1
|
Yang F, Wang C, Shen J, Ren Y, Yu F, Luo W, Su X. End-to-end [ 18F]PSMA-1007 PET/CT radiomics-based pipeline for predicting ISUP grade group in prostate cancer. Abdom Radiol (NY) 2025; 50:1641-1652. [PMID: 39349643 DOI: 10.1007/s00261-024-04601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 03/27/2025]
Abstract
OBJECTIVES To develop an end-to-end radiomics-based pipeline for the prediction of International Society of Urological Pathology grade group (ISUP GG) in prostate cancer (PCa). METHODS This retrospective study includes 356 patients (241 in training set and 115 in independent test set) with histopathologically confirmed PCa who underwent [18F]PSMA-1007 PET/CT scan. Patients were classified into two groups according to their ISUP GG (1-3 vs. 4-5). Radiomics features were extracted from the whole, automatically segmented prostate on PET/CT images, 30 models were constructed by combining 6 feature selection algorithms and 5 machine learning classifiers. The clinical model incorporated age, total prostate-specific antigen (tPSA), maximum standardized uptake value (SUVmax), and prostate volume. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC), balanced accuracy (bAcc), and decision curve analysis (DCA). RESULTS The best-performing radiomics model significantly outperformed clinical model (AUC 0.879 ± 0.041 vs. 0.799 ± 0.051, bAcc 0.745 ± 0.074 vs. 0.629 ± 0.045). On an external independent test set, best-performing radiomics model perform better than clinical model, with an AUC of 0.861 vs. 0.750, p = 0.002 (Delong), and bAcc of 0.764 vs. 0.582, p = 0.043 (McNemar). The learning curve, calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice. CONCLUSION The end-to-end radiomics-based pipeline is an effective non-invasive tool to predict ISUP GG in PCa.
Collapse
Affiliation(s)
- Fei Yang
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China
| | - Chenhao Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, People's Republic of China
| | - Jiale Shen
- College of Biomedical Engineering and Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, People's Republic of China
| | - Yue Ren
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Feng Yu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, People's Republic of China.
| | - Wei Luo
- College of Biomedical Engineering and Instrument Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310007, People's Republic of China.
| | - Xinhui Su
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Zhang P, Feng Y, Lv W, Min X, Liu Z, Li J, Feng Z. Identification of testicular cancer with T2-weighted MRI-based radiomics and automatic machine learning. BMC Cancer 2025; 25:563. [PMID: 40155850 PMCID: PMC11951623 DOI: 10.1186/s12885-025-13844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Distinguishing between benign and malignant testicular lesions on clinical magnetic resonance imaging (MRI) is crucial for guiding treatment planning. However, conventional MRI-based radiomics to identify testicular cancer requires expert machine learning knowledge. This study aims to investigate the potential of utilizing automatic machine learning (AutoML) based on MRI to diagnose testicular lesions without the need for expert algorithm optimization. METHODS Retrospective preoperative MRI scans from 115 patients diagnosed with testicular disease through pathology were obtained. A total of 1781 radiomics features were extracted from each lesion on the T2-weighted images. Intraclass and interclass correlation coefficients were used to evaluate the intra-observer and interobserver agreements for each radiomics feature. We developed an AutoML method based on the tree-based pipeline optimization tool (TPOT) algorithm to construct a discriminant model. The best pipeline was determined through 100 repeated operations using a 5-fold cross-validation algorithm in TPOT. The model was evaluated for accuracy, sensitivity, and specificity using the area under the curve (AUC) value of the receiver operating characteristic (ROC) curve. Shapley Additive exPlanations were used to illustrate the optimization results. RESULTS Utilizing the TPOT method, 100 diagnostic models were developed to identify testicular lesions. The best model was determined based on the highest AUC in the training cohort. The prediction model yielded AUC values of 0.989 (95% confidence interval [CI]: 0.985-0.993) and 0.909 (95% CI: 0.893-0.923) in the training and testing cohorts, respectively. CONCLUSIONS AutoML, based on the TPOT algorithm, holds potential as a noninvasive method for effectively discriminating between benign and malignant testicular lesions.
Collapse
Affiliation(s)
- Liang Wang
- Computer Center, Tongji Hospital, Tongji Medical College, Uazhong University of Science and Technology, Wuhan, China
| | - PeiPei Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhui Feng
- Computer Center, Tongji Hospital, Tongji Medical College, Uazhong University of Science and Technology, Wuhan, China
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhi Lv
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Britton Chance Center, MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Liu
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Computer Center, Tongji Hospital, Tongji Medical College, Uazhong University of Science and Technology, Wuhan, China.
| | - Zhaoyan Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zandie F, Salehi M, Maziar A, Bayatiani MR, Paydar R. Radiomics based Machine Learning Models for Classification of Prostate Cancer Grade Groups from Multi Parametric MRI Images. JOURNAL OF MEDICAL SIGNALS & SENSORS 2024; 14:33. [PMID: 39741789 PMCID: PMC11687675 DOI: 10.4103/jmss.jmss_47_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 01/03/2025]
Abstract
Purpose This study aimed to investigate the performance of multiparametric magnetic resonance imaging (mpMRI) radiomic feature-based machine learning (ML) models in classifying the Gleason grade group (GG) of prostate cancer. Methods In this retrospective study, a total of 203 patients with histopathologically confirmed prostate cancer who underwent mpMRI before prostate biopsy were included. After manual segmentation, radiomic features (RFs) were extracted from T2-weighted, apparent diffusion coefficient, and high b-value diffusion-weighted magnetic resonance imaging (DWMRI). Patients were split into training sets and testing sets according to a ratio of 8:2. A pipeline considering combinations of two feature selection (FS) methods and six ML classifiers was developed and evaluated. The performance of models was assessed using the accuracy, sensitivity, precision, F1-measure, and the area under curve (AUC). Results On high b-value DWMRI-derived features, a combination of FS method recursive feature elimination (RFE) and classifier random forest achieved the highest performance for classification of prostate cancer into five GGs, with 97.0% accuracy, 98.0% sensitivity, 98.0% precision, and 97.0% F1-measure. The method also achieved an average AUC for GG of 98%. Conclusion Preoperative mpMRI radiomic analysis based on ML, as a noninvasive approach, showed good performance for classification of prostate cancer into five GGs. Advances in Knowledge Herein, radiomic models based on preoperative mpMRI and ML were developed to classify prostate cancer into 5 GGs. Our study provides evidence that analysis of quantitative RFs extracted from high b-value DWMRI images based on a combination of FS method RFE and classifier random forest can be applied for multiclass grading of prostate cancer with an accuracy of 97.0%.
Collapse
Affiliation(s)
- Fatemeh Zandie
- Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Salehi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asghar Maziar
- Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Bayatiani
- Department of Radiotherapy and Medical Physics, Faculty of Para Medicine, Arak University of Medical Sciences and Khansari Hospital, Arak, Iran
| | - Reza Paydar
- Department of Radiation Sciences, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Marvaso G, Isaksson LJ, Zaffaroni M, Vincini MG, Summers PE, Pepa M, Corrao G, Mazzola GC, Rotondi M, Mastroleo F, Raimondi S, Alessi S, Pricolo P, Luzzago S, Mistretta FA, Ferro M, Cattani F, Ceci F, Musi G, De Cobelli O, Cremonesi M, Gandini S, La Torre D, Orecchia R, Petralia G, Jereczek-Fossa BA. Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models. Eur Radiol 2024; 34:6241-6253. [PMID: 38507053 DOI: 10.1007/s00330-024-10699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/18/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institution cohort. METHODS Patients who underwent multiparametric MRI and prostatectomy in our institution in 2015-2018 were considered; a total of 949 patients were included. Gradient-boosted decision tree models were separately trained using clinical features alone and in combination with radiological reporting and/or prostate radiomic features to predict pathological T, pathological N, ISUP score, and their change from preclinical assessment. Model behavior was analyzed in terms of performance, feature importance, Shapley additive explanation (SHAP) values, and mean absolute error (MAE). The best model was compared against a naïve model mimicking clinical workflow. RESULTS The model including all variables was the best performing (AUC values ranging from 0.73 to 0.96 for the six endpoints). Radiomic features brought a small yet measurable boost in performance, with the SHAP values indicating that their contribution can be critical to successful prediction of endpoints for individual patients. MAEs were lower for low-risk patients, suggesting that the models find them easier to classify. The best model outperformed (p ≤ 0.0001) clinical baseline, resulting in significantly fewer false negative predictions and overall was less prone to under-staging. CONCLUSIONS Our results highlight the potential benefit of integrative ML models for pathological status prediction in PCa. Additional studies regarding clinical integration of such models can provide valuable information for personalizing therapy offering a tool to improve non-invasive prediction of pathological status. CLINICAL RELEVANCE STATEMENT The best machine learning model was less prone to under-staging of the disease. The improved accuracy of our pathological prediction models could constitute an asset to the clinical workflow by providing clinicians with accurate pathological predictions prior to treatment. KEY POINTS • Currently, the most common strategies for pre-surgical stratification of prostate cancer (PCa) patients have shown to have suboptimal performances. • The addition of radiological features to the clinical features gave a considerable boost in model performance. Our best model outperforms the naïve model, avoiding under-staging and resulting in a critical advantage in the clinic. •Machine learning models incorporating clinical, radiological, and radiomics features significantly improved accuracy of pathological prediction in prostate cancer, possibly constituting an asset to the clinical workflow.
