1
|
Kamila G, Jauhari P, Kumar A, Singh S, Chakrabarty B, Gulati S, Pandey RM. Thalamic volumetric analysis in Developmental and/or Epileptic Encephalopathy with Spike Wave Activation in Sleep (D/EE-SWAS): A cross-sectional study. Seizure 2025; 127:94-100. [PMID: 40120364 DOI: 10.1016/j.seizure.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES This cross-sectional study compared the thalamic volume (TV) of children with Developmental and/or Epileptic Encephalopathy with Spike-Wave Activation in Sleep (D/EE-SWAS) with age matched children with well-controlled epilepsy(WCE). METHODS An unaided eye assessment of T1-weighted brain MRI sequences and quantitative volumetric analysis through "volBrain" online software was performed in children (5-12 years) with steroid-naïve D/EE-SWAS {spike-wave-index(SWI) in sleep≥50 %} and typically developing children with WCE (seizure-free period ≥1-year). The absolute and relative thalamic volume (ATV/RTV) (RTV: thalamic volume as percentage of the total intracranial volume), were compared between the two groups. RESULTS Twenty-children each with D/EE-SWAS (14 boys; mean age: 8.05±1.76 years) and WCE (15 boys; mean age: 9.1 ± 1.74 years) were analysed. In the D/EE-SWAS group, (16/20) 80% of participants had a structural lesion while all the children in the WCE group had a presumed genetic etiology. Volumetric analysis detected low ATV (<2 standard deviation) in 12/20 (60 %) children with D/EE-SWAS while unaided eye assessment could pick up thalamic involvement only in six (30 %). On comparison with WCE group (N = 20), mean ATV and RTV in structural D/EE-SWAS (n = 16) [(7.25 cm3 ± 1.66 versus 11.17 cm3 ± 1.22; p < 0.0001)(0.73 % ± 0.17 versus 0.87 % ± 0.05; p < 0.001)] and presumed genetic D/EE-SWAS (n = 4) [(9.25 cm3 ± 0.55, versus 11.17 cm3 ± 1.22, p < 0.01)(0.74 % ± 0.04 versus 0.87 % ± 0.05; p < 0.0001)] were significantly reduced. ATV did not correlate with SWI in sleep EEG (r =-0.25) in D/EE-SWAS. CONCLUSION Thalamic volume is reduced in majority of children with D/EE-SWAS in both structural and presumed genetic etiology.
Collapse
Affiliation(s)
- Gautam Kamila
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Prashant Jauhari
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India.
| | - Atin Kumar
- Department of Radiodiagnosis & Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sonali Singh
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Biswaroop Chakrabarty
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sheffali Gulati
- Child Neurology Division, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - R M Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Ay H, Horata E, Öncü Kaya EM, Korkmaz OT. Increased Serotonin Levels and Unchanged Glutamate and GABA Levels in Thalamic Microdialysates Despite Reduced Cell Numbers in a Valproic Acid-Induced Autism Model. Neurochem Res 2024; 50:45. [PMID: 39636522 DOI: 10.1007/s11064-024-04299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Autism spectrum disorders (ASDs) are increasingly prevalent neurodevelopmental disorders characterized by deficits in social skills, abnormal sensory responses and a loss of neuronal cells. A key factor in these differences is thought to be an imbalance between excitation and inhibition. The aim of this study was to measure the levels of γ-aminobutyric acid (GABA), glutamate (GLU) and serotonin (5-HT) in the thalamus of a rat valproic acid (VPA)-induced ASD model and to correlate these levels with the number of thalamic cells. Ten pregnant Wistar rats were injected with 600 mg/kg VPA on Day 12.5 of gestation, whereas five control rats received saline. After the behavioral tests, the male pups were divided into ASD and control groups with ten animals each. At 55 days of age, pups underwent microdialysis under anesthesia, and thalamic samples were analyzed for GABA, GLU and 5-HT levels by ultrahigh-performance liquid chromatography (UHPLC). After microdialysis, the brain sections were stained, and the volumes of the thalamus and hemispheres were calculated using the Cavalieri method, with the number of neurons and glia determined using the optical fractionator method. Compared with the control group, the ASD group presented increased 5-HT levels, an increased hemispheric volume, a decreased thalamic volume and decreased numbers of thalamic neurons and glia. A negative correlation was observed between the GLU content and glial number in the control group but not in the ASD group. These results indicate a disturbed thalamic neurotransmitter balance. We suggest that the increased thalamic 5-HT levels in ASD rats indicates that 5-HT reuptake is inhibited by the GLU content, which remains unchanged, despite the reduced cell number.
Collapse
Affiliation(s)
- Hakan Ay
- School of Medicine, Department of Anatomy, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey.
| | - Erdal Horata
- Afyonkarahisar Health Sciences University Atatürk Health Services Vocational School, Afyonkarahisar, 03030, Turkey
| | - Elif Mine Öncü Kaya
- Faculty of Science, Department of Analytical Chemistry, Eskisehir Technical University, Eskisehir, 26555, Turkey
| | - Orhan Tansel Korkmaz
- School of Medicine, Department of Physiology, Eskisehir Osmangazi University, Eskisehir, 26040, Turkey
| |
Collapse
|
3
|
Segobin S, Haast RAM, Kumar VJ, Lella A, Alkemade A, Bach Cuadra M, Barbeau EJ, Felician O, Pergola G, Pitel AL, Saranathan M, Tourdias T, Hornberger M. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei. Nat Rev Neurosci 2024; 25:792-808. [PMID: 39420114 DOI: 10.1038/s41583-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.
