contact determination in conventional multislice CT. METHODS Twenty fresh-frozen human petrous bone specimens were examined at three radiation dose levels (40, 20, and 10 mGy) using a multislice CT scanner. Each dataset was reconstructed with three different FOV settings (250, 125, and 50 mm). Preoperative CDL and AID measurements were performed with dedicated otological planning software. Maxed-out dose images (250 mGy) served as standard of reference for comparing the morphometric results. RESULTS Regardless of the selected combination of dose level and FOV, significant CDL or AID measurement differences were neither ascertained among the individual groups, nor in comparison to the reference scans (all p ≥ 0.05). Likewise, the simulation of all stimulable frequency bandwidths showed no dependency on radiation dose or FOV settings (all p ≥ 0.05). CONCLUSION The assessment of cochlear morphometry with conventional multislice CT imaging before CI surgery allowed a radiation dose reduction up to 75% without compromising the accuracy of software-based cochlear analysis. Notably, automatic CDL and AID measurements for surgical planning did not benefit from a smaller reconstruction FOV.
Collapse
Affiliation(s)
- Henner Huflage
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Magnus Schindehuette
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Jonas Engert
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Thorsten Alexander Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Bjoern Spahn
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Müller-Graff FT, von Düring J, Voelker J, Al-Tinawi F, Hagen R, Neun T, Hackenberg S, Rak K. Improved radiological imaging of congenital aural atresia using flat-panel volume CT. HNO 2024; 72:111-119. [PMID: 39508837 PMCID: PMC11618206 DOI: 10.1007/s00106-024-01512-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Precise preoperative radiological evaluation of aural atresia is of utmost importance for surgical planning. Until now, multislice computed tomography (MSCT) has been used but it cannot adequately visualize small structures such as the stapes. Flat-panel volume CT (fpVCT) with its secondary reconstructions (fpVCTSECO) offers a high-resolution visualization of the middle ear. New otosurgical planning software also enables detailed 3D reconstruction of the middle ear anatomy. AIM OF THE WORK Evaluation of the use of fpVCTSECO in combination with an otosurgical planning software for a more accurate diagnosis and treatment of congenital aural atresia. MATERIAL AND METHODS Seven patients with congenital aural atresia underwent preoperative MSCT (600 µm slice thickness) and corresponding fpVCT (466 µm slice thickness). In addition, fpVCTSECO (99 µm slice thickness) were reconstructed. The Jahrsdoerfer and Siegert grading scores were determined and their applicability in the abovementioned imaging modalities was evaluated. In addition, the malleus incus complex was analyzed in 3D rendering. RESULTS Imaging with fpVCTSECO enabled reliable visualization of the abnormalities, in particular the ossicular chain. A significant difference in the Siegert grading score was found. In addition, the malleus-incus complex could be visualized better in 3D. DISCUSSION The introduction of new imaging techniques and surgical planning techniques into the diagnostic concept of aural atresia facilitates the identification of malformed anatomy and enables systematic analysis. This combination can also help to more accurately classify the pathology and thus increase the safety and success of the surgical procedure.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| | - Jan von Düring
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Fadi Al-Tinawi
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Tilmann Neun
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Würzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| |
Collapse
|
3
|
Müller-Graff FT, von Düring J, Voelker J, Al-Tinawi F, Hagen R, Neun T, Hackenberg S, Rak K. [Improved radiological imaging of congenital aural atresia using flat-panel volume CT. German version]. HNO 2024; 72:815-824. [PMID: 39283501 PMCID: PMC11499392 DOI: 10.1007/s00106-024-01511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Precise preoperative radiological evaluation of aural atresia is of utmost importance for surgical planning. Until now, multislice computed tomography (MSCT) has been used but it cannot adequately visualize small structures such as the stapes. Flat-panel volume CT (fpVCT) with its secondary reconstructions (fpVCTSECO) offers a high-resolution visualization of the middle ear. New otosurgical planning software also enables detailed 3D reconstruction of the middle ear anatomy. AIM OF THE WORK Evaluation of the use of fpVCTSECO in combination with an otosurgical planning software for a more accurate diagnosis and treatment of congenital aural atresia. MATERIAL AND METHODS Seven patients with congenital aural atresia underwent preoperative MSCT (600 µm slice thickness) and corresponding fpVCT (466 µm slice thickness). In addition, fpVCTSECO (99 µm slice thickness) were reconstructed. The Jahrsdoerfer and Siegert grading scores were determined and their applicability in the abovementioned imaging modalities was evaluated. In addition, the malleus incus complex was analyzed in 3D rendering. RESULTS Imaging with fpVCTSECO enabled reliable visualization of the abnormalities, in particular the ossicular chain. A significant difference in the Siegert grading score was found. In addition, the malleus-incus complex could be visualized better in 3D. DISCUSSION The introduction of new imaging techniques and surgical planning techniques into the diagnostic concept of aural atresia facilitates the identification of malformed anatomy and enables systematic analysis. This combination can also help to more accurately classify the pathology and thus increase the safety and success of the surgical procedure.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland.