Collapse
Affiliation(s)
- Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Paul Eugene Summers
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Pepa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia Corrao
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Marco Rotondi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- University of Piemonte Orientale, Novara, Italy
| | - Sara Raimondi
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sarah Alessi
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Pricolo
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Luzzago
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Ferro
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ceci
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Nuclear Medicine, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Gennaro Musi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Ottavio De Cobelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Urology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Gandini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Davide La Torre
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- SKEMA Business School, Université Côte d'Azur, Sophia Antipolis, France
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Radiology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Yang Z, Liu C. Research on the application of radiomics in breast cancer: A bibliometrics and visualization analysis. Medicine (Baltimore) 2024; 103:e39463. [PMID: 39213225 PMCID: PMC11365679 DOI: 10.1097/md.0000000000039463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer worldwide. Therefore, improved disease detection has emerged as a focal point in clinical studies. At the forefront of innovation, radiomics has the capability to extract comprehensive insights from medical images, ultimately enhancing the accuracy of diagnostic procedures. There has been rapid growth in the field of radiomics research on breast cancer in the past few years. We explored pertinent research articles in the Web of Science Core Collection database to gain a thorough understanding of breast cancer radiomics. We used CiteSpace to conduct a bibliometric analysis of the annual distribution of different nations, institutions, journals, authors, keywords, and references in the field of breast cancer radiomics. GraphPad Prism software was used to examine and graph yearly and country-specific trends and the proportions of publications. The tools utilized for the visualization of science mapping included CiteSpace and VOSviewer. Of the 891 publications, most were original articles (731, 91.09%) and a few were reviews (160, 8.91%). Most academic research has been published in China and the United States. The study centers predominantly consisted of major academic institutions, such as Fudan University and the Chinese Academy of Sciences, with some of their members being prominent figures in the field. Pinker, Katja has published the largest number of research papers. The majority of these studies have been published in medical journals focusing on radiology and oncology in recent years. In the realm of cutting-edge medical research, the top two keywords, magnetic resonance imaging and machine learning stand at the forefront as current areas of intense focus. Breast cancer radiomics is advancing rapidly, presenting numerous opportunities and obstacles. Our study of the literature in this academic area aimed to pinpoint the primary themes addressed in the studies and anticipate prospective avenues for research.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Chenglong Liu
- Department of Radiology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| |
Collapse
|
6
|
Feng Y, Feng Z, Wang L, Lv W, Liu Z, Min X, Li J, Zhang J. Comparison and analysis of multiple machine learning models for discriminating benign and malignant testicular lesions based on magnetic resonance imaging radiomics. Front Med (Lausanne) 2023; 10:1279622. [PMID: 38188340 PMCID: PMC10768048 DOI: 10.3389/fmed.2023.1279622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Accurate identification of testicular tumors through better lesion characterization can optimize the radical surgical procedures. Here, we compared the performance of different machine learning approaches for discriminating benign testicular lesions from malignant ones, using a radiomics score derived from magnetic resonance imaging (MRI). Methods One hundred fifteen lesions from 108 patients who underwent MRI between February 2014 and July 2022 were enrolled in this study. Based on regions-of-interest, radiomics features extraction can be realized through PyRadiomics. For measuring feature reproducibility, we considered both intraclass and interclass correlation coefficients. We calculated the correlation between each feature and the predicted target, removing redundant features. In our radiomics-based analysis, we trained classifiers on 70% of the lesions and compared different models, including linear discrimination, gradient boosting, and decision trees. We applied each classification algorithm to the training set using different random seeds, repeating this process 10 times and recording performance. The highest-performing model was then tested on the remaining 30% of the lesions. We used widely accepted metrics, such as the area under the curve (AUC), to evaluate model performance. Results We acquired 1,781 radiomic features from the T2-weighted maps of each lesion. Subsequently, we constructed classification models using the top 10 most significant features. The 10 machine-learning algorithms we utilized were capable of diagnosing testicular lesions. Of these, the XGBoost classification emerged as the most superior, achieving the highest AUC value of 0.905 (95% confidence interval: 0.886-0.925) on the testing set and outstripping the other models that typically scored AUC values between 0.697-0.898. Conclusion Preoperative MRI radiomics offers potential for distinguishing between benign and malignant testicular lesions. An ensemble model like the boosting algorithm embodied by XGBoost may outperform other models.