Collapse
Affiliation(s)
- Shailendra Segobin
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.
| | - Roy A M Haast
- Aix-Marseille University, CRMBM CNRS UMR 7339, Marseille, France
- APHM, La Timone Hospital, CEMEREM, Marseille, France
| | | | - Annalisa Lella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition (Cerco), UMR5549, CNRS - Université de Toulouse, Toulouse, France
| | - Olivier Felician
- Aix Marseille Université, INSERM INS UMR 1106, APHM, Marseille, France
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | | | - Thomas Tourdias
- Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, Bordeaux, France
- Neurocentre Magendie, University of Bordeaux, INSERM U1215, Bordeaux, France
| | | |
Collapse
|
4
|
Horata E, Ay H, Aslan D. Autistic-like behaviour and changes in thalamic cell numbers a rat model of valproic acid-induced autism; A behavioural and stereological study. Brain Res 2024; 1840:149047. [PMID: 38823508 DOI: 10.1016/j.brainres.2024.149047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The contribution of the thalamus to the development and behavioural changes in autism spectrum disorders (ASD), a neurodevelopmental syndrome, remains unclear. The aim of this study was to determine the changes in thalamic volume and cell number in the valproic acid (VPA)-induced ASD model using stereological methods and to clarify the relationship between thalamus and ASD-like behaviour. Ten pregnant rats were administered a single dose (600 mg/kg) of VPA intraperitoneally on G12.5 (VPA group), while five pregnant rats were injected with 5 ml saline (control group). Behavioural tests were performed to determine appropriate subjects and ASD-like behaviours. At P55, the brains of the subjects were removed. The sagittal sections were stained with cresyl violet and toluidine blue. The thalamic and hemispheric volumes with their ratios, the total number of thalamic cells, neurons and non-neuronal cells were calculated using stereological methods. Data were compared using a t-test and a Pearson correlation analysis was performed to examine the relationship between behaviour and stereological outcomes. VPA-treated rats had lower sociability and sociability indexes. There was no difference in social novelty preference and anxiety. The VPA group had larger hemispheric volume, lower thalamic volume, and fewer neurons. The highest percentage decrease was in non-neuronal cells. There was a moderate positive correlation between the number of non-neuronal cells and sociability, thalamic volume and the number of neurons as well as the time spent in the light box. The correlation between behaviour and stereological data suggests that the thalamus is associated with ASD-like behaviour.
Collapse
Affiliation(s)
- Erdal Horata
- Orthopedic Prosthesis Orthotics, Atatürk Health Services Vocational School, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Hakan Ay
- Department of Anatomy, Faculty of Medicine, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Duygu Aslan
- Department of Anatomy, Faculty of Medicine, Kafkas University, Kars, Turkey
| |
Collapse
|
5
|
Aydin H, Aytac A, Bulbul E, Yanik B, Korkut O, Gulcen B. A Comparison of Pre- and Post-Treatment Cranial MRI Characteristics in Patients with Pediatric Epilepsy Receiving Levetiracetam. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1355. [PMID: 39202636 PMCID: PMC11356224 DOI: 10.3390/medicina60081355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study was performed for the purpose of assessing whether antiepileptic levetiracetam treatment produces a change in brain volumes in children with epilepsy. To that end, we compared the volumes of the basal ganglia (caudate nucleus, putamen, globus, hip-pocampus, and thalamus) at magnetic resonance imaging (MRI) before and after treatment (months 18-24) in pediatric epilepsy patients using levetiracetam. Materials and Methods: This retrospective study involved a volumetric comparison of patients presenting to the Balikesir University Medical Faculty pediatric neurology clinic between 01.08.2019 and 01.11.2023 and diagnosed with epilepsy, and who underwent cranial MRI before and 18-24 months after treatment at the radiology department. The demographic and clinical characteristics (age, sex, family history of epilepsy, type of epilepsy, and EEG features (normal, abnormal, epileptiform)) of the patients included in the study were recorded. Results: The comparison of basal ganglia volumes at cranial MRI before and at months 18-24 of treatment revealed significant differences in the left caudate nucleus, right putamen, left putamen, left globus pallidus, right thalamus, left thalamus, and right hippocampal regions. Conclusions: In conclusion, differing findings are encountered at cranial imaging in patients with epilepsy, depending on the seizure frequency, activity, and the type of antiepileptic drugs used. This study compared basal ganglia volumes on cranial MRIs taken before and 18-24 months after treatment in pediatric epilepsy patients using levetiracetam. A significant increase was observed in the volumes of basal ganglia (caudate nucleus, putamen, globus pallidus, hippocampus, and thalamus) on the MRIs of pediatric epilepsy patients using levetiracetam.
Collapse
Affiliation(s)
- Hilal Aydin
- Department of Pediatrics, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye
| | - Adil Aytac
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Erdogan Bulbul
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Bahar Yanik
- Department of Radiology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye; (A.A.); (E.B.); (B.Y.)