| | - Jan von Düring
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Johannes Voelker
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Fadi Al-Tinawi
- Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Rudolf Hagen
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Tilmann Neun
- Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Stephan Hackenberg
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| | - Kristen Rak
- Klinik und Poliklinik für Hals‑, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen und das Comprehensive Hearing Center, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Deutschland
| |
Collapse
|
4
|
Walia A, Shew MA, Varghese J, Lefler SM, Bhat A, Ortmann AJ, Herzog JA, Buchman CA. Electrocochleography-Based Tonotopic Map: II. Frequency-to-Place Mismatch Impacts Speech-Perception Outcomes in Cochlear Implant Recipients. Ear Hear 2024; 45:1406-1417. [PMID: 38880958 PMCID: PMC11493529 DOI: 10.1097/aud.0000000000001528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
OBJECTIVES Modern cochlear implants (CIs) use varying-length electrode arrays inserted at varying insertion angles within variably sized cochleae. Thus, there exists an opportunity to enhance CI performance, particularly in postlinguistic adults, by optimizing the frequency-to-place allocation for electrical stimulation, thereby minimizing the need for central adaptation and plasticity. There has been interest in applying Greenwood or Stakhovskaya et al. function (describing the tonotopic map) to postoperative imaging of electrodes to improve frequency allocation and place coding. Acoustically-evoked electrocochleography (ECochG) allows for electrophysiologic best-frequency (BF) determination of CI electrodes and the potential for creating a personalized frequency allocation function. The objective of this study was to investigate the correlation between early speech-perception performance and frequency-to-place mismatch. DESIGN This retrospective study included 50 patients who received a slim perimodiolar electrode array. Following electrode insertion, five acoustic pure-tone stimuli ranging from 0.25 to 2 kHz were presented, and electrophysiological measurements were collected across all 22 electrode contacts. Cochlear microphonic tuning curves were subsequently generated for each stimulus frequency to ascertain the BF electrode or the location corresponding to the maximum response amplitude. Subsequently, we calculated the difference between the stimulus frequency and the patient's CI map's actual frequency allocation at each BF electrode, reflecting the frequency-to-place mismatch. BF electrocochleography-total response (BF-ECochG-TR), a measure of cochlear health, was also evaluated for each subject to control for the known impact of this measure on performance. RESULTS Our findings showed a moderate correlation ( r = 0.51; 95% confidence interval: 0.23 to 0.76) between the cumulative frequency-to-place mismatch, as determined using the ECochG-derived BF map (utilizing 500, 1000, and 2000 Hz), and 3-month performance on consonant-nucleus-consonant words (N = 38). Larger positive mismatches, shifted basal from the BF map, led to enhanced speech perception. Incorporating BF-ECochG-TR, total mismatch, and their interaction in a multivariate model explained 62% of the variance in consonant-nucleus-consonant word scores at 3 months. BF-ECochG-TR as a standalone predictor tended to overestimate performance for subjects with larger negative total mismatches and underestimated the performance for those with larger positive total mismatches. Neither cochlear diameter, number of cochlear turns, nor apical insertion angle accounted for the variability in total mismatch. CONCLUSIONS Comparison of ECochG-BF derived tonotopic electrode maps to the frequency allocation tables reveals substantial mismatch, explaining 26.0% of the variability in CI performance in quiet. Closer examination of the mismatch shows that basally shifted maps at high frequencies demonstrate superior performance at 3 months compared with those with apically shifted maps (toward Greenwood and Stakhovskaya et al.). The implications of these results suggest that electrophysiological-based frequency reallocation might lead to enhanced speech-perception performance, especially when compared with conventional manufacturer maps or anatomic-based mapping strategies. Future research, exploring the prospective use of ECochG-based mapping techniques for frequency allocation is underway.
Collapse
Affiliation(s)
- Amit Walia
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Matthew A. Shew
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Jordan Varghese
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Shannon M. Lefler
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Amrita Bhat
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Amanda J. Ortmann
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Jacques A. Herzog
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Craig A. Buchman
- Department of Otolaryngology—Head and Neck Surgery, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| |
Collapse
|
5
|
Doyle NS, Benson JC, Carr CM, Diehn FE, Carlson ML, Leng S, Lane JI. Photon Counting Versus Energy-integrated Detector CT in Detection of Superior Semicircular Canal Dehiscence. Clin Neuroradiol 2024; 34:251-255. [PMID: 38055090 DOI: 10.1007/s00062-023-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Superior semicircular canal dehiscence (SSCD), an osseous defect overlying the SSC, is associated with a constellation of audiovestibular symptoms. This study sought to compare conventional energy-integrated detector (EID) computed tomography (CT) to photon-counting detector (PCD)-CT in the detection of SSCD. MATERIAL AND METHODS Included patients were prospectively recruited to undergo a temporal bone CT on both EID-CT and PCD-CT scanners. Two blinded neuroradiologists reviewed both sets of images for 1) the presence or absence of SSCD (graded as present, absent, or indeterminate), and 2) the width of the bone overlying the SSC (if present). Any discrepancies in the presence or absence of SSCD were agreed upon by consensus. RESULTS In the study 31 patients were evaluated, for a total of 60 individual temporal bones (2 were excluded). Regarding SSCD presence or absence, there was substantial agreement between EID-CT and PCD-CT (k = 0.76; 95% confidence interval, CI 0.54-0.97); however, SSCD was present in only 9 (15.0%) temporal bones on PCD-CT, while EID-CT examinations were interpreted as being positive in 14 (23.3%) temporal bones. This yielded a false positive rate of 8.3% on EID-CT. The bone overlying the SSC was thinner on EID-CT images (0.66 mm; SD = 0.64) than on PCD-CT images (0.72 mm; SD = 0.66) (p < 0.001). CONCLUSION The EID-CT examinations tend to overcall the presence of SSCD compared to PCD-CT and also underestimate the thickness of bone overlying the SSC.
Collapse
Affiliation(s)
- Nathan S Doyle
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - John C Benson
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA.
| | - Carrie M Carr
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Felix E Diehn
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | | | - Shuai Leng
- Division of Medical Physics, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - John I Lane
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Tozzi A, Castellucci A, Ferrulli G, Brandolini C, Piras G, Martellucci S, Malara P, Ferri GG, Ghidini A, Marchioni D, Presutti L. Audiovestibular Findings in Patients with Concurrent Superior Canal Dehiscence and Vestibular Schwannoma. Otol Neurotol 2024; 45:299-310. [PMID: 38291792 DOI: 10.1097/mao.0000000000004117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To describe the clinical-instrumental findings in case of concurrent superior canal dehiscence (SCD) and ipsilateral vestibular schwannoma (VS), aiming to highlight the importance of an extensive instrumental assessment to achieve a correct diagnosis. STUDY DESIGN Retrospective case review. SETTING Tertiary referral center. PATIENTS Five patients with concurrent SCD and VS. INTERVENTION Clinical-instrumental assessment and imaging. MAIN OUTCOME MEASURE Clinical presentation, audiovestibular findings, and imaging. RESULTS The chief complaints were hearing loss (HL) and unsteadiness (80%). Other main symptoms included tinnitus (60%) and pressure-induced vertigo (40%). Mixed-HL was identified in three patients and pure sensorineural-HL in 1, including a roll-over curve in speech-audiometry in two cases. Vibration-induced nystagmus was elicited in all cases, whereas vestibular-evoked myogenic potentials showed reduced thresholds and enhanced amplitudes on the affected side in three patients. Ipsilesional weakness on caloric testing was detected in three patients and a bilateral hyporeflexia in one. A global canal impairment was detected by the video-head impulse test in one case, whereas the rest of the cohort exhibited a reduced function for the affected superior canal, together with ipsilateral posterior canal impairment in two cases. All patients performed both temporal bones HRCT scan and brain-MRI showing unilateral SCD and ipsilateral VS, respectively. All patients were submitted to a wait-and-scan approach, requiring VS removal only in one case. CONCLUSION Simultaneous SCD and VS might result in subtle clinical presentation with puzzling lesion patterns. When unclear symptoms and signs occur, a complete audiovestibular assessment plays a key role to address imaging and diagnosis.