Collapse
Affiliation(s)
- Yanhui Feng
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoyan Feng
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wang
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhi Lv
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Liu
- School of Medicine and Health Management, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangde Min
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Li
- Computer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxuan Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Zhu M, Liang Z, Feng T, Mai Z, Jin S, Wu L, Zhou H, Chen Y, Yan W. Up-to-Date Imaging and Diagnostic Techniques for Prostate Cancer: A Literature Review. Diagnostics (Basel) 2023; 13:2283. [PMID: 37443677 DOI: 10.3390/diagnostics13132283] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer (PCa) faces great challenges in early diagnosis, which often leads not only to unnecessary, invasive procedures, but to over-diagnosis and treatment as well, thus highlighting the need for modern PCa diagnostic techniques. The review aims to provide an up-to-date summary of chronologically existing diagnostic approaches for PCa, as well as their potential to improve clinically significant PCa (csPCa) diagnosis and to reduce the proliferation and monitoring of PCa. Our review demonstrates the primary outcomes of the most significant studies and makes comparisons across the diagnostic efficacies of different PCa tests. Since prostate biopsy, the current mainstream PCa diagnosis, is an invasive procedure with a high risk of post-biopsy complications, it is vital we dig out specific, sensitive, and accurate diagnostic approaches in PCa and conduct more studies with milestone findings and comparable sample sizes to validate and corroborate the findings.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhen Liang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianrui Feng
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhipeng Mai
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shijie Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Liyi Wu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Huashan Zhou
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuliang Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Weigang Yan
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
8
|
Li C, Deng M, Zhong X, Ren J, Chen X, Chen J, Xiao F, Xu H. Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI. Front Oncol 2023; 13:1198899. [PMID: 37448515 PMCID: PMC10338012 DOI: 10.3389/fonc.2023.1198899] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop an imaging model based on multi-parametric MR images for distinguishing between prostate cancer (PCa) and prostate hyperplasia. Methods A total of 236 subjects were enrolled and divided into training and test sets for model construction. Firstly, a multi-view radiomics modeling strategy was designed in which different combinations of radiomics feature categories (original, LoG, and wavelet) were compared to obtain the optimal input feature sets. Minimum-redundancy maximum-relevance (mRMR) selection and least absolute shrinkage selection operator (LASSO) were used for feature reduction, and the next logistic regression method was used for model construction. Then, a Swin Transformer architecture was designed and trained using transfer learning techniques to construct the deep learning models (DL). Finally, the constructed multi-view radiomics and DL models were combined and compared for model selection and nomogram construction. The prediction accuracy, consistency, and clinical benefit were comprehensively evaluated in the model comparison. Results The optimal input feature set was found when LoG and wavelet features were combined, while 22 and 17 radiomic features in this set were selected to construct the ADC and T2 multi-view radiomic models, respectively. ADC and T2 DL models were built by transferring learning from a large number of natural images to a relatively small sample of prostate images. All individual and combined models showed good predictive accuracy, consistency, and clinical benefit. Compared with using only an ADC-based model, adding a T2-based model to the combined model would reduce the model's predictive performance. The ADCCombinedScore model showed the best predictive performance among all and was transformed into a nomogram for better use in clinics. Discussion The constructed models in our study can be used as a predictor in differentiating PCa and BPH, thus helping clinicians make better clinical treatment decisions and reducing unnecessary prostate biopsies.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoli Zhong
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinxia Ren
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohui Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Feng Xiao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Basso Dias A, Mirshahvalad SA, Ortega C, Perlis N, Berlin A, van der Kwast T, Ghai S, Jhaveri K, Metser U, Haider M, Avery L, Veit-Haibach P. The role of [ 18F]-DCFPyL PET/MRI radiomics for pathological grade group prediction in prostate cancer. Eur J Nucl Med Mol Imaging 2023; 50:2167-2176. [PMID: 36809425 DOI: 10.1007/s00259-023-06136-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To evaluate the diagnostic accuracy of [18F]-DCFPyL PET/MRI radiomics for the prediction of pathological grade group in prostate cancer (PCa) in therapy-naïve patients. METHODS Patients with confirmed or suspected PCa, who underwent [18F]-DCFPyL PET/MRI (n = 105), were included in this retrospective analysis of two prospective clinical trials. Radiomic features were extracted from the segmented volumes following the image biomarker standardization initiative (IBSI) guidelines. Histopathology obtained from systematic and targeted biopsies of the PET/MRI-detected lesions was the reference standard. Histopathology patterns were dichotomized as ISUP GG 1-2 vs. ISUP GG ≥ 3 categories. Different single-modality models were defined for feature extraction, including PET- and MRI-derived radiomic features. The clinical model included age, PSA, and lesions' PROMISE classification. Single models, as well as different combinations of them, were generated to calculate their performances. A cross-validation approach was used to evaluate the internal validity of the models. RESULTS All radiomic models outperformed the clinical models. The best model for grade group prediction was the combination of PET + ADC + T2w radiomic features, showing sensitivity, specificity, accuracy, and AUC of 0.85, 0.83, 0.84, and 0.85, respectively. The MRI-derived (ADC + T2w) features showed sensitivity, specificity, accuracy, and AUC of 0.88, 0.78, 0.83, and 0.84, respectively. PET-derived features showed 0.83, 0.68, 0.76, and 0.79, respectively. The baseline clinical model showed 0.73, 0.44, 0.60, and 0.58, respectively. The addition of the clinical model to the best radiomic model did not improve the diagnostic performance. The performances of MRI and PET/MRI radiomic models as per the cross-validation scheme yielded an accuracy of 0.80 (AUC = 0.79), whereas clinical models presented an accuracy of 0.60 (AUC = 0.60). CONCLUSION The combined [18F]-DCFPyL PET/MRI radiomic model was the best-performing model and outperformed the clinical model for pathological grade group prediction, indicating a complementary value of the hybrid PET/MRI model for non-invasive risk stratification of PCa. Further prospective studies are required to confirm the reproducibility and clinical utility of this approach.
Collapse
Affiliation(s)
- Adriano Basso Dias
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada.
| | - Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Claudia Ortega
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Nathan Perlis
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Alejandro Berlin
- Department of Radiation Oncology, Princess Margaret Cancer Center, University Health Network & University of Toronto, Toronto, ON, Canada
| | | | - Sangeet Ghai
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Kartik Jhaveri
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Masoom Haider
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| | - Lisa Avery
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto (UMIT), University Health Network, Mount Sinai Hospital & Women's College Hospital; University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Rodrigues A, Rodrigues N, Santinha J, Lisitskaya MV, Uysal A, Matos C, Domingues I, Papanikolaou N. Value of handcrafted and deep radiomic features towards training robust machine learning classifiers for prediction of prostate cancer disease aggressiveness. Sci Rep 2023; 13:6206. [PMID: 37069257 PMCID: PMC10110526 DOI: 10.1038/s41598-023-33339-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
There is a growing piece of evidence that artificial intelligence may be helpful in the entire prostate cancer disease continuum. However, building machine learning algorithms robust to inter- and intra-radiologist segmentation variability is still a challenge. With this goal in mind, several model training approaches were compared: removing unstable features according to the intraclass correlation coefficient (ICC); training independently with features extracted from each radiologist's mask; training with the feature average between both radiologists; extracting radiomic features from the intersection or union of masks; and creating a heterogeneous dataset by randomly selecting one of the radiologists' masks for each patient. The classifier trained with this last resampled dataset presented with the lowest generalization error, suggesting that training with heterogeneous data leads to the development of the most robust classifiers. On the contrary, removing features with low ICC resulted in the highest generalization error. The selected radiomics dataset, with the randomly chosen radiologists, was concatenated with deep features extracted from neural networks trained to segment the whole prostate. This new hybrid dataset was then used to train a classifier. The results revealed that, even though the hybrid classifier was less overfitted than the one trained with deep features, it still was unable to outperform the radiomics model.
Collapse
Affiliation(s)
- Ana Rodrigues
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Nuno Rodrigues
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- LASIGE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - João Santinha
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
- Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Maria V Lisitskaya
- Cand. of Sci. (Med.), Radiologist at Radiology Department with CT and MRI, Medical Research and Educational Center, Lomonosov Moscow State University, Moscow, Russia
| | - Aycan Uysal
- Gulhane Medical School, University of Health Sciences, Ankara, Turkey
| | - Celso Matos
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Inês Domingues
- Instituto Politécnico de Coimbra, Instituto Superior de Engenharia, Rua Pedro Nunes-Quinta da Nora, 3030-199, Coimbra, Portugal
- Centro de Investigação do Instituto Português de Oncologia do Porto (CI-IPOP): Grupo de Física Médica, Radiobiologia e Protecção Radiológica, Porto, Portugal
| | | |
Collapse
|
11
|
Li L, Gu L, Kang B, Yang J, Wu Y, Liu H, Lai S, Wu X, Jiang J. Evaluation of the Efficiency of MRI-Based Radiomics Classifiers in the Diagnosis of Prostate Lesions. Front Oncol 2022; 12:934108. [PMID: 35865467 PMCID: PMC9295912 DOI: 10.3389/fonc.2022.934108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveTo compare the performance of different imaging classifiers in the prospective diagnosis of prostate diseases based on multiparameter MRI.MethodsA total of 238 patients with pathological outcomes were enrolled from September 2019 to July 2021, including 142 in the training set and 96 in the test set. After the regions of interest were manually segmented, decision tree (DT), Gaussian naive Bayes (GNB), XGBoost, logistic regression, random forest (RF) and support vector machine classifier (SVC) models were established on the training set and tested on the independent test set. The prospective diagnostic performance of each classifier was compared by using the AUC, F1-score and Brier score.ResultsIn the patient-based data set, the top three classifiers of combined sequences in terms of the AUC were logistic regression (0.865), RF (0.862), and DT (0.852); RF “was significantly different from the other two classifiers (P =0.022, P =0.005), while logistic regression and DT had no statistical significance (P =0.802). In the lesions-based data set, the top three classifiers of combined sequences in terms of the AUC were RF (0.931), logistic regression (0.922) and GNB (0.922). These three classifiers were significantly different from.ConclusionThe results of this experiment show that radiomics has a high diagnostic efficiency for prostate lesions. The RF classifier generally performed better overall than the other classifiers in the experiment. The XGBoost and logistic regression models also had high classification value in the lesions-based data set.