| | - Oguzhan Korkut
- Department of Medical Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye;
| | - Burak Gulcen
- Department of Anatomy, Faculty of Medicine, Balikesir University, Balikesir 10145, Türkiye;
| |
Collapse
|
6
|
Miletínová E, Kliková M, Dostalíková A, Bušková J. Morphological characteristics of cerebellum, pons and thalamus in Reccurent isolated sleep paralysis - A pilot study. Front Neuroanat 2024; 18:1396829. [PMID: 38962392 PMCID: PMC11219576 DOI: 10.3389/fnana.2024.1396829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Recurrent isolated sleep paralysis (RISP) is a rapid eye movement sleep (REM) parasomnia, characterized by the loss of voluntary movements upon sleep onset and/or awakening with preserved consciousness. Evidence suggests microstructural changes of sleep in RISP, although the mechanism of this difference has not been clarified yet. Our research aims to identify potential morphological changes in the brain that can reflect these regulations. Materials and methods We recruited 10 participants with RISP (8 women; mean age 24.7 years; SD 2.4) and 10 healthy control subjects (w/o RISP; 3 women; mean age 26.3 years; SD 3.7). They underwent video-polysomnography (vPSG) and sleep macrostructure was analyzed. After that participants underwent magnetic resonance imaging (MRI) of the brain. We focused on 2-dimensional measurements of cerebellum, pons and thalamus. Statistical analysis was done in SPSS program. After analysis for normality we performed Mann-Whitney U test to compare our data. Results We did not find any statistically significant difference in sleep macrostructure between patients with and w/o RISP. No evidence of other sleep disturbances was found. 2-dimensional MRI measurements revealed statistically significant increase in cerebellar vermis height (p = 0.044) and antero-posterior diameter of midbrain-pons junction (p = 0.018) in RISP compared to w/o RISP. Discussion Our results suggest increase in size of cerebellum and midbrain-pons junction in RISP. This enlargement could be a sign of an over-compensatory mechanism to otherwise dysfunctional regulatory pathways. Further research should be done to measure these differences in time and with closer respect to the frequency of RISP episodes.
Collapse
Affiliation(s)
- Eva Miletínová
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Praha, Czechia
| | | | | | - Jitka Bušková
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Praha, Czechia
| |
Collapse
|
7
|
Weeland CJ, Vriend C, Tiemeier H, van den Heuvel OA, White T. The Longitudinal Relationship Between Brain Morphology and Obsessive-Compulsive Symptoms in Children From the General Population. JAACAP OPEN 2024; 2:126-134. [PMID: 39554206 PMCID: PMC11562553 DOI: 10.1016/j.jaacop.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 11/19/2024]
Abstract
Objective Cross-sectional studies in children with obsessive-compulsive disorder (OCD) have found larger thalamic volume, which is not found at later ages. We previously found that 9- to 12-year-old children from the general population with clinical-level obsessive-compulsive symptoms (OCS) also have a larger thalamus. Thus, using a longitudinal design, we studied the relationship among thalamic volume, cortical maturation, and the course of OCS. Method Children from the population-based Generation R Study underwent 1 or 2 (N = 2,552) magnetic resonance imaging (MRI) scans between the age of 9 and 16 years (baseline 9-12 years, follow-up 13-16 years). OCS were assessed with the Short Obsessive-Compulsive Disorder Screener (SOCS) questionnaire using both continuous and clinical cut-off measures to identify children with "probable OCD." We applied linear regression models to investigate the cross-sectional relationship between brain morphology and OCS at age 13 to 16 years. Linear mixed-effect models were fitted to model the bidirectional longitudinal relationship between thalamus and OCS and the thalamus and cortical morphology. Results Thalamic volume was not different between probable OCD cases and controls at age 13 to 16 years. Higher baseline thalamic volume predicted a relative persistence of OCS and a flatter slope of thinning in 12 cortical regions. Conclusion Larger thalamic volume may be a subtle biomarker for persistent OCS symptoms. The persistence of OCS and cortical thickness in relation to earlier larger thalamic volume may reflect being at an earlier stage in neurodevelopment. Longitudinal designs with repeated multimodal brain imaging are warranted to improve our understanding of the neurodevelopmental processes underlying OCS and OCD. Study preregistration information Relationship between obsessive-compulsive symptoms and brain morphology in school-aged children in the general population; https://osf.io/; y6vs2.
Collapse
Affiliation(s)
- Cees J. Weeland
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Chris Vriend
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | | | - Odile A. van den Heuvel
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, the Netherlands
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, the Netherlands
- Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Alex AM, Aguate F, Botteron K, Buss C, Chong YS, Dager SR, Donald KA, Entringer S, Fair DA, Fortier MV, Gaab N, Gilmore JH, Girault JB, Graham AM, Groenewold NA, Hazlett H, Lin W, Meaney MJ, Piven J, Qiu A, Rasmussen JM, Roos A, Schultz RT, Skeide MA, Stein DJ, Styner M, Thompson PM, Turesky TK, Wadhwa PD, Zar HJ, Zöllei L, de Los Campos G, Knickmeyer RC. A global multicohort study to map subcortical brain development and cognition in infancy and early childhood. Nat Neurosci 2024; 27:176-186. [PMID: 37996530 PMCID: PMC10774128 DOI: 10.1038/s41593-023-01501-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The human brain grows quickly during infancy and early childhood, but factors influencing brain maturation in this period remain poorly understood. To address this gap, we harmonized data from eight diverse cohorts, creating one of the largest pediatric neuroimaging datasets to date focused on birth to 6 years of age. We mapped the developmental trajectory of intracranial and subcortical volumes in ∼2,000 children and studied how sociodemographic factors and adverse birth outcomes influence brain structure and cognition. The amygdala was the first subcortical volume to mature, whereas the thalamus exhibited protracted development. Males had larger brain volumes than females, and children born preterm or with low birthweight showed catch-up growth with age. Socioeconomic factors exerted region- and time-specific effects. Regarding cognition, males scored lower than females; preterm birth affected all developmental areas tested, and socioeconomic factors affected visual reception and receptive language. Brain-cognition correlations revealed region-specific associations.