Collapse
Affiliation(s)
- Andrea Tozzi
- Otorhinolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Modena, Italy
| | - Andrea Castellucci
- ENT Unit, Department of Surgery, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Ferrulli
- Otorhinolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Modena, Italy
| | - Cristina Brandolini
- Otorhinolaryngology and Audiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Gianluca Piras
- Department of Otology and Skull Base Surgery, Casa Di Cura Privata "Piacenza" S.P.A., Gruppo Otologico, Piacenza-Rome, Italy
| | | | - Pasquale Malara
- Audiology & Vestibology Service, Centromedico, Bellinzona, Switzerland
| | - Gian Gaetano Ferri
- Otorhinolaryngology and Audiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Angelo Ghidini
- ENT Unit, Department of Surgery, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Marchioni
- Otorhinolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Modena, Italy
| | - Livio Presutti
- Otorhinolaryngology and Audiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Bologna, Italy
| |
Collapse
|
7
|
Schulze M, Hirt B, Reimann K. Flat panel CT versus multidetector CT in skull base imaging: are there differences in image quality? Head Face Med 2023; 19:50. [PMID: 37980498 PMCID: PMC10656997 DOI: 10.1186/s13005-023-00391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/11/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Purpose of this study was to compare image quality of the skull base in standard 20s protocol flat panel computed tomography (FPCT) with the new time and dose improved 10s protocol as well as with 128 slice multidetector computed tomography (MDCT). METHODS 10 whole skull preparations were scanned with either 128 slice MDCT(SOMATOM Definition AS+, Siemens, Erlangen) or FPCT (AXIOM-Artis, Siemens, Erlangen) using 10s or 20s protocol. RESULTS FPCT provides significantly better image quality and improved delimitation of clinically relevant structures in the anterior, temporal and posterior skull base compared to 128 slice MDCT. The 20s FPCT protocol yielded best delimitability of evaluated skull base structures. However, the shorter, dose saving 10s FPCT protocol was still significantly superior to 128 slice MDCT regarding delimitability of skull base structures and additionally showed no significant inferiority compared with the 20s FPCT protocol. CONCLUSIONS The 10s FPCT protocol yields a significantly better image quality at a comparable radiation dose exposure in imaging skull base structures compared to MDCT. TRIAL REGISTRATION 371/2017BO2.
Collapse
Affiliation(s)
- Maximilian Schulze
- Department of Neuroradiology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
- Department of Neuroradiology, University Hospital Marburg, Philipps University Marburg, Baldingerstrasse, 35043, Marburg, Germany.
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Elfriede-Aulhorn-Straße 8, 72076, Tübingen, Germany
| | - Katrin Reimann
- Department of Otolaryngology - Head and Neck Surgery, University of Tübingen, Elfriede-Aulhorn-Strasse 5, 72076, Tübingen, Germany
- Department of Otolaryngology - Head and Neck Surgery, Philipps-Universität Marburg, Baldingerstrasse, Marburg, 35043, Germany
| |
Collapse
|
8
|
Engert J, Bauer D, Spahn B, Müller-Graff FT, Voelker J, Neun T, Althoff D, Hagen R, Hackenberg S, Rak K. Computed tomographic 3D analysis of the cochlear aqueduct-potential and limitations of clinical imaging. Acta Otolaryngol 2023; 143:931-935. [PMID: 38127466 DOI: 10.1080/00016489.2023.2294921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Background: The cochlear aqueduct (CA), which connects the scala tympani and the subarachnoid space, and its accompanying structures appear to have a significant relevance during cochlear implantation and an accurate visualization in clinical imaging is of great interest. Aims and Objective: This study aims to determine which potential and limitations clinically available imaging modalities have in the visualization of the CA. Methods: Micro-CT, flat-panel volume computed tomography with and without secondary reconstruction (fpVCT, fpVCTseco) and multislice computed tomography (MSCT) of 10 temporal bone specimen were used for 3D analysis of the CA. Results: FpVCTseco proved superior in visualizing the associated structures and lateral portions of the CA, which merge into the basal turn of the cochlea. All clinical imaging modalities proved equal in analyzing the length, total volume of the CA and its area of the medial orifice. Conclusion: The choice of the most accurate clinical imaging modality to evaluate the CA and its associated structures depends on the clinical or scientific question. Furthermore, this study should provide a basis for further investigations analyzing the CA.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Bauer
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Bjoern Spahn
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Tilmann Neun
- Institute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Zhang Z, Tang R, Wu Q, Zhao P, Yang Z, Wang Z. An exploratory study of imaging diagnostic clues for overhanging facial nerve in ultra-high-resolution CT. Eur Arch Otorhinolaryngol 2023; 280:3643-3651. [PMID: 36847878 PMCID: PMC10313554 DOI: 10.1007/s00405-023-07879-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Overhanging facial nerve (FN) may be challenging in imaging diagnosis. The purpose of the study is to investigate the imaging clues for overhanging FN near the oval window on ultra-high-resolution computed tomography (U-HRCT) images. METHODS Between October 2020 and August 2021, images of 325 ears (276 patients) were included in the analysis obtained by an experimental U-HRCT scanner. On standard reformatted images, the morphology of FN was evaluated and its position was quantitatively measured using the following indices: protrusion ratio (PR), protruding angle (A), position of FN (P-FN), distance between FN and stapes (D-S), and distance between FN and anterior and posterior crura of stapes (D-AC and D-PC). According to the FN morphology in imaging, images were divided into overhanging FN group and non-overhanging FN group. Binary univariate logistic regression analysis was used to identify the imaging indices independently associated with overhanging FN. RESULTS Overhanging FN was found in 66 ears (20.3%), which manifested as downwards protrusion of either local segment (61 ears, 61/66) or the entire course near the oval window (5 ears, 5/66). D-AC [odds ratio: 0.063, 95% CI 0.012-0.334, P = 0.001) and D-PC (odds ratio: 0.008, 95% CI 0.001-0.050, P = 0.000) were identified as independent predictors of FN overhang (area under the curve: 0.828 and 0.865, respectively). CONCLUSION Abnormal morphology of the lower margin of FN, D-AC and D-PC on U-HRCT images provide valuable diagnostic clues for FN overhang.