Collapse
Affiliation(s)
- Linghao Li
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lili Gu
- Department of Pain, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Bin Kang
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jiaojiao Yang
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ying Wu
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hao Liu
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Shasha Lai
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xueting Wu
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Jian Jiang
- Department of Radiology, the First Affiliated Hospital, Nanchang University, Nanchang, China
- *Correspondence: Jian Jiang,
| |
Collapse
|
12
|
Zhang J, Zhang Q, Wang T, Song Y, Yu X, Xie L, Chen Y, Ouyang H. Multimodal MRI-Based Radiomics-Clinical Model for Preoperatively Differentiating Concurrent Endometrial Carcinoma From Atypical Endometrial Hyperplasia. Front Oncol 2022; 12:887546. [PMID: 35692806 PMCID: PMC9186045 DOI: 10.3389/fonc.2022.887546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives To develop and validate a radiomics model based on multimodal MRI combining clinical information for preoperative distinguishing concurrent endometrial carcinoma (CEC) from atypical endometrial hyperplasia (AEH). Materials and Methods A total of 122 patients (78 AEH and 44 CEC) who underwent preoperative MRI were enrolled in this retrospective study. Radiomics features were extracted based on T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) maps. After feature reduction by minimum redundancy maximum relevance and least absolute shrinkage and selection operator algorithm, single-modal and multimodal radiomics signatures, clinical model, and radiomics-clinical model were constructed using logistic regression. Receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis were used to assess the models. Results The combined radiomics signature of T2WI, DWI, and ADC maps showed better discrimination ability than either alone. The radiomics-clinical model consisting of multimodal radiomics features, endometrial thickness >11mm, and nulliparity status achieved the highest area under the ROC curve (AUC) of 0.932 (95% confidential interval [CI]: 0.880-0.984), bootstrap corrected AUC of 0.922 in the training set, and AUC of 0.942 (95% CI: 0.852-1.000) in the validation set. Subgroup analysis further revealed that this model performed well for patients with preoperative endometrial biopsy consistent and inconsistent with postoperative pathologic data (consistent group, F1-score = 0.865; inconsistent group, F1-score = 0.900). Conclusions The radiomics model, which incorporates multimodal MRI and clinical information, might be used to preoperatively differentiate CEC from AEH, especially for patients with under- or over-estimated preoperative endometrial biopsy.
Collapse
Affiliation(s)
- Jieying Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Wang
- Department of Gynecologic Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoduo Yu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lizhi Xie
- MR Research China, GE Healthcare, Beijing, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Ouyang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Raczeck P, Frenzel F, Woerner T, Graeber S, Bohle RM, Ziegler G, Buecker A, Schneider GK. Noninferiority of Monoparametric MRI Versus Multiparametric MRI for the Detection of Prostate Cancer: Diagnostic Accuracy of ADC Ratios Based on Advanced "Zoomed" Diffusion-Weighted Imaging. Invest Radiol 2022; 57:233-241. [PMID: 34743133 DOI: 10.1097/rli.0000000000000830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The aim of this study was to compare the diagnostic accuracy of apparent diffusion coefficient (ADC) ratios as a monoparametric magnetic resonance imaging (MRI) protocol for the detection of prostate cancer (PCa) with the established multiparametric (mp) MRI at 3.0 T. MATERIALS AND METHODS According to power analysis, 52 male patients were included in this monocenter study with prospective data collection and retrospective, blinded multireader image analysis. The study was approved by the local ethics committee. Patients were recruited from January to December 2020. Based on mpMRI findings, patients underwent in-bore MR biopsy or prostatectomy for histopathologic correlation of suspicious lesions. Three readers, blinded to the histopathologic results and images of mpMRI, independently evaluated ADC maps for the detection of PCa. The ADC ratio was defined as the lowest signal intensity (SI) of lesions divided by the SI of normal tissue in the zone of origin. Predictive accuracy of multiparametric and monoparametric MRI were compared using logistic regression analysis. Moreover, both protocols were compared applying goodness-of-fit analysis with the Hosmer-Lemeshow test for continuous ADC ratios and Pearson χ2 test for binary decision calls, correlation analysis with Spearman ρ and intraclass correlation coefficients, as well as noninferiority assessment with a TOST ("two one-sided test"). RESULTS Eighty-one histopathologically proven, unique PCa lesions (Gleason score [GS] ≥ 3 + 3) in 52 patients could be unequivocally correlated, with 57 clinically significant (cs) PCa lesions (GS ≥ 3 + 4). Multiparametric MRI detected 95%, and monoparametric ADC detected ratios 91% to 93% of csPCa. Noninferiority of monoparametric MRI was confirmed by TOST (P < 0.05 for all comparisons). Logistic regression analysis revealed comparable predictive diagnostic accuracy of ADC ratios (73.7%-87.8%) versus mpMRI (72.2%-84.7%). Spearman rank correlation coefficient for PCa aggressiveness revealed satisfactory correlation of ADC ratios (P < 0.013 for all correlations). The Hosmer-Lemeshow test for the logistic regression analysis for continuous ADC ratios indicated adequate predictive accuracy (P = 0.55-0.87), and the Pearson χ2 test showed satisfactory goodness of fit (P = 0.35-0.69, χ2 = 0.16-0.87). CONCLUSIONS Normalized ADC ratios based on advanced DWI are noninferior to mpMRI at 3.0 T for the detection of csPCa in a preselected patient cohort and proved a fast and accurate assessment tool, thus showing a potential prospect of easing the development of future screening methods for PCa.
Collapse
Affiliation(s)
- Paul Raczeck
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| | - Felix Frenzel
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| | - Tobias Woerner
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| | - Stefan Graeber
- Institute of Medical Biometry, Epidemiology, and Medical Informatics, Saarland University, Campus Homburg
| | - Rainer M Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Gesa Ziegler
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| | - Arno Buecker
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| | - Guenther K Schneider
- From the Clinic of Diagnostic and Interventional Radiology, Saarland University Medical Center
| |
Collapse
|
14
|
Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12040799. [PMID: 35453847 PMCID: PMC9027206 DOI: 10.3390/diagnostics12040799] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score.
Collapse
|
15
|
Chen T, Zhang Z, Tan S, Zhang Y, Wei C, Wang S, Zhao W, Qian X, Zhou Z, Shen J, Dai Y, Hu J. MRI Based Radiomics Compared With the PI-RADS V2.1 in the Prediction of Clinically Significant Prostate Cancer: Biparametric vs Multiparametric MRI. Front Oncol 2022; 11:792456. [PMID: 35127499 PMCID: PMC8810653 DOI: 10.3389/fonc.2021.792456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
PurposeTo compare the performance of radiomics to that of the Prostate Imaging Reporting and Data System (PI-RADS) v2.1 scoring system in the detection of clinically significant prostate cancer (csPCa) based on biparametric magnetic resonance imaging (bpMRI) vs. multiparametric MRI (mpMRI).MethodsA total of 204 patients with pathological results were enrolled between January 2018 and December 2019, with 142 patients in the training cohort and 62 patients in the testing cohort. The radiomics model was compared with the PI-RADS v2.1 for the diagnosis of csPCa based on bpMRI and mpMRI by using receiver operating characteristic (ROC) curve analysis.ResultsThe radiomics model based on bpMRI and mpMRI signatures showed high predictive efficiency but with no significant differences (AUC = 0.975 vs 0.981, p=0.687 in the training cohort, and 0.953 vs 0.968, p=0.287 in the testing cohort, respectively). In addition, the radiomics model outperformed the PI-RADS v2.1 in the diagnosis of csPCa regardless of whether bpMRI (AUC = 0.975 vs. 0.871, p= 0.030 for the training cohort and AUC = 0.953 vs. 0.853, P = 0.024 for the testing cohort) or mpMRI (AUC = 0.981 vs. 0.880, p= 0.030 for the training cohort and AUC = 0.968 vs. 0.863, P = 0.016 for the testing cohort) was incorporated.ConclusionsOur study suggests the performance of bpMRI- and mpMRI-based radiomics models show no significant difference, which indicates that omitting DCE imaging in radiomics can simplify the process of analysis. Adding radiomics to PI-RADS v2.1 may improve the performance to predict csPCa.