Collapse
Affiliation(s)
- Ann M Alex
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Fernando Aguate
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Kelly Botteron
- Mallinickrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Claudia Buss
- Department of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Stephen R Dager
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sonja Entringer
- Department of Medical Psychology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marielle V Fortier
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Diagnostic & Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
| | - Alice M Graham
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Nynke A Groenewold
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Heather Hazlett
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael J Meaney
- Department of Radiology, University of Washington Medical Center, Seattle, WA, USA
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, Suzhou, China
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Institute of Data Science, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, China
| | - Jerod M Rasmussen
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
| | - Annerine Roos
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Robert T Schultz
- Center for Autism Research, Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Skeide
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Martin Styner
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carboro, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of Southern California, Marina del Rey, CA, USA
| | - Ted K Turesky
- Harvard Graduate School of Education, Harvard University, Cambridge, MA, USA
| | - Pathik D Wadhwa
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California Irvine, Irvine, CA, USA
- Departments of Psychiatry and Human Behavior, Obstetrics & Gynecology, Epidemiology, University of California, Irvine, Irvine, CA, USA
| | - Heather J Zar
- South African Medical Research Council (SA-MRC) Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Lilla Zöllei
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gustavo de Los Campos
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
- Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Statistics & Probability, Michigan State University, East Lansing, MI, USA
| | - Rebecca C Knickmeyer
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA.
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
9
|
Asal N, Bayar Muluk N, Özdemir A, Say B. Evaluation of peripheral and central olfactory regions by MRI in patients with idiopathic intracranial hypertension. Neurol Res 2023; 45:346-353. [PMID: 36373831 DOI: 10.1080/01616412.2022.2146261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We investigated the peripheral and central smell regions in patients with idiopathic intracranial hypertension (IIH) by cranial MRI. METHODS In this retrospective study, cranial MRI images of 43 adult patients with IIH (Group 1) and 43 healthy adults without IIH (Group 2) were included. In both groups, peripheral [Olfactory bulb (OB) volume and Olfactory sulcus (OS) depth] and central smell regions (insular gyrus and corpus amygdala area, and thalamus volume) were measured in cranial MRI. RESULTS Bilateral OB volume and insular gyrus area, and right corpus amygdala and thalamus volumes of the IIH group were significantly lower than those of the control group (p < 0.05). In the IIH group, OB volume of the right side was significantly lower, and insular gyrus area of the right side was significantly higher than those of the left side (p < 0.05). In the IIH group, there were positive correlations between OB volumes; OS depths; insular gyrus areas; corpus amygdala areas; and thalamus volumes bilaterally (p < 0.05). In older patients, right OS depth and right corpus amygdala area decreased (p < 0.05). CONCLUSION In conclusion, IIH may be related to olfactory impairment. Cranial MRI images showed a decrease in peripheral (OB volume) and central (insular gyrus and corpus amygdala area and thalamus volume) smell regions. To prevent olfactory impairment in IIH patients, treatment should be done in IIH patients to decrease intracranial pressure. It is very important to prevent the circulation of CSF with increased pressure between the sheets of the olfactory nerve in IIH patients.
Collapse
Affiliation(s)
- Neşe Asal
- Faculty of Medicine, Radiology Department, Kırıkkale University, Kırıkkale, Turkey
| | - Nuray Bayar Muluk
- Faculty of Medicine, ENT Department, Kırıkkale University, Kırıkkale, Turkey
| | - Adnan Özdemir
- Faculty of Medicine, Radiology Department, Kırıkkale University, Kırıkkale, Turkey
| | - Bahar Say
- Faculty of Medicine, Neurology Department, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
10
|
Ana K, Iris ŽI, Nina P, Marina R, Tomislav Ć, Snježana S, Andrea B, Milan R, Ivica K. Linking integrity of visual pathways trajectories to visual behavior deficit in very preterm infants. Infant Behav Dev 2022; 67:101697. [DOI: 10.1016/j.infbeh.2022.101697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
11
|
Weeland CJ, Kasprzak S, de Joode NT, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargallo N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brecke V, Brem S, Cappi C, Cheng Y, Cho KIK, Costa DLC, Dallaspezia S, Denys D, Eng GK, Ferreira S, Feusner JD, Fontaine M, Fouche JP, Grazioplene RG, Gruner P, He M, Hirano Y, Hoexter MQ, Huyser C, Hu H, Jaspers-Fayer F, Kathmann N, Kaufmann C, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minnuzi L, Moreira PS, Morgado P, Nakagawa A, Nakamae T, Narayanaswamy JC, Nurmi EL, Ortiz AE, Pariente JC, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy YCJ, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson HB, Soreni N, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Takahashi J, Tanamatis T, Tang J, Thorsen AL, Tolin D, van der Werf YD, van Marle H, van Wingen GA, Vecchio D, Venkatasubramanian G, Walitza S, Wang J, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zhao Q, White T, Thompson PM, Stein DJ, van den Heuvel OA, Vriend C. The thalamus and its subnuclei-a gateway to obsessive-compulsive disorder. Transl Psychiatry 2022; 12:70. [PMID: 35190533 PMCID: PMC8861046 DOI: 10.1038/s41398-022-01823-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Larger thalamic volume has been found in children with obsessive-compulsive disorder (OCD) and children with clinical-level symptoms within the general population. Particular thalamic subregions may drive these differences. The ENIGMA-OCD working group conducted mega- and meta-analyses to study thalamic subregional volume in OCD across the lifespan. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2649 OCD patients and 2774 healthy controls across 29 sites (50 datasets) were processed using the FreeSurfer built-in ThalamicNuclei pipeline to extract five thalamic subregions. Volume measures were harmonized for site effects using ComBat before running separate multiple linear regression models for children, adolescents, and adults to estimate volumetric group differences. All analyses were pre-registered ( https://osf.io/73dvy ) and adjusted for age, sex and intracranial volume. Unmedicated pediatric OCD patients (<12 years) had larger lateral (d = 0.46), pulvinar (d = 0.33), ventral (d = 0.35) and whole thalamus (d = 0.40) volumes at unadjusted p-values <0.05. Adolescent patients showed no volumetric differences. Adult OCD patients compared with controls had smaller volumes across all subregions (anterior, lateral, pulvinar, medial, and ventral) and smaller whole thalamic volume (d = -0.15 to -0.07) after multiple comparisons correction, mostly driven by medicated patients and associated with symptom severity. The anterior thalamus was also significantly smaller in patients after adjusting for thalamus size. Our results suggest that OCD-related thalamic volume differences are global and not driven by particular subregions and that the direction of effects are driven by both age and medication status.