Collapse
Affiliation(s)
- Zhengyu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Qian Wu
- Department of Otolaryngology, Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong An Road, Western District, Beijing, 100050, China.
| |
Collapse
|
10
|
Müller-Graff FT, Voelker J, Kurz A, Hagen R, Neun T, Rak K. Accuracy of radiological prediction of electrode position with otological planning software and implications of high-resolution imaging. Cochlear Implants Int 2023; 24:144-154. [PMID: 36617441 DOI: 10.1080/14670100.2022.2159128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES In cochlear implantation, preoperative prediction of electrode position has recently gained increasing attention. Currently, planning is usually done by multislice CT (MSCT). However, flat-panel volume CT (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for more precise visualization of the cochlea. Combined with a newly developed otological planning software, the position of every single contact can be effectively predicted. In this study it was investigated how accurately radiological prediction forecasts the postoperative electrode localization and whether higher image resolution is advantageous. METHODS Utilizing otological planning software (OTOPLAN®) and different clinical imaging modalities (MSCT, fpVCT and fpVCTSECO) the electrode localization [angular insertion depth (AID)] and respective contact frequencies were predicted preoperatively and examined postoperatively. Furthermore, inter-electrode-distance (IED) and inter-electrode-frequency difference (IEFD) were evaluated postoperatively. RESULTS Measurements revealed a preoperative overestimation of AID. Corresponding frequencies were also miscalculated. Determination of IED and IEFD revealed discrepancies at the transition from the basal to the middle turn and round window to the basal turn. All predictions and discrepancies were lowest when using fpVCTSECO. CONCLUSION The postoperative electrode position can be predicted quite accurately using otological planning software. However, because of several potential misjudgments, high-resolution imaging, such as offered by fpVCTSECO, should be used pre- and postoperatively.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Anja Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| | - Tilmann Neun
- Institute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
11
|
High-speed flat-detector computed tomography for temporal bone imaging and postoperative control of cochlear implants. Neuroradiology 2022; 64:1437-1445. [PMID: 35410396 PMCID: PMC9177478 DOI: 10.1007/s00234-022-02940-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/03/2022] [Indexed: 10/30/2022]
Abstract
PURPOSE Flat-detector computed tomography (FD-CT) is the standard for cochlear implant (CI) imaging. FD-CT systems differ in technical characteristics. Our aim was an evaluation of two different FD-CT generations with different protocols and hardware regarding image quality, radiation dose, and scan time. METHODS Two temporal bone specimens (- / + CI = TB0/TB1) were scanned using three different scanners: two FD-CT systems with different scanning protocols (standard FD-CT: 20 s 70 kV, 20 s 109 kV; high-speed FD-CT [HS-FD-CT]: 7 s 109 kV, 9 s 109 kV, 14 s 72 kV) and MS-CT (5 s 120 kV). Acquired datasets were evaluated in consensus reading regarding qualitative and quantitative parameters: addressing CI- and cochlea-specific parameters, cochlea delineation, lamina spiralis ossea visibility, distinction of single CI electrodes, determination of intracochlear implant position, stapes delineation, and mastoidal septation were assessed. Addressing protocol-specific parameters, radiation dose (dose-length-product/DLP), and scan time were assessed. RESULTS Two HS-FD-CT protocols (14 s/9 s) provide higher or equivalent diagnostic information regarding CI- and cochlea-specific parameters compared to both standard FD-CT protocols. The fastest HS-FD-CT protocol (7 s)-providing inferior diagnostic information compared to all other FD-CT protocols-still exceeds MS-CT. The highest DLP was recorded for the 14 s HS-FD-CT protocol (TB1 = 956 mGycm); the lowest DLPs were recorded for the 7 s HS-FD-CT protocol (TB0 = 188 mGycm) and for MS-CT (TB0 = 138 mGycm), respectively. HS-FD-CT allows a significant reduction of scan time compared to standard FD-CT. CONCLUSION High-speed FD-CT improves visualization of temporal bone anatomy and postoperative assessment of CIs by combining excellent image quality, fast scan time, and reasonable radiation exposure.
Collapse
|
12
|
Schendzielorz P, Ilgen L, Müller-Graff FT, Noyalet L, Völker J, Taeger J, Hagen R, Neun T, Zabler S, Althoff D, Rak K. Precise evaluation of the postoperative cochlear duct length by flat-panel volume computed tomography - Application of secondary reconstructions. Cochlear Implants Int 2021; 23:32-42. [PMID: 34519256 DOI: 10.1080/14670100.2021.1973208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is still a lack in precise postoperative evaluation of the cochlea because of strong artifacts. This study aimed to improve accuracy of postoperative two-turn (2TL) and cochlear duct length (CDL) measurements by applying flat-panel volume computed tomography (fpVCT), secondary reconstruction (fpVCTSECO) and three-dimensional curved multiplanar reconstruction. METHODS First, 10 temporal bone specimens with or without electrode were measured in multi-slice computed tomography (MSCT), fpVCT and fpVCTSECO and compared to high-resolution micro-CT scans. Later, pre- and postoperative scans of 10 patients were analyzed in a clinical setting. RESULTS Concerning 2TL, no statistically significant difference was observed between implanted fpVCTSECO and nonimplanted micro-CT in 10 temporal bone specimens. In contrast, there was a significant discrepancy for CDL (difference: -0.7 mm, P = 0.004). Nevertheless, there were no clinically unacceptable errors (±1.5 mm). These results could be confirmed in a clinical setting. Using fpVCTSECO, CDL was slightly underestimated postoperatively (difference: -0.5 mm, P = 0.002) but without any clinically unacceptable errors. CONCLUSION fpVCTSECO can be successfully applied for a precise measurement of the cochlear lengths pre- and postoperatively. However, users must be aware of a slight systematic underestimation of CDL postoperatively. These results may help to refine electrode selection and frequency mapping.
Collapse
Affiliation(s)
- Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Laurent Noyalet
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Völker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| | - Tilmann Neun
- Department of Diagnostic and Interventional Neuroradiology, University of Würzburg, Würzburg, Germany
| | - Simon Zabler
- Department of X-ray Microscopy, University of Würzburg, Würzburg, Germany
| | - Daniel Althoff
- Fraunhofer Development Center for X-ray Technology, Würzburg, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Schoo DP, Ward BK. New Frontiers in Managing the Dizzy Patient. Otolaryngol Clin North Am 2021; 54:1069-1080. [PMID: 34294438 DOI: 10.1016/j.otc.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite progress in vestibular research in the last 20 years, much remains poorly understood about vestibular pathophysiology and its management. A shared language is a critical first step in understanding vestibular disorders and is under development. Telehealth will continue for patients with dizziness, and ambulatory monitoring of nystagmus will become a diagnostic tool. In the next 2 decades, it is anticipated that vestibular perceptual threshold testing will become common in tertiary centers, imaging with improved spatial resolution will yield better understanding of vestibular pathophysiology, and that vestibular implants will become a part of clinical practice.