Collapse
Affiliation(s)
- Tong Chen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Zhang
- School of Medical Imaging, Biomedical Engineering, Xuzhou Medical University, Xuzhou, China
| | - Shuangxiu Tan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Ultrasound, Nanjing Drum Tower Hospital, Nanjing Medical School, Nanjing, China
| | - Yueyue Zhang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chaogang Wei
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shan Wang
- Department of Radiology, Jiangsu Jiangyin People’s Hospital, Jiangyin, China
| | - Wenlu Zhao
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xusheng Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
| | - Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Junkang Shen
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Imaging Medicine, Soochow University, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, China
- *Correspondence: Junkang Shen, ; Yakang Dai, ; Jisu Hu,
| |
Collapse
|
16
|
Bhattacharya I, Khandwala YS, Vesal S, Shao W, Yang Q, Soerensen SJ, Fan RE, Ghanouni P, Kunder CA, Brooks JD, Hu Y, Rusu M, Sonn GA. A review of artificial intelligence in prostate cancer detection on imaging. Ther Adv Urol 2022; 14:17562872221128791. [PMID: 36249889 PMCID: PMC9554123 DOI: 10.1177/17562872221128791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.
Collapse
Affiliation(s)
- Indrani Bhattacharya
- Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yash S. Khandwala
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sulaiman Vesal
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei Shao
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianye Yang
- Centre for Medical Image Computing, University College London, London, UK
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Simon J.C. Soerensen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard E. Fan
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian A. Kunder
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yipeng Hu
- Centre for Medical Image Computing, University College London, London, UK
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
| | - Mirabela Rusu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey A. Sonn
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Yi Z, Hu S, Lin X, Zou Q, Zou M, Zhang Z, Xu L, Jiang N, Zhang Y. Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer. Eur J Nucl Med Mol Imaging 2021; 49:1523-1534. [PMID: 34845536 DOI: 10.1007/s00259-021-05631-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE 68 Ga-PSMA PET/CT has high specificity and sensitivity for the detection of both intraprostatic tumor focal lesions and metastasis. However, approximately 10% of primary prostate cancer are invisible on PSMA-PET (exhibit no or minimal uptake). In this work, we investigated whether machine learning-based radiomics models derived from PSMA-PET images could predict invisible intraprostatic lesions on 68 Ga-PSMA-11 PET in patients with primary prostate cancer. METHODS In this retrospective study, patients with or without prostate cancer who underwent 68 Ga-PSMA PET/CT and presented negative on PSMA-PET image at either of two different institutions were included: institution 1 (between 2017 and 2020) for the training set and institution 2 (between 2019 and 2020) for the external test set. Three random forest (RF) models were built using selected features extracted from standard PET images, delayed PET images, and both standard and delayed PET images. Then, subsequent tenfold cross-validation was performed. In the test phase, the three RF models and PSA density (PSAD, cut-off value: 0.15 ng/ml/ml) were tested with the external test set. The area under the receiver operating characteristic curve (AUC) was calculated for the models and PSAD. The AUCs of the radiomics model and PSAD were compared. RESULTS A total of 64 patients (39 with prostate cancer and 25 with benign prostate disease) were in the training set, and 36 (21 with prostate cancer and 15 with benign prostate disease) were in the test set. The average AUCs of the three RF models from tenfold cross-validation were 0.87 (95% CI: 0.72, 1.00), 0.86 (95% CI: 0.63, 1.00), and 0.91 (95% CI: 0.69, 1.00), respectively. In the test set, the AUCs of the three trained RF models and PSAD were 0.903 (95% CI: 0.830, 0.975), 0.856 (95% CI: 0.748, 0.964), 0.925 (95% CI:0.838, 1.00), and 0.662 (95% CI: 0.510, 0.813). The AUCs of the three radiomics models were higher than that of PSAD (0.903, 0.856, and 0.925 vs. 0.662, respectively; P = .007, P = .045, and P = .005, respectively). CONCLUSION Random forest models developed by 68 Ga-PSMA-11 PET-based radiomics features were proven useful for accurate prediction of invisible intraprostatic lesion on 68 Ga-PSMA-11 PET in patients with primary prostate cancer and showed better diagnostic performance compared with PSAD.
Collapse
Affiliation(s)
- Zhilong Yi
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.,Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Siqi Hu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Lin
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qiong Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - MinHong Zou
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhanlei Zhang
- Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lei Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ningyi Jiang
- Department of Nuclear Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China. .,Department of Nuclear Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Yong Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Ghezzo S, Bezzi C, Presotto L, Mapelli P, Bettinardi V, Savi A, Neri I, Preza E, Samanes Gajate AM, De Cobelli F, Scifo P, Picchio M. State of the art of radiomic analysis in the clinical management of prostate cancer: A systematic review. Crit Rev Oncol Hematol 2021; 169:103544. [PMID: 34801699 DOI: 10.1016/j.critrevonc.2021.103544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
We present the current clinical applications of radiomics in the context of prostate cancer (PCa) management. Several online databases for original articles using a combination of the following keywords: "(radiomic or radiomics) AND (prostate cancer or prostate tumour or prostate tumor or prostate neoplasia)" have been searched. The selected papers have been pooled as focus on (i) PCa detection, (ii) assessing the clinical significance of PCa, (iii) biochemical recurrence prediction, (iv) radiation-therapy outcome prediction and treatment efficacy monitoring, (v) metastases detection, (vi) metastases prediction, (vii) prediction of extra-prostatic extension. Seventy-six studies were included for qualitative analyses. Classifiers powered with radiomic features were able to discriminate between healthy tissue and PCa and between low- and high-risk PCa. However, before radiomics can be proposed for clinical use its methods have to be standardized, and these first encouraging results need to be robustly replicated in large and independent cohorts.
Collapse
Affiliation(s)
| | | | - Luca Presotto
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Mapelli
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentino Bettinardi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annarita Savi
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Neri
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erik Preza
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; Radiology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Scifo
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Picchio
- Vita-Salute San Raffaele University, Milan, Italy; Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
19
|
Zhao X, Zhou Y, Zhang Y, Han L, Mao L, Yu Y, Li X, Zeng M, Wang M, Liu Z. Radiomics Based on Contrast-Enhanced MRI in Differentiation Between Fat-Poor Angiomyolipoma and Hepatocellular Carcinoma in Noncirrhotic Liver: A Multicenter Analysis. Front Oncol 2021; 11:744756. [PMID: 34722300 PMCID: PMC8548657 DOI: 10.3389/fonc.2021.744756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Objective This study aims to develop and externally validate a contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics-based model for preoperative differentiation between fat-poor angiomyolipoma (fp-AML) and hepatocellular carcinoma (HCC) in patients with noncirrhotic livers and to compare the diagnostic performance with that of two radiologists. Methods This retrospective study was performed with 165 patients with noncirrhotic livers from three medical centers. The dataset was divided into a training cohort (n = 99), a time-independent internal validation cohort (n = 24) from one center, and an external validation cohort (n = 42) from the remaining two centers. The volumes of interest were contoured on the arterial phase (AP) images and then registered to the venous phase (VP) and delayed phase (DP), and a total of 3,396 radiomics features were extracted from the three phases. After the joint mutual information maximization feature selection procedure, four radiomics logistic regression classifiers, including the AP model, VP model, DP model, and combined model, were built. The area under the receiver operating characteristic curve (AUC), diagnostic accuracy, sensitivity, and specificity of each radiomics model and those of two radiologists were evaluated and compared. Results The AUCs of the combined model reached 0.789 (95%CI, 0.579-0.999) in the internal validation cohort and 0.730 (95%CI, 0.563-0.896) in the external validation cohort, higher than the AP model (AUCs, 0.711 and 0.638) and significantly higher than the VP model (AUCs, 0.594 and 0.610) and the DP model (AUCs, 0.547 and 0.538). The diagnostic accuracy, sensitivity, and specificity of the combined model were 0.708, 0.625, and 0.750 in the internal validation cohort and 0.619, 0.786, and 0.536 in the external validation cohort, respectively. The AUCs for the two radiologists were 0.656 and 0.594 in the internal validation cohort and 0.643 and 0.500 in the external validation cohort. The AUCs of the combined model surpassed those of the two radiologists and were significantly higher than that of the junior one in both validation cohorts. Conclusions The proposed radiomics model based on triple-phase CE-MRI images was proven to be useful for differentiating between fp-AML and HCC and yielded comparable or better performance than two radiologists in different centers, with different scanners and different scanning parameters.