Collapse
Affiliation(s)
- Cees J. Weeland
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Selina Kasprzak
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Niels T. de Joode
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Yoshinari Abe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie H. Ameis
- grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, Ontario Canada ,grid.42327.300000 0004 0473 9646Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON Canada
| | - Alan Anticevic
- grid.47100.320000000419368710Departments of Psychiatry and Neuroscience, Yale University, New Haven, CT USA
| | - Paul D. Arnold
- grid.22072.350000 0004 1936 7697The Mathison Centre for Mental Health Research & Education, Departments of Psychiatry and Medical Genetics, Calgary, Canada ,grid.22072.350000 0004 1936 7697Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Srinivas Balachander
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nerisa Banaj
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargallo
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain ,grid.410458.c0000 0000 9635 9413Image Diagnostic Center, Hospital Clinic, Barcelona, Spain
| | - Marcelo C. Batistuzzo
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil ,grid.11899.380000 0004 1937 0722Department of Methods and Techniques in Psychology, Pontificial Catholic University of Sao Paulo, Sao Paulo, SP Brazil
| | - Francesco Benedetti
- grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milano, Italy ,grid.18887.3e0000000417581884Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Jan C. Beucke
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany ,grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.461732.5Department of Medical Psychology, Medical School Hamburg, Hamburg, Germany ,grid.461732.5Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Irene Bollettini
- grid.18887.3e0000000417581884Psychiatry and Clinical Psychobiology, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Vilde Brecke
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Silvia Brem
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Carolina Cappi
- grid.59734.3c0000 0001 0670 2351Icahn School of Medicine at Mount Sinai Department of Psychiatry, New York, NY USA
| | - Yuqi Cheng
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K. Cho
- grid.38142.3c000000041936754XPsychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA ,grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Daniel L. C. Costa
- grid.11899.380000 0004 1937 0722Obsessive-Compulsive Spectrum Disorders Program, Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP Brazil
| | - Sara Dallaspezia
- grid.18887.3e0000000417581884IRCCS Ospedale San Raffaele, Milano Italy Psychiatry, Milano, Italy
| | - Damiaan Denys
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Goi Khia Eng
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Sónia Ferreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Jamie D. Feusner
- grid.17063.330000 0001 2157 2938Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada ,grid.19006.3e0000 0000 9632 6718Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA USA
| | - Martine Fontaine
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Jean-Paul Fouche
- grid.7836.a0000 0004 1937 1151Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Rachael G. Grazioplene
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Patricia Gruner
- grid.47100.320000000419368710Department of Psychiatry, Yale University, New Haven, CT USA
| | - Mengxin He
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yoshiyuki Hirano
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan ,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Japan
| | - Marcelo Q. Hoexter
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Chaim Huyser
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands
| | - Hao Hu
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fern Jaspers-Fayer
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada
| | - Norbert Kathmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- grid.7468.d0000 0001 2248 7639Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minah Kim
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Department of Neuropsychiatry, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea
| | - Kathrin Koch
- grid.6936.a0000000123222966Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität, München, Germany ,grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Yoo Bin Kwak
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Jun Soo Kwon
- grid.31501.360000 0004 0470 5905Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Department of Psychiatry, Seoul, Republic of Korea ,grid.412484.f0000 0001 0302 820XDepartment of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic, IDIBAPS, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- grid.11956.3a0000 0001 2214 904XStellenbosch University, SAMRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch, South Africa
| | - Rachel Marsh
- grid.21729.3f0000000419368729Columbia University Medical College, Columbia University, New York, NY USA
| | - Ignacio Martínez-Zalacaín
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - David Mataix-Cols
- grid.4714.60000 0004 1937 0626Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden ,grid.467087.a0000 0004 0442 1056Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Jose M. Menchón
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Luciano Minnuzi
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Offord Centre for Child Studies, Hamilton, Ontario Canada
| | - Pedro Silva Moreira
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.10328.380000 0001 2159 175XPsychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center-Braga (2CA), Braga, Portugal ,grid.436922.80000 0004 4655 1975Hospital de Braga, Braga, Portugal
| | - Akiko Nakagawa
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Takashi Nakamae
- grid.272458.e0000 0001 0667 4960Graduate School of Medical Science Kyoto Prefectural University of Medicine, Department of Psychiatry, Kyoto, Japan
| | - Janardhanan C. Narayanaswamy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Erika L. Nurmi
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA USA
| | - Ana E. Ortiz
- grid.410458.c0000 0000 9635 9413Department of Child and Adolescent Psychiatry and Psychology, Institute of Neuroscience, Hospital Clinic, Barcelona, Spain ,grid.10403.360000000091771775Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jose C. Pariente
- grid.10403.360000000091771775Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John Piacentini
- grid.19006.3e0000 0000 9632 6718UCLA Semel Institute, Division of Child and Adolescent Psychiatry, Los Angeles, CA USA
| | - Maria Picó-Pérez
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Fabrizio Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Christopher Pittenger
- grid.47100.320000000419368710Department of Psychiatry and Yale Child Study Center, Yale University, New Haven, CT USA
| | - Y. C. Janardhan Reddy
- grid.416861.c0000 0001 1516 2246OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daniela Rodriguez-Manrique