Collapse
Affiliation(s)
- Desi P Schoo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, USA
| | - Bryan K Ward
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, USA.
| |
Collapse
|
14
|
Taeger J, Müller-Graff FT, Neun T, Köping M, Schendzielorz P, Hagen R, Rak K. Highly precise navigation at the lateral skull base by the combination of flat-panel volume CT and electromagnetic navigation. Sci Prog 2021; 104:368504211032090. [PMID: 34397283 PMCID: PMC10450718 DOI: 10.1177/00368504211032090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the feasibility and accuracy of electromagnetic navigation at the lateral skull base in combination with flat panel volume computed tomography (fpVCT) datasets. A mastoidectomy and a posterior tympanotomy were performed on 10 samples of fresh frozen temporal bones. For registration, four self-drilling titanium screws were applied as fiducial markers. Multi-slice computed tomography (MSCT; 600 µm), conventional flat panel volume computed tomography (fpVCT; 466 µm), micro-fpVCT (197 µm) and secondary reconstructed fpVCT (100 µM) scans were performed and data were loaded into the navigation system. The resulting fiducial registration error (FRE) was analysed, and control of the navigation accuracy was performed. The registration process was very quick and reliable with the screws as fiducials. Compared to using the MSCT data, the micro-fpVCT data led to significantly lower FRE values, whereas conventional fpVCT and secondary reconstructed fpVCT data had no advantage in terms of accuracy. For all imaging modalities, there was no relevant visual deviation when targeting defined anatomical points with a navigation probe. fpVCT data are very well suited for electromagnetic navigation at the lateral skull base. The use of titanium screws as fiducial markers turned out to be ideal for comparing different imaging methods. A further evaluation of this approach by a clinical trial is required.
Collapse
Affiliation(s)
- Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Franz-Tassilo Müller-Graff
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Tilmann Neun
- Institute for Diagnostical and Interventional Neuroradiology, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Maria Köping
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Philipp Schendzielorz
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|
15
|
Müller-Graff FT, Ilgen L, Schendzielorz P, Voelker J, Taeger J, Kurz A, Hagen R, Neun T, Rak K. Implementation of secondary reconstructions of flat-panel volume computed tomography (fpVCT) and otological planning software for anatomically based cochlear implantation. Eur Arch Otorhinolaryngol 2021; 279:2309-2319. [PMID: 34101009 PMCID: PMC8986679 DOI: 10.1007/s00405-021-06924-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/29/2021] [Indexed: 11/28/2022]
Abstract
Purpose For further improvements in cochlear implantation, the measurement of the cochlear duct length (CDL) and the determination of the electrode contact position (ECP) are increasingly in the focus of clinical research. Usually, these items were investigated by multislice computed tomography (MSCT). The determination of ECP was only possible by research programs so far. Flat-panel volume computed tomography (fpVCT) and its secondary reconstructions (fpVCTSECO) allow for high spatial resolution for the visualization of the temporal bone structures. Using a newly developed surgical planning software that enables the evaluation of CDL and the determination of postoperative ECP, this study aimed to investigate the combination of fpVCT and otological planning software to improve the implementation of an anatomically based cochlear implantation. Methods Cochlear measurements were performed utilizing surgical planning software in imaging data (MSCT, fpVCT and fpVCTSECO) of patients with and without implanted electrodes. Results Measurement of the CDL by the use of an otological planning software was highly reliable using fpVCTSECO with a lower variance between the respective measurements compared to MSCT. The determination of the inter-electrode-distance (IED) between the ECP was improved in fpVCTSECO compared to MSCT. Conclusion The combination of fpVCTSECO and otological planning software permits a simplified and more reliable analysis of the cochlea in the pre- and postoperative setting. The combination of both systems will enable further progress in the development of an anatomically based cochlear implantation.
Collapse
Affiliation(s)
- Franz-Tassilo Müller-Graff
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Lukas Ilgen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Philipp Schendzielorz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Voelker
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Johannes Taeger
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Anja Kurz
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany
| | - Tilmann Neun
- Insitute for Diagnostic and Interventional Neuroradiology, University of Wuerzburg, Bavaria, Germany
| | - Kristen Rak
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery and the Comprehensive Hearing Center, University of Wuerzburg, Josef-Schneider-Strasse 11, 97080, Wuerzburg, Germany.
| |
Collapse
|
16
|
Tang R, Yin H, Wang Z, Zhang Z, Zhao L, Zhang P, Li J, Zhao P, Lv H, Zhang L, Yang Z, Wang Z. Stapes visualization by ultra-high resolution CT in cadaveric heads: A preliminary study. Eur J Radiol 2021; 141:109786. [PMID: 34058698 DOI: 10.1016/j.ejrad.2021.109786] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE This study aimed to assess stapes visualization using an ultra-high resolution computed tomography (U-HRCT). METHOD Sixty ears from 30 cadaveric human heads were scanned by both U-HRCT and 128-section multislice CT (MSCT) with clinical parameters. Image quality of the stapes head, anterior and posterior crura, footplate, incudostapedial joint and stapedial muscle within the pyramidal eminence was scored using a 3-point Likert scale. Linear measurements of the stapes configuration were performed on U-HRCT. RESULTS The interobserver agreement for image qualitative score on U-HRCT was good to excellent (interobserver agreement coefficients 0.65-0.86). With the exception of the stapes head, U-HRCT achieved significantly higher qualitative scores than MSCT across all anatomical structures (Ps < 0.05). The total height of the stapes was measured to be 3.48 ± 0.33 mm. The height and width of the obturator foramen were 1.77 ± 0.28 mm and 2.19 ± 0.33 mm, respectively. The widths of the anterior and posterior crura were 0.20 ± 0.06 mm and 0.22 ± 0.06 mm, respectively. The thickness of the footplate was 0.22 ± 0.06 mm, and the angle of the incudostapedial joint was 95.91 ± 10.69°. CONCLUSIONS U-HRCT is capable of delineating fine structures of the stapes and provides linear data on dimensions of the stapes, which could be helpful for detecting stapes disease and making individualized surgical plans in the clinical setting.
Collapse
Affiliation(s)
- Ruowei Tang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongxia Yin
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhengyu Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Lei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jing Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Li Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
17
|
Precise Evaluation of the Cochlear Duct Length by Flat-panel Volume Computed Tomography (fpVCT)-Implication of Secondary Reconstructions. Otol Neurotol 2021; 42:e294-e303. [PMID: 33555750 DOI: 10.1097/mao.0000000000002951] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Flat-panel volume computed tomography (fpVCT) and secondary reconstruction allow for more accurate measurements of two-turn length (2TL), cochlear duct length (CDL), and angular length (AL). BACKGROUND Cochlear geometry is a controversially debated topic. In the meantime, there are many different studies partly reporting highly divergent values. Our aim is to discuss the differences and to propose a radiological possibility to improve cochlear measurements using 3D-curved multiplanar reconstruction and fpVCT. METHODS Performing different image modalities and settings, we tried to find a clinically usable option that allows for a high degree of accuracy. Therefore, we tested them against reference values of high-definition micro-computed tomography. RESULTS Comparison of 99 μm slice thickness secondary reconstruction of fpVCT and reference showed no significant differences for 2TL and CDL (p ≥ 0.05). Accordingly, ICC (intraclass correlation) values were excellent (ICC ≥ 0.75; lower limit of confidence interval [CI] ≥ 0.75; Cronbach's alpha [α] ≥ 0.9). Evaluating AL, there was a significant difference (difference: -17.27°; p = 0.002). The lower limit of the CI of the ICC was unacceptable (ICC = 0.944; lower limit of CI = 0.248; α = 0.990). Regarding the Bland-Altman plots, there were no clinically unacceptable errors, but a systematic underestimation of AL. CONCLUSION Secondary reconstruction is a suitable tool for producing reliable data that allow the accurate measurement of 2TL and CDL. The option of generating these reconstructions from raw data limits the need for higher radiation doses. Nevertheless, there is an underestimation of AL using secondary reconstructions.