Collapse
Affiliation(s)
- Xiangtian Zhao
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yukun Zhou
- Medical Imaging Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Zhang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lujun Han
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Li Mao
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Yizhou Yu
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Xiuli Li
- AI Lab, Deepwise Healthcare, Beijing, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mingliang Wang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
20
|
Target Heterogeneity in Oncology: The Best Predictor for Differential Response to Radioligand Therapy in Neuroendocrine Tumors and Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143607. [PMID: 34298822 PMCID: PMC8304541 DOI: 10.3390/cancers13143607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In the era of precision medicine, novel targets have emerged on the surface of cancer cells, which have been exploited for the purpose of radioligand therapy. However, there have been variations in the way these receptors are expressed, especially in prostate cancers and neuroendocrine tumors. This variable expression of receptors across the grades of cancers led to the concept of ‘target heterogeneity’, which has not just impacted therapeutic decisions but also their outcomes. Radiopharmaceuticals targeting receptors need to be used when there are specific indicators—either clinical, radiological, or at molecular level—warranting their use. In addition, response to these radioligands can be assessed using different techniques, whereby we can prognosticate further outcomes. We shall also discuss, in this review, the conventional as well as novel approaches of detecting heterogeneity in prostate cancers and neuroendocrine tumors. Abstract Tumor or target heterogeneity (TH) implies presence of variable cellular populations having different genomic characteristics within the same tumor, or in different tumor sites of the same patient. The challenge is to identify this heterogeneity, as it has emerged as the most common cause of ‘treatment resistance’, to current therapeutic agents. We have focused our discussion on ‘Prostate Cancer’ and ‘Neuroendocrine Tumors’, and looked at the established methods for demonstrating heterogeneity, each with its advantages and drawbacks. Also, the available theranostic radiotracers targeting PSMA and somatostatin receptors combined with targeted systemic agents, have been described. Lu-177 labeled PSMA and DOTATATE are the ‘standard of care’ radionuclide therapeutic tracers for management of progressive treatment-resistant prostate cancer and NET. These approved therapies have shown reasonable benefit in treatment outcome, with improvement in quality of life parameters. Various biomarkers and predictors of response to radionuclide therapies targeting TH which are currently available and those which can be explored have been elaborated in details. Imaging-based features using artificial intelligence (AI) need to be developed to further predict the presence of TH. Also, novel theranostic tools binding to newer targets on surface of cancer cell should be explored to overcome the treatment resistance to current treatment regimens.
Collapse
|
21
|
Spohn SK, Bettermann AS, Bamberg F, Benndorf M, Mix M, Nicolay NH, Fechter T, Hölscher T, Grosu R, Chiti A, Grosu AL, Zamboglou C. Radiomics in prostate cancer imaging for a personalized treatment approach - current aspects of methodology and a systematic review on validated studies. Theranostics 2021; 11:8027-8042. [PMID: 34335978 PMCID: PMC8315055 DOI: 10.7150/thno.61207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed malignancies of men in the world. Due to a variety of treatment options in different risk groups, proper diagnostic and risk stratification is pivotal in treatment of PCa. The development of precise medical imaging procedures simultaneously to improvements in big data analysis has led to the establishment of radiomics - a computer-based method of extracting and analyzing image features quantitatively. This approach bears the potential to assess and improve PCa detection, tissue characterization and clinical outcome prediction. This article gives an overview on the current aspects of methodology and systematically reviews available literature on radiomics in PCa patients, showing its potential for personalized therapy approaches. The qualitative synthesis includes all imaging modalities and focuses on validated studies, putting forward future directions.
Collapse
Affiliation(s)
- Simon K.B. Spohn
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
| | - Alisa S. Bettermann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Fabian Bamberg
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Matthias Benndorf
- Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Nils H. Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Tobias Fechter
- Department of Radiation Oncology - Division of Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
| | - Tobias Hölscher
- Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Radu Grosu
- Institute of Computer Engineering, Vienne University of Technology, Vienna, Austria
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele - Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano - Milan, Italy
| | - Anca L. Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine. University of Freiburg, Germany
- German Cancer Consortium (DKTK). Partner Site Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Germany
- German Oncology Center, European University of Cyprus, Limassol, Cyprus
| |
Collapse
|
22
|
He D, Wang X, Fu C, Wei X, Bao J, Ji X, Bai H, Xia W, Gao X, Huang Y, Hou J. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. Cancer Imaging 2021; 21:46. [PMID: 34225808 PMCID: PMC8259026 DOI: 10.1186/s40644-021-00414-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Purpose To investigate the performance of magnetic resonance imaging (MRI)-based radiomics models for benign and malignant prostate lesion discrimination and extracapsular extension (ECE) and positive surgical margins (PSM) prediction. Methods and materials In total, 459 patients who underwent multiparametric MRI (mpMRI) before prostate biopsy were included. Radiomic features were extracted from both T2-weighted imaging (T2WI) and the apparent diffusion coefficient (ADC). Patients were divided into different training sets and testing sets for different targets according to a ratio of 7:3. Radiomics signatures were built using radiomic features on the training set, and integrated models were built by adding clinical characteristics. The areas under the receiver operating characteristic curves (AUCs) were calculated to assess the classification performance on the testing sets. Results The radiomics signatures for benign and malignant lesion discrimination achieved AUCs of 0.775 (T2WI), 0.863 (ADC) and 0.855 (ADC + T2WI). The corresponding integrated models improved the AUC to 0.851/0.912/0.905, respectively. The radiomics signatures for ECE achieved the highest AUC of 0.625 (ADC), and the corresponding integrated model achieved the highest AUC (0.728). The radiomics signatures for PSM prediction achieved AUCs of 0.614 (T2WI) and 0.733 (ADC). The corresponding integrated models reached AUCs of 0.680 and 0.766, respectively. Conclusions The MRI-based radiomics models, which took advantage of radiomic features on ADC and T2WI scans, showed good performance in discriminating benign and malignant prostate lesions and predicting ECE and PSM. Combining radiomics signatures and clinical factors enhanced the performance of the models, which may contribute to clinical diagnosis and treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00414-6.
Collapse
Affiliation(s)
- Dong He
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Ximing Wang
- Department of Radiology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Chenchao Fu
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Jie Bao
- Department of Radiology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China
| | - Xuefu Ji
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China.,The School of Electro-Optical Engineering, Changchun University of Science and Technology, 130013, Changchun, China
| | - Honglin Bai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Wei Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Xin Gao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No.88 Keling Road, Suzhou New District, 215163, Jiangsu, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China.