- grid.6936.a0000000123222966TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, München, Germany ,grid.6936.a0000000123222966Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany ,grid.5252.00000 0004 1936 973XGraduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Yuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan ,grid.418163.90000 0001 2291 1583Department of Neural Computation for Decision-Making, Advanced Telecommunications Research Institute International Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Eiji Shimizu
- grid.136304.30000 0004 0370 1101Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- grid.416861.c0000 0001 1516 2246Department of Integrative Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Helen Blair Simpson
- grid.21729.3f0000000419368729Columbia University Irving Medical College, Columbia University, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Noam Soreni
- grid.25073.330000 0004 1936 8227Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario Canada ,Pediatric OCD Consultation Team, Anxiety Treatment and Research Center, Hamilton, Ontario Canada
| | - Carles Soriano-Mas
- grid.411129.e0000 0000 8836 0780Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain ,grid.469673.90000 0004 5901 7501CIBERSAM, Barcelona, Spain ,grid.7080.f0000 0001 2296 0625Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuno Sousa
- grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal ,grid.512329.eClinical Academic Center - Braga, Braga, Portugal
| | - Gianfranco Spalletta
- grid.417778.a0000 0001 0692 3437IRCCS Santa Lucia Foundation, Laboratory of Neuropsychiatry, Rome, Italy ,grid.39382.330000 0001 2160 926XBaylor College of Medicine, Department of Psychiatry and Behavioral Sciences, Houston, TX USA
| | - Emily R. Stern
- grid.137628.90000 0004 1936 8753Department of Psychiatry, New York University School of Medicine, New York, NY USA ,grid.250263.00000 0001 2189 4777Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY USA
| | - Michael C. Stevens
- grid.277313.30000 0001 0626 2712Institute of Living, Hartford, CT USA ,grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA
| | - S. Evelyn Stewart
- grid.17091.3e0000 0001 2288 9830Department of Psychiatry, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788British Columbia Children’s Hospital Research Institute, Vancouver, Canada ,grid.498716.50000 0000 8794 2105BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| | - Philip R. Szeszko
- grid.59734.3c0000 0001 0670 2351Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.274295.f0000 0004 0420 1184James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Center, Bronx, NY USA
| | - Jumpei Takahashi
- grid.411321.40000 0004 0632 2959Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Tais Tanamatis
- grid.11899.380000 0004 1937 0722Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP Brazil
| | - Jinsong Tang
- grid.13402.340000 0004 1759 700XDepartment of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Anders Lillevik Thorsen
- grid.412008.f0000 0000 9753 1393Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway ,grid.7914.b0000 0004 1936 7443Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - David Tolin
- grid.47100.320000000419368710Yale University School of Medicine, New Haven, CT USA ,grid.277313.30000 0001 0626 2712Institute of Living/Hartford Hospital, Hartford, CT USA
| | - Ysbrand D. van der Werf
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Hein van Marle
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Guido A. van Wingen
- grid.484519.5Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Daniela Vecchio
- grid.417778.a0000 0001 0692 3437Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - G. Venkatasubramanian
- grid.416861.c0000 0001 1516 2246National Institute of Mental Health And Neurosciences, Department of Psychiatry, Bengaluru, India
| | - Susanne Walitza
- grid.7400.30000 0004 1937 0650Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jicai Wang
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhen Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anri Watanabe
- grid.272458.e0000 0001 0667 4960Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij H. Wolters
- grid.509540.d0000 0004 6880 3010Amsterdam UMC, Department of Child and Adolescent Psychiatry, Amsterdam, the Netherlands ,Levvel, Academic Center for Child and Adolescent Psychiatry, Post Box 303, 1115 ZG Duivendrecht, the Netherlands
| | - Xiufeng Xu
- grid.414902.a0000 0004 1771 3912Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- grid.412484.f0000 0001 0302 820XSeoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing Zhao
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tonya White
- grid.5645.2000000040459992XErasmus Medical Center, Department of Child and Adolescent Psychiatry/Psychology, Wytemaweg 8, 3015 GD Rotterdam, the Netherlands ,grid.42505.360000 0001 2156 6853Department of Radiology and Nuclear Medicine, University of Southern California, Los Angeles, CA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Dan J. Stein
- grid.7836.a0000 0004 1937 1151SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A. van den Heuvel
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| | - Chris Vriend
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Flotte TR, Cataltepe O, Puri A, Batista AR, Moser R, McKenna-Yasek D, Douthwright C, Gernoux G, Blackwood M, Mueller C, Tai PWL, Jiang X, Bateman S, Spanakis SG, Parzych J, Keeler AM, Abayazeed A, Rohatgi S, Gibson L, Finberg R, Barton BA, Vardar Z, Shazeeb MS, Gounis M, Tifft CJ, Eichler FS, Brown RH, Martin DR, Gray-Edwards HL, Sena-Esteves M. AAV gene therapy for Tay-Sachs disease. Nat Med 2022; 28:251-259. [PMID: 35145305 PMCID: PMC10786171 DOI: 10.1038/s41591-021-01664-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Tay-Sachs disease (TSD) is an inherited neurological disorder caused by deficiency of hexosaminidase A (HexA). Here, we describe an adeno-associated virus (AAV) gene therapy expanded-access trial in two patients with infantile TSD (IND 18225) with safety as the primary endpoint and no secondary endpoints. Patient TSD-001 was treated at 30 months with an equimolar mix of AAVrh8-HEXA and AAVrh8-HEXB administered intrathecally (i.t.), with 75% of the total dose (1 × 1014 vector genomes (vg)) in the cisterna magna and 25% at the thoracolumbar junction. Patient TSD-002 was treated at 7 months by combined bilateral thalamic (1.5 × 1012 vg per thalamus) and i.t. infusion (3.9 × 1013 vg). Both patients were immunosuppressed. Injection procedures were well tolerated, with no vector-related adverse events (AEs) to date. Cerebrospinal fluid (CSF) HexA activity increased from baseline and remained stable in both patients. TSD-002 showed disease stabilization by 3 months after injection with ongoing myelination, a temporary deviation from the natural history of infantile TSD, but disease progression was evident at 6 months after treatment. TSD-001 remains seizure-free at 5 years of age on the same anticonvulsant therapy as before therapy. TSD-002 developed anticonvulsant-responsive seizures at 2 years of age. This study provides early safety and proof-of-concept data in humans for treatment of patients with TSD by AAV gene therapy.