Collapse
|
18
|
Hempel JM, Epp A, Volgger V. [Hearing rehabilitation with the Vibrant Soundbridge in patients with congenital middle ear malformation]. HNO 2021:10.1007/s00106-021-01004-5. [PMID: 33599810 DOI: 10.1007/s00106-021-01004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Congenital aural atresia, which is usually unilateral, causes hearing loss and aesthetic impairment. Besides tympanoplasty with/without canalplasty and bone conduction devices, active middle ear implants are also available for functional rehabilitation. OBJECTIVE This article aims to present a contemporary review on the treatment possibilities for middle ear malformations, with a focus on audiological rehabilitation with the Vibrant Soundbridge. MATERIALS AND METHODS A selective literature search for treatment possibilities was performed in PubMed up to October 2020, and personal clinical experiences are reported. RESULTS The Vibrant Soundbridge, which is approved for children ≥ 5 years, is suitable for treatment of middle ear malformations with a Jahrsdoerfer score ≥ 5. Although implantation of a Vibrant Soundbridge is surgically more demanding than implantation of a bone conduction device, the method is safe, delivers good auditory results (superior to bone conduction devices in terms of speech understanding and spatial hearing), does not involve intensive postsurgical care, and rarely requires revision surgery. The Vibrant Soundbridge can be coupled to (remnants of) the ossicular chain or the round window. CONCLUSION The Vibrant Soundbridge is an appropriate treatment method in patients with middle ear malformations who have suitable anatomical preconditions.
Collapse
Affiliation(s)
- J M Hempel
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, LMU Klinikum Großhadern, Marchioninistr. 15, 81377, München, Deutschland.
| | - A Epp
- Kinderklinik, Universitätsklinikum Augsburg, Augsburg, Deutschland
| | - V Volgger
- Klinik und Poliklinik für Hals-Nasen-Ohren-Heilkunde, LMU Klinikum Großhadern, Marchioninistr. 15, 81377, München, Deutschland
| |
Collapse
|
19
|
Hedjoudje A, Schoo DP, Ward BK, Carey JP, Della Santina CC, Pearl M. Vestibular Implant Imaging. AJNR Am J Neuroradiol 2021; 42:370-376. [PMID: 33361382 PMCID: PMC7872165 DOI: 10.3174/ajnr.a6991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022]
Abstract
Analogous to hearing restoration via cochlear implants, vestibular function could be restored via vestibular implants that electrically stimulate vestibular nerve branches to encode head motion. This study presents the technical feasibility and first imaging results of CT for vestibular implants in 8 participants of the first-in-human Multichannel Vestibular Implant Early Feasibility Study. Imaging characteristics of 8 participants (3 men, 5 women; median age, 59.5 years; range, 51-66 years) implanted with a Multichannel Vestibular Implant System who underwent a postimplantation multislice CT (n = 2) or flat panel CT (n = 6) are reported. The device comprises 9 platinum electrodes inserted into the ampullae of the 3 semicircular canals and 1 reference electrode inserted in the common crus. Electrode insertion site, positions, length and angle of insertion, and number of artifacts were assessed. Individual electrode contacts were barely discernible in the 2 participants imaged using multislice CT. Electrode and osseous structures were detectable but blurred so that only 12 of the 18 stimulating electrode contacts could be individually identified. Flat panel CT could identify all 10 electrode contacts in all 6 participants. The median reference electrode insertion depth angle was 9° (range, -57.5° to 45°), and the median reference electrode insertion length was 42 mm (range, -21-66 mm). Flat panel CT of vestibular implants produces higher-resolution images with fewer artifacts than multidetector row CT, allowing visualization of individual electrode contacts and quantification of their locations relative to vestibular semicircular canals and ampullae. As multichannel vestibular implant imaging improves, so will our understanding of the relationship between electrode placement and vestibular performance.
Collapse
Affiliation(s)
- A Hedjoudje
- From the Department of Otolaryngology-Head and Neck Surgery (A.H., D.P.S., B.K.W., J.P.C., C.C.D.S.)
- Division of Interventional Neuroradiology (A.H., M.P.)
- Neuroradiology Unit (A.H.), Service of diagnostic and interventional imaging, Sion Hospital, Sion, Valais, Switzerland
| | - D P Schoo
- From the Department of Otolaryngology-Head and Neck Surgery (A.H., D.P.S., B.K.W., J.P.C., C.C.D.S.)
| | - B K Ward
- From the Department of Otolaryngology-Head and Neck Surgery (A.H., D.P.S., B.K.W., J.P.C., C.C.D.S.)
| | - J P Carey
- From the Department of Otolaryngology-Head and Neck Surgery (A.H., D.P.S., B.K.W., J.P.C., C.C.D.S.)
| | - C C Della Santina
- From the Department of Otolaryngology-Head and Neck Surgery (A.H., D.P.S., B.K.W., J.P.C., C.C.D.S.)
- Department of Biomedical Engineering (C.C.D.S.), Johns Hopkins University School of Medicine, Baltimore, Maryland
- Labyrinth Devices (C.C.D.S.), Baltimore, Maryland
| | - M Pearl
- Division of Interventional Neuroradiology (A.H., M.P.)
| |
Collapse
|
20
|
Zanetti D, Conte G, Di Berardino F, Lo Russo F, Cavicchiolo S, Triulzi F. Assessment of Frequency-Place Mismatch by Flat-Panel CT and Correlation With Cochlear Implant Performance. Otol Neurotol 2021; 42:165-173. [PMID: 33885263 DOI: 10.1097/mao.0000000000002967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To calculate the frequency allocation mismatch in a group of very selected cochlear implant (CI) recipients and to contrast it with the speech perception performances. STUDY DESIGN Cross-sectional observational prospective study. SETTINGS Tertiary Audiological Department, University hospital. PATIENTS Fifteen adults receiving the same CI array by the same surgeon through a posterior tympanotomy, round window approach. MAIN OUTCOME MEASURES 1) High definition flat panel computed tomography (FPCT) control of the intracochlear position of each electrode contact, and computation of the relative frequency allocation mismatch; 2) analysis of speech perception outcomes in relation with the mismatch. RESULTS Despite a consistent and reproducible surgical procedure with the same intracochlear array, significant deviations from the frequency allocation tables (FAT) assigned by default by the manufacturer were observed in this study.Their influences on speech perception performances were negligible in the simple tasks of words or sentences recognition in quiet (and, to a lesser extent also in noise). The greatest effect of a significant mismatch was observed for the vocal-consonant-vocal (VCV) sequences recognition under noise masking, the emotional and the linguistic prosody recognition, and the phonemes discrimination of the Auditory Speech Sound Evaluation (A§E) test. CONCLUSIONS The greatest frequency-to-place occurred at the high frequencies. The effect was rather irrelevant on simple words and sentences recognition, while it negatively impacted on the more complex perceptual tasks.