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of SooChow University, No.188, Shizi St, Canglang District, 215006, Suzhou, Jiangsu, China. .,Department of Urology, Dushu Lake Hospital affiliated to SooChow University, No.9, Chongwen Road, Suzhou Industrial Park District, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
23
|
Wang G, Yu G, Chen J, Yang G, Xu H, Chen Z, Wang G, Bai Z. Can high b-value 3.0 T biparametric MRI with the Simplified Prostate Image Reporting and Data System (S-PI-RADS) be used in biopsy-naïve men? Clin Imaging 2021; 88:80-86. [PMID: 34243992 DOI: 10.1016/j.clinimag.2021.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To analyze the clinical value of high b-value 3.0 T biparametric magnetic resonance with the Simplified Prostate Image Reporting and Data System (S-PI-RADS) in biopsy-naïve men. METHODS A retrospective analysis of the data of 224 patients who underwent prostate biopsy (cognitive fusion targeted biopsy combined with systematic biopsy) after a high b-value 3.0 T magnetic resonance examination at Haikou Hospital from July 2018 to July 2020 was performed. Two radiologists performed multi-parameter magnetic resonance imaging (mp-MRI) with the prostate imaging report and data system version 2 (PI-RADS v2) and biparametric magnetic resonance imaging (bp-MRI) with the simplified prostate image reporting and data system (S-PI-RADS). The detection efficacy of the two regimens was evaluated by classifying prostate cancer (PCa) and clinically significant prostate cancer (csPCa) according to pathology, and the statistical significance of the differences between the two regimens was determined by Z-test. RESULTS The area under the receiver operating curve (AUC) values of mp-MRI based on PI-RADS v2 and bp-MRI based on S-PI-RADS to detect PCa were 0.905 and 0.892, respectively, while the AUC values for the detection of csPCa were 0.919 and 0.906, respectively. There was no statistically significant difference between the two tests (Z values were 0.909 and 1.145, p > 0.05). CONCLUSION There was no significant difference in the detection efficacy of high b-value bp-MRI based on the S-PI-RADS score for prostate cancer and clinically significant prostate cancer compared with the standard PI-RADS v2 score with mp-MRI protocols, which can be applied clinically.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China.
| | - Gang Yu
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Jing Chen
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Guang Yang
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Haixia Xu
- Department of Pathology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Zegu Chen
- Department of Radiology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Guoren Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China
| | - Zhiming Bai
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, No.43 Renmin Street, Meilan District, Haikou 570208, Hainan Province, China.
| |
Collapse
|
24
|
Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation. Phys Eng Sci Med 2021; 44:745-754. [PMID: 34075559 DOI: 10.1007/s13246-021-01022-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/26/2021] [Indexed: 12/28/2022]
Abstract
The purpose of this study was to develop Bi-parametric Magnetic Resonance Imaging (BP-MRI) based radiomics models for differentiation between benign and malignant prostate lesions, and to cross-vendor validate the generalization ability of the models. The prebiopsy BP-MRI data (T2-Weighted Image [T2WI] and the Apparent Diffusion Coefficient [ADC]) of 459 patients with clinical suspicion of prostate cancer were acquired using two scanners from different vendors. The prostate biopsies are the reference standard for diagnosing benign and malignant prostate lesions. The training set was 168 patients' data from Siemens (Vendor 1), and the inner test set was 70 patients' data from the same vendor. The external test set was 221 patients' data from GE (Vendor 2). The lesion Region of Interest (ROI) was manually delineated by experienced radiologists. A total of 851 radiomics features including shape, first-order statistical, texture, and wavelet features were extracted from ROI in T2WI and ADC, respectively. Two feature-ranking methods (Minimum Redundancy Maximum Relevance [MRMR] and Wilcoxon Rank-Sum Test [WRST]) and three classifiers (Random Forest [RF], Support Vector Machine [SVM], and the Least Absolute Shrinkage and Selection Operator [LASSO] regression) were investigated for their efficacy in building single-parametric radiomics signatures. A biparametric radiomics model was built by combining the optimal single-parametric radiomics signatures. A comprehensive diagnosis model was built by combining the biparametric radiomics model with age and Prostate Specific Antigen (PSA) value using multivariable logistic regression. All models were built in the training set and independently validated in the inner and external test sets, and the performances of models in the diagnosis of benign and malignant prostate lesions were quantified by the Area Under the Receiver Operating Characteristic Curve (AUC). The mean AUCs of the inner and external test sets were calculated for each model. The non-inferiority test was used to test if the AUC of model in external test was not inferior to the AUC of model in inner test. Combining MRMR and LASSO produced the best-performing single-parametric radiomics signatures with the highest mean AUC of 0.673 for T2WI (inner test AUC = 0.729 vs. external test AUC = 0.616, p = 0.569) and the highest mean AUC of 0.810 for ADC (inner test AUC = 0.822 vs. external test AUC = 0.797, p = 0.102). The biparametric radiomics model produced a mean AUC of 0.833 (inner test AUC = 0.867 vs. external test AUC = 0.798, p = 0.051). The comprehensive diagnosis model had an improved mean AUC of 0.911 (inner test AUC = 0.935 vs. external test AUC = 0.886, p = 0.010). The comprehensive diagnosis model for differentiating benign from malignant prostate lesions was accurate and generalizable.
Collapse
|
25
|
Twilt JJ, van Leeuwen KG, Huisman HJ, Fütterer JJ, de Rooij M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics (Basel) 2021; 11:diagnostics11060959. [PMID: 34073627 PMCID: PMC8229869 DOI: 10.3390/diagnostics11060959] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the upfront role of magnetic resonance imaging (MRI) for prostate cancer (PCa) diagnosis, a multitude of artificial intelligence (AI) applications have been suggested to aid in the diagnosis and detection of PCa. In this review, we provide an overview of the current field, including studies between 2018 and February 2021, describing AI algorithms for (1) lesion classification and (2) lesion detection for PCa. Our evaluation of 59 included studies showed that most research has been conducted for the task of PCa lesion classification (66%) followed by PCa lesion detection (34%). Studies showed large heterogeneity in cohort sizes, ranging between 18 to 499 patients (median = 162) combined with different approaches for performance validation. Furthermore, 85% of the studies reported on the stand-alone diagnostic accuracy, whereas 15% demonstrated the impact of AI on diagnostic thinking efficacy, indicating limited proof for the clinical utility of PCa AI applications. In order to introduce AI within the clinical workflow of PCa assessment, robustness and generalizability of AI applications need to be further validated utilizing external validation and clinical workflow experiments.
Collapse
|
26
|
Pecoraro M, Messina E, Bicchetti M, Carnicelli G, Del Monte M, Iorio B, La Torre G, Catalano C, Panebianco V. The future direction of imaging in prostate cancer: MRI with or without contrast injection. Andrology 2021; 9:1429-1443. [PMID: 33998173 DOI: 10.1111/andr.13041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiparametric MRI (mpMRI) is the "state of the art" management tool for patients with suspicion of prostate cancer (PCa). The role of non-contrast MRI is investigated to move toward a more personalized, less invasive, and highly cost-effective PCa diagnostic workup. OBJECTIVE To perform a non-systematic review of the existing literature to highlight strength and flaws of performing non-contrast MRI, and to provide a critical overview of the international scientific production on the topic. MATERIALS AND METHODS Online databases (Medline, PubMed, and Web of Science) were searched for original articles, systematic review and meta-analysis, and expert opinion papers. RESULTS Several investigations have shown comparable diagnostic accuracy of biparametric (bpMRI) and mpMRI for the detection of PCa. The advantage of abandoning contrast-enhanced sequences improves operational logistics, lowering costs, acquisition time, and side effects. The main limitations of bpMRI are that most studies comparing non-contrast with contrast MRI come from centers with high expertise that might not be reproducible in the general community setting; besides, reduced protocols might be insufficient for estimation of the intra- and extra-prostatic extension and regional disease. The mentioned observations suggest that low-quality mpMRI for the general population might represent the main shortage to overcome. DISCUSSION Non-contrast MRI future trends are likely represented by PCa screening and the application of artificial intelligence (AI) tools. PCa screening is still a controversial topic; bpMRI has become one of the most promising diagnostic applications, as it is a more sensitive test for PCa early detection, compared to serum PSA level test. Also, AI applications and radiomic have been the object of several studies investigating PCa detection using bpMRI, showing encouraging results. CONCLUSION Today, the accessibility to MRI for early detection of PCa is a priority. Results from prospective, multicenter, multireader, and paired validation studies are needed to provide evidence supporting its role in the clinical practice.