Collapse
Affiliation(s)
- Terence R Flotte
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA.
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
| | - Oguz Cataltepe
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurosurgery, UMass Chan Medical School, Worcester, MA, USA
| | - Ajit Puri
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Ana Rita Batista
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Richard Moser
- Department of Neurosurgery, UMass Chan Medical School, Worcester, MA, USA
| | | | | | - Gwladys Gernoux
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Meghan Blackwood
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Christian Mueller
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Xuntian Jiang
- Department of Medicine and Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Scot Bateman
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
| | - Spiro G Spanakis
- Departments of Anesthesiology and Perioperative Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Julia Parzych
- Departments of Anesthesiology and Perioperative Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
| | - Aly Abayazeed
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Saurabh Rohatgi
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Laura Gibson
- Department of Pediatrics, UMass Chan Medical School, Worcester, MA, USA
- Department of Internal Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Robert Finberg
- Department of Internal Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - Bruce A Barton
- Population and Quantitative Health Sciences, UMass Chan Medical School, Worcester, MA, USA
| | - Zeynep Vardar
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | | | - Matthew Gounis
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Cynthia J Tifft
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert H Brown
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA
- Department of Radiology, UMass Chan Medical School, Worcester, MA, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center and The Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA, USA.
- Department of Neurology, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
13
|
Kilic H, Yilmaz K, Asgarova P, Kizilkilic O, Hatay GH, Ozturk-Isik E, Yalcinkaya C, Saltik S. Electrical status epilepticus in sleep: The role of thalamus in etiopathogenesis. Seizure 2021; 93:44-50. [PMID: 34687985 DOI: 10.1016/j.seizure.2021.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In patients diagnosed with epilepsy, decreased ratio of N-acetyl aspartate to creatine (NAA/Cr) measured in magnetic resonance spectroscopy (MRS) has been accepted as a sign of neuronal cell loss or dysfunction. In this study, we aimed to determine whether a similar neuronal cell loss is present in a group of encephalopathy with electrical status epilepticus in sleep (ESES) patients METHODS: We performed this case-control study at a tertiary pediatric neurology center with patients with ESES. Inclusion criteria for the patient group were as follows: 1) a spike-wave index of at least 50%, 2) acquired neuropsychological regression, 3) normal cranial MRI. Eventually, a total of 21 patients with ESES and 17 control subjects were enrolled in the study. MRI of all control subjects was also within normal limits. 3D Slicer program was used for the analysis of thalamic and brain volumes. LCModel spectral fitting software was used to analyze single-voxel MRS data from the right and left thalamus of the subjects. RESULTS The mean age was 8.0 ± 1.88 years and 8.3 ± 1.70 years in ESES patients and the control subjects. After correcting for the main potential confounders (age and gender) with a linear regression model, NAA/Creatine ratio of the right thalamus was significantly lower in the ESES patient group compared to the healthy control group (p = 0.026). Likewise, the left thalamus NAA/Cr ratio was significantly lower in the ESES patient group than the healthy control group (p = 0.007). After correcting for age and gender, right thalamic volume was not statistically significantly smaller in ESES patients than in healthy controls (p = 0.337), but left thalamic volume was smaller in ESES patients than in healthy controls (p = 0.024). CONCLUSION In ESES patients, the NAA/Creatine ratio, which is an indicator of neuronal cell loss or dysfunction in the right and left thalamus, which appears regular on MRI, was found to be significantly lower than the healthy control group. This metabolic-induced thalamic dysfunction, which was reported for the first time up to date, may play a role in ESES epileptogenesis.