Collapse
Affiliation(s)
- Diego Zanetti
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| | - Federica Di Berardino
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Lo Russo
- Postgraduation School of Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Sara Cavicchiolo
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan and Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico
| |
Collapse
|
21
|
Evaluation of artifacts of cochlear implant electrodes in cone beam computed tomography. Eur Arch Otorhinolaryngol 2020; 278:1381-1386. [PMID: 32671538 PMCID: PMC8057993 DOI: 10.1007/s00405-020-06198-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022]
Abstract
Purpose Cone Beam Computed Tomography (CBCT) offers a valid alternative to conventional Computed Tomography (CT). A possible radiation dose reduction with the use of CBCT in postoperative imaging of CIs is of great importance. Whether the visualization of Cochlear Implant (CI) electrodes in CBCT correlates with the radiation dose applied was investigated in this study. Methods We compared the visualization quality of Contour Advance CIs to Straight CIs from Cochlear using CBCT with varying tube parameters on whole-head specimen. Results The internal diameter of the cochlea decreases from base to apex, resulting in a significantly different intracochlear positioning of the two tested CI models. While electrodes of the Contour Advance series are located close to the modiolus, thus closer to the spiral ganglion neurons, those of the Straight series are located further away. The artifact portion of the electrode amounts to 50–70% of the radiological diameter of the electrode. An increase in artifact portion from the base (electrode #1 approx. 50%) to the apex (electrode #20 approx. 70%) of the cochlea was observed. The visualization of electrodes in the medial and apical part of the cochlea is limited due to artifact overlapping. There was no correlation between the artifact size and the applied radiation dose. Conclusion The results indicate that a reduction of the radiation dose by up to 45% of the currently applied radiation dose of standard protocols would be possible. Investigations of the effects on subjective image quality still need to be performed.
Collapse
|
22
|
Dyna-CT of the temporal bone for case-specific three-dimensional rendering of the stapedial muscle for planning of electrically evoked stapedius reflex threshold determination during cochlear implantation directly from the stapedius muscle via a retrofacial approach: a pilot study. Eur Arch Otorhinolaryngol 2020; 277:975-985. [DOI: 10.1007/s00405-019-05773-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022]
|
23
|
Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, Baro V, Bartolini S, Bernardeschi D, Bivona R, Bonali M, Borghesi I, Borsetto D, Bovo R, Breun M, Calbucci F, Carlson ML, Caruso A, Cayé-Thomasen P, Cazzador D, Champagne PO, Colangeli R, Conte G, D'Avella D, Danesi G, Deantonio L, Denaro L, Di Berardino F, Draghi R, Ebner FH, Favaretto N, Ferri G, Fioravanti A, Froelich S, Giannuzzi A, Girasoli L, Grossardt BR, Guidi M, Hagen R, Hanakita S, Hardy DG, Iglesias VC, Jefferies S, Jia H, Kalamarides M, Kanaan IN, Krengli M, Landi A, Lauda L, Lepera D, Lieber S, Lloyd SLK, Lovato A, Maccarrone F, Macfarlane R, Magnan J, Magnoni L, Marchioni D, Marinelli JP, Marioni G, Mastronardi V, Matthies C, Moffat DA, Munari S, Nardone M, Pareschi R, Pavone C, Piccirillo E, Piras G, Presutti L, Restivo G, Reznitsky M, Roca E, Russo A, Sanna M, Sartori L, Scheich M, Shehata-Dieler W, Soloperto D, Sorrentino F, Sterkers O, Taibah A, Tatagiba M, Tealdo G, Vlad D, Wu H, Zanetti D. Surgery of the lateral skull base: a 50-year endeavour. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2019; 39:S1-S146. [PMID: 31130732 PMCID: PMC6540636 DOI: 10.14639/0392-100x-suppl.1-39-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Disregarding the widely used division of skull base into anterior and lateral, since the skull base should be conceived as a single anatomic structure, it was to our convenience to group all those approaches that run from the antero-lateral, pure lateral and postero-lateral side of the skull base as “Surgery of the lateral skull base”. “50 years of endeavour” points to the great effort which has been made over the last decades, when more and more difficult surgeries were performed by reducing morbidity. The principle of lateral skull base surgery, “remove skull base bone to approach the base itself and the adjacent sites of the endo-esocranium”, was then combined with function preservation and with tailoring surgery to the pathology. The concept that histology dictates the extent of resection, balancing the intrinsic morbidity of each approach was the object of the first section of the present report. The main surgical approaches were described in the second section and were conceived not as a step-by-step description of technique, but as the highlighthening of the surgical principles. The third section was centered on open issues related to the tumor and its treatment. The topic of vestibular schwannoma was investigated with the current debate on observation, hearing preservation surgery, hearing rehabilitation, radiotherapy and the recent efforts to detect biological markers able to predict tumor growth. Jugular foramen paragangliomas were treated in the frame of radical or partial surgery, radiotherapy, partial “tailored” surgery and observation. Surgery on meningioma was debated from the point of view of the neurosurgeon and of the otologist. Endolymphatic sac tumors and malignant tumors of the external auditory canal were also treated, as well as chordomas, chondrosarcomas and petrous bone cholesteatomas. Finally, the fourth section focused on free-choice topics which were assigned to aknowledged experts. The aim of this work was attempting to report the state of the art of the lateral skull base surgery after 50 years of hard work and, above all, to raise questions on those issues which still need an answer, as to allow progress in knowledge through sharing of various experiences. At the end of the reading, if more doubts remain rather than certainties, the aim of this work will probably be achieved.