Collapse
Affiliation(s)
- Huseyin Kilic
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Kubra Yilmaz
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Parvana Asgarova
- Department of Neuroradiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Osman Kizilkilic
- Department of Neuroradiology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokçe Hale Hatay
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sema Saltik
- Department of Pediatric Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
14
|
Morel B, Piredda GF, Cottier JP, Tauber C, Destrieux C, Hilbert T, Sirinelli D, Thiran JP, Maréchal B, Kober T. Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition. Eur Radiol 2020; 31:1505-1516. [PMID: 32885296 DOI: 10.1007/s00330-020-07194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES This study introduced a tailored MP2RAGE-based brain acquisition for a comprehensive assessment of the normal maturing brain. METHODS Seventy normal patients (35 girls and 35 boys) from 1 to 16 years of age were recruited within a prospective monocentric study conducted from a single University Hospital. Brain MRI examinations were performed at 1.5 T using a 20-channel head coil and an optimized 3D MP2RAGE sequence with a total acquisition time of 6:36 min. Automated 38 region segmentation was performed using the MorphoBox (template registration, bias field correction, brain extraction, and tissue classification) which underwent a major adaptation of three age-group T1-weighted templates. Volumetry and T1 relaxometry reference ranges were established using a logarithmic model and a modified Gompertz growth respectively. RESULTS Detailed automated brain segmentation and T1 mapping were successful in all patients. Using these data, an age-dependent model of normal brain maturation with respect to changes in volume and T1 relaxometry was established. After an initial rapid increase until 24 months of life, the total intracranial volume was found to converge towards 1400 mL during adolescence. The expected volumes of white matter (WM) and cortical gray matter (GM) showed a similar trend with age. After an initial major decrease, T1 relaxation times were observed to decrease progressively in all brain structures. The T1 drop in the first year of life was more pronounced in WM (from 1000-1100 to 650-700 ms) than in GM structures. CONCLUSION The 3D MP2RAGE sequence allowed to establish brain volume and T1 relaxation time normative ranges in pediatrics. KEY POINTS • The 3D MP2RAGE sequence provided a reliable quantitative assessment of brain volumes and T1 relaxation times during childhood. • An age-dependent model of normal brain maturation was established. • The normative ranges enable an objective comparison to a normal cohort, which can be useful to further understand, describe, and identify neurodevelopmental disorders in children.
Collapse
Affiliation(s)
- Baptiste Morel
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France. .,Pediatric Radiology Department, Clocheville Hospital, CHRU de Tours, 49 Boulevard Beranger, 37000, Tours, France.
| | - Gian Franco Piredda
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Clovis Tauber
- Inserm UMR 1253, iBrain, Université de Tours, Tours, France
| | | | - Tom Hilbert
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Jean-Philippe Thiran
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bénédicte Maréchal
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland.,Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,LTS5, École Polytechnique FÉdÉrale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Taghian T, Horn E, Shazeeb MS, Bierfeldt LJ, Tuominen SM, Koehler J, Fernau D, Bertrand S, Frey S, Cataltepe OI, Gounis MJ, Abayazeed AH, Flotte TR, Sena-Esteves M, Gray-Edwards HL. Volume and Infusion Rate Dynamics of Intraparenchymal Central Nervous System Infusion in a Large Animal Model. Hum Gene Ther 2020; 31:617-625. [PMID: 32363942 DOI: 10.1089/hum.2019.288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thalamic infusion of adeno-associated viral (AAV) vectors has been shown to have therapeutic effects in neuronopathic lysosomal storage diseases. Preclinical studies in sheep model of Tay-Sachs disease demonstrated that bilateral thalamic injections of AAV gene therapy are required for maximal benefit. Translation of thalamic injection to patients carries risks in that (1) it has never been done in humans, and (2) dosing scale-up based on brain weight from animals to humans requires injection of larger volumes. To increase the safety margin of this infusion, a flexible cannula was selected to enable simultaneous bilateral thalamic infusion in infants while monitoring by imaging and/or to enable awake infusions for injection of large volumes at low infusion rates. In this study, we tested various infusion volumes (200-800 μL) and rates (0.5-5 μL/min) to determine the maximum tolerated combination of injection parameters. Animals were followed for ∼1 month postinjection with magnetic resonance imaging (MRI) performed at 14 and 28 days. T1-weighted MRI was used to quantify thalamic damage followed by histopathological assessment of the brain. Trends in data show that infusion volumes of 800 μL (2 × the volume required in sheep based on thalamic size) resulted in larger lesions than lower volumes, where the long infusion times (between 13 and 26 h) could have contributed to the generation of larger lesions. The target volume (400 μL, projected to be sufficient to cover most of the sheep thalamus) created the smallest lesion size. Cannula placement alone did result in damage, but this is likely associated with an inherent limitation of its use in a small brain due to the length of the distal rigid portion and lack of stable fixation. An injection rate of 5 μL/min at a volume ∼1/3 of the thalamus (400-600 μL) appears to be well tolerated in sheep both clinically and histopathologically.
Collapse
Affiliation(s)
- Toloo Taghian
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Erin Horn
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mohammed Salman Shazeeb
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lindsey J Bierfeldt
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Susan M Tuominen
- Department of Animal Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer Koehler
- Department of Pathology, Auburn University, Auburn, Alabama, USA
| | - Deborah Fernau
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Stephanie Bertrand
- Department of Environmental Population Health, Cummings Veterinary School at Tufts University, Grafton, Massachusetts, USA
| | | | - Oguz I Cataltepe
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew J Gounis
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aly H Abayazeed
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Miguel Sena-Esteves
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Heather L Gray-Edwards
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
16
|
Vinke EJ, Huizinga W, Bergtholdt M, Adams HH, Steketee RM, Papma JM, de Jong FJ, Niessen WJ, Ikram MA, Wenzel F, Vernooij MW. Normative brain volumetry derived from different reference populations: impact on single-subject diagnostic assessment in dementia. Neurobiol Aging 2019; 84:9-16. [DOI: 10.1016/j.neurobiolaging.2019.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/05/2023]
|