Collapse
Affiliation(s)
- E Zanoletti
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - A Mazzoni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - A Martini
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - R V Abbritti
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | | | - E Alexandre
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - V Baro
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - S Bartolini
- Neurosurgery, Bellaria Hospital, Bologna, Italy
| | - D Bernardeschi
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - R Bivona
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - M Bonali
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - I Borghesi
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - D Borsetto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - R Bovo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - M Breun
- Department of Neurosurgery, Julius Maximilians University Hospital Würzburg, Bavaria, Germany
| | - F Calbucci
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - M L Carlson
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - A Caruso
- Gruppo Otologico, Piacenza-Rome, Italy
| | - P Cayé-Thomasen
- The Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - D Cazzador
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
- Department of Neuroscience DNS, Section of Human Anatomy, Padova University, Padova, Italy
| | - P-O Champagne
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - R Colangeli
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - G Conte
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - D D'Avella
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - G Danesi
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - L Deantonio
- Department of Radiation Oncology, University Hospital Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - L Denaro
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - F Di Berardino
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - R Draghi
- Neurosurgery, Maria Cecilia Hospital, Cotignola (RA), Italy
| | - F H Ebner
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - N Favaretto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - G Ferri
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | | | - S Froelich
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | | | - L Girasoli
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - B R Grossardt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - M Guidi
- Gruppo Otologico, Piacenza-Rome, Italy
| | - R Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - S Hanakita
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - D G Hardy
- Department of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | - V C Iglesias
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - S Jefferies
- Oncology Department, Cambridge University Hospital, Cambridge, UK
| | - H Jia
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninh People's Hospital, Shanghai Jiatong University School of Medicine, China
| | - M Kalamarides
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - I N Kanaan
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Alfaisal University, College of Medicine, Riyadh, KSA
| | - M Krengli
- Department of Radiation Oncology, University Hospital Maggiore della Carità, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - A Landi
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - L Lauda
- Gruppo Otologico, Piacenza-Rome, Italy
| | - D Lepera
- ENT & Skull-Base Department, Ospedale Nuovo di Legnano, Legnano (MI), Italy
| | - S Lieber
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - S L K Lloyd
- Department of Neuro-Otology and Skull-Base Surgery Manchester Royal Infirmary, Manchester, UK
| | - A Lovato
- Department of Neuroscience DNS, Audiology Unit, Padova University, Treviso, Italy
| | - F Maccarrone
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - R Macfarlane
- Department of Neurosurgery, Cambridge University Hospital, Cambridge, UK
| | - J Magnan
- University Aix-Marseille, France
| | - L Magnoni
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - D Marchioni
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Italy
| | | | - G Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - C Matthies
- Department of Neurosurgery, Julius Maximilians University Hospital Würzburg, Bavaria, Germany
| | - D A Moffat
- Department of Neuro-otology and Skull Base Surgery, Cambridge University Hospital, Cambridge, UK
| | - S Munari
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - M Nardone
- ENT Department, Treviglio (BG), Italy
| | - R Pareschi
- ENT & Skull-Base Department, Ospedale Nuovo di Legnano, Legnano (MI), Italy
| | - C Pavone
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - G Piras
- Gruppo Otologico, Piacenza-Rome, Italy
| | - L Presutti
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Modena, Italy
| | - G Restivo
- ENT and Skull-Base Surgery Department, Department of Neurosciences, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - M Reznitsky
- The Department of Otorhinolaryngology, Head & Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - E Roca
- Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France
| | - A Russo
- Gruppo Otologico, Piacenza-Rome, Italy
| | - M Sanna
- Gruppo Otologico, Piacenza-Rome, Italy
| | - L Sartori
- Academic Neurosurgery, Department of Neuroscience DNS, University of Padova Medical School, Padova, Italy
| | - M Scheich
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - W Shehata-Dieler
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, "Julius-Maximilians" University Hospital of Würzburg, Bavaria, Germany
| | - D Soloperto
- Otolaryngology-Head and Neck Surgery Department, University Hospital of Verona, Italy
| | - F Sorrentino
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - O Sterkers
- AP-HP, Groupe Hôspital-Universitaire Pitié-Salpêtrière, Neuro-Sensory Surgical Department and NF2 Rare Disease Centre, Paris, France
- Sorbonne Université, Paris, France
| | - A Taibah
- Gruppo Otologico, Piacenza-Rome, Italy
| | - M Tatagiba
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
| | - G Tealdo
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - D Vlad
- Gruppo Otologico, Piacenza-Rome, Italy
| | - H Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninh People's Hospital, Shanghai Jiatong University School of Medicine, China
| | - D Zanetti
- Unit of Audiology, Department of Clinical Sciences and Community Health, University of Milano, Italy
- Department of Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
24
|
Venkatasamy A, Foll DL, Eyermann C, Vuong H, Rohmer D, Charpiot A, Veillon F. Malformations of the lateral semicircular canal correlated with data from the audiogram. Eur Arch Otorhinolaryngol 2019; 276:1029-1034. [PMID: 30725208 DOI: 10.1007/s00405-019-05294-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/12/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Lateral semicircular canal (LSCC) malformations are one of the most common inner ear malformations. The purpose of this study is to analyze the prevalence and type of hearing losses associated with LSCC malformations, compared to a control group. MATERIALS AND METHODS We retrospectively included 109 patients (166 ears) presenting with a CT-confirmed LSCC malformation, compared to a control group (24 patients). The bony island surface and the width of the inner portion of the LSCC were measured to confirm the malformation. There results were correlated to audiogram data: sensorineural (SHNL), mixed (MHL) or conductive hearing loss (CHL) by an otologist. RESULTS In the LSCC group, 60.9% of patients presented with an audiogram-confirmed hearing loss, especially SNHL (39.2%, n = 65) and MHL (12.7%, n = 21). Hearing was normal in 39.2% (n = 65) of the cases. Bilateral LSCC malformations (n = 57) were frequently associated with hearing loss (80.7%), SNHL in most of the cases (33.3%). Unilateral LSCC malformations were associated with hearing alterations (51.9%, n = 27), but we also observed a high rate (81%, n = 42) of contralateral abnormalities of the audiogram. CONCLUSION LSCC malformations are commonly associated with hearing loss (61%), especially SHNL (39%). The high rate (81%) of contralateral hearing disturbances in unilateral LSCC malformations should be taken into account in the patient's daily life to avoid triggering or exacerbating any hearing loss. Otologists and radiologists must cooperate to ensure that all malformations are correctly described on CT, especially to improve the patient's education regarding hearing preservation.
Collapse
Affiliation(s)
- Aina Venkatasamy
- Service de Radiologie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67098, Strasbourg CEDEX, France. .,Université de Strasbourg, INSERM IRFAC UMR_S1113, Laboratory Stress Response and Innovative Therapy "Streinth", Strasbourg, 67200, France.
| | - Daphné Le Foll
- Service de Radiologie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67098, Strasbourg CEDEX, France
| | - Carine Eyermann
- Service de chirurgie ORL, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg CEDEX, 67098, France
| | - Hella Vuong
- Service de chirurgie ORL, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg CEDEX, 67098, France
| | - Dominique Rohmer
- Service de chirurgie ORL, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg CEDEX, 67098, France
| | - Anne Charpiot
- Service de chirurgie ORL, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, Strasbourg CEDEX, 67098, France
| | - Francis Veillon
- Service de Radiologie 1, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, 1 avenue Molière, 67098, Strasbourg CEDEX, France
| |
Collapse
|