Collapse
Affiliation(s)
- Martina Pecoraro
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Emanuele Messina
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Marco Bicchetti
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Giorgia Carnicelli
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Maurizio Del Monte
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Beniamino Iorio
- Department of Surgical Sciences, "Tor Vergata" University of Rome, Rome, Italy
| | - Giuseppe La Torre
- Department of Public Health and Infectious Disease, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Carlo Catalano
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| | - Valeria Panebianco
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University/Policlinico Umberto I, Rome, Italy
| |
Collapse
|
27
|
Mao H, Zhang B, Zou M, Huang Y, Yang L, Wang C, Pang P, Zhao Z. MRI-Based Radiomics Models for Predicting Risk Classification of Gastrointestinal Stromal Tumors. Front Oncol 2021; 11:631927. [PMID: 34041017 PMCID: PMC8141866 DOI: 10.3389/fonc.2021.631927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/13/2021] [Indexed: 01/04/2023] Open
Abstract
Background We conduct a study in developing and validating four MRI-based radiomics models to preoperatively predict the risk classification of gastrointestinal stromal tumors (GISTs). Methods Forty-one patients (low-risk = 17, intermediate-risk = 13, high-risk = 11) underwent MRI before surgery between September 2013 and March 2019 in this retrospective study. The Kruskal–Wallis test with Bonferonni correction and variance threshold was used to select appropriate features, and the Random Forest model (three classification model) was used to select features among the high-risk, intermediate-risk, and low-risk of GISTs. The predictive performance of the models built by the Random Forest was estimated by a 5-fold cross validation (5FCV). Their performance was estimated using the receiver operating characteristic (ROC) curve, summarized as the area under the ROC curve (AUC). Area under the curve (AUC), accuracy, sensitivity, and specificity for risk classification were reported. Linear discriminant analysis (LDA) was used to assess the discriminative ability of these radiomics models. Results The high-risk, intermediate-risk, and low-risk of GISTs were well classified by radiomics models, the micro-average of ROC curves was 0.85, 0.81, 0.87 and 0.94 for T1WI, T2WI, ADC and combined three MR sequences. And ROC curves achieved excellent AUCs for T1WI (0.85, 0.75 and 0.82), T2WI (0.69, 0.78 and 0.78), ADC (0.85, 0.77 and 0.80) and combined three MR sequences (0.96, 0.92, 0.81) for the diagnosis of high-risk, intermediate-risk, and low-risk of GISTs, respectively. In addition, LDA demonstrated the different risk of GISTs were correctly classified by radiomics analysis (61.0% for T1WI, 70.7% for T2WI, 83.3% for ADC, and 78.9% for the combined three MR sequences). Conclusions Radiomics models based on a single sequence and combined three MR sequences can be a noninvasive method to evaluate the risk classification of GISTs, which may help the treatment of GISTs patients in the future.
Collapse
Affiliation(s)
- Haijia Mao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Bingqian Zhang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Mingyue Zou
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Yanan Huang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Liming Yang
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Cheng Wang
- Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - PeiPei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Zhenhua Zhao
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| |
Collapse
|
28
|
Zanoni L, Mei R, Bianchi L, Giunchi F, Maltoni L, Pultrone CV, Nanni C, Bossert I, Matti A, Schiavina R, Fiorentino M, Fonti C, Lodi F, D’Errico A, Brunocilla E, Fanti S. The Role of [ 18F]Fluciclovine PET/CT in the Characterization of High-Risk Primary Prostate Cancer: Comparison with [ 11C]Choline PET/CT and Histopathological Analysis. Cancers (Basel) 2021; 13:cancers13071575. [PMID: 33805543 PMCID: PMC8037300 DOI: 10.3390/cancers13071575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The role of [18F]Fluciclovine Positron Emission Tomography/Computed Tomography (PET/CT) in the characterization of intra-prostatic lesions was evaluated in high-risk primary PCa patients, scheduled for radical surgery, comparing investigational [18F]Fluciclovine and conventional [11C]Choline PET/CT results with the reference standard of pathologic surgical specimen. PET visual and semi-quantitative analyses were performed: for instance, patient-based, blinded to histopathology; subsequently lesion-based, unblinded, according to a pathology reference mapping. Among 19 pts, 45 malignant and 31 benign lesions were found. The highest SUVmax matched with the lobe of the index lesion in 89% of pts and a direct correlation between [18F]Fluciclovine uptake values and pISUP was demonstrated. Overall, the lesion-based performance of PET semiquantitative parameters (SUVmax, Target to background Ratio-TBRs) with either [18F]Fluciclovine or [11C]Choline, in detecting either malignant/ISUP2-5/ISUP4-5 PCa lesions, was moderate and similar (AUCs ≥ 0.70), but still inadequate (AUCs ≤ 0.81) as standalone staging procedure. TBRs (especially with threshold higher than bone marrow) may be complementary to implement malignancy targeting. Abstract The primary aim of the study was to evaluate the role of [18F]Fluciclovine PET/CT in the characterization of intra-prostatic lesions in high-risk primary PCa patients eligible for radical prostatectomy, in comparison with conventional [11C]Choline PET/CT and validated by prostatectomy pathologic examination. Secondary aims were to determine the performance of PET semi-quantitative parameters (SUVmax; target-to-background ratios [TBRs], using abdominal aorta, bone marrow and liver as backgrounds) for malignant lesion detection (and best cut-off values) and to search predictive factors of malignancy. A six sextants prostate template was created and used by PET readers and pathologists for data comparison and validation. PET visual and semi-quantitative analyses were performed: for instance, patient-based, blinded to histopathology; subsequently lesion-based, un-blinded, according to the pathology reference template. Among 19 patients included (mean age 63 years, 89% high and 11% very-high-risk, mean PSA 9.15 ng/mL), 45 malignant and 31 benign lesions were found and 19 healthy areas were selected (n = 95). For both tracers, the location of the “blinded” prostate SUVmax matched with the lobe of the lesion with the highest pGS in 17/19 cases (89%). There was direct correlation between [18F]Fluciclovine uptake values and pISUP. Overall, lesion-based (n = 95), the performance of PET semiquantitative parameters, with either [18F]Fluciclovine or [11C]Choline, in detecting either malignant/ISUP2-5/ISUP4-5 PCa lesions, was moderate and similar (AUCs ≥ 0.70) but still inadequate (AUCs ≤ 0.81) as a standalone staging procedure. A [18F]Fluciclovine TBR-L3 ≥ 1.5 would depict a clinical significant lesion with a sensitivity and specificity of 85% and 68% respectively; whereas a SUVmax cut-off value of 4 would be able to identify a ISUP 4-5 lesion in all cases (sensitivity 100%), although with low specificity (52%). TBRs (especially with threshold significantly higher than aorta and slightly higher than bone marrow), may be complementary to implement malignancy targeting.
Collapse
Affiliation(s)
- Lucia Zanoni
- Nuclear Medicine Unit, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.N.); (F.L.); (S.F.)
- Correspondence: ; Tel.: +39-051-214-3959
| | - Riccardo Mei
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (R.M.); (M.F.)
| | - Lorenzo Bianchi
- Division of Urology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.B.); (C.V.P.); (R.S.); (E.B.)
- Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Francesca Giunchi
- Pathology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.D.)
| | - Lorenzo Maltoni
- Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Cristian Vincenzo Pultrone
- Division of Urology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.B.); (C.V.P.); (R.S.); (E.B.)
| | - Cristina Nanni
- Nuclear Medicine Unit, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.N.); (F.L.); (S.F.)
| | - Irene Bossert
- Nuclear Medicine, Istituti Clinici Scientifici Maugeri, 27100 Pavia, Italy;
| | - Antonella Matti
- Nuclear Medicine, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Ospedale Sacro Cuore-Don Calabria, 37024 Negrar di Valpolicella (VR), Italy;
| | - Riccardo Schiavina
- Division of Urology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.B.); (C.V.P.); (R.S.); (E.B.)
- Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Michelangelo Fiorentino
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (R.M.); (M.F.)
| | - Cristina Fonti
- Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
| | - Filippo Lodi
- Nuclear Medicine Unit, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.N.); (F.L.); (S.F.)
| | - Antonietta D’Errico
- Pathology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.G.); (A.D.)
| | - Eugenio Brunocilla
- Division of Urology, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.B.); (C.V.P.); (R.S.); (E.B.)
- Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Stefano Fanti
- Nuclear Medicine Unit, Istituto di Ricovero e Cure a Carattere Scientifico (IRCCS), Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (C.N.); (F.L.); (S.F.)
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; (R.M.); (M.F.)
| |
Collapse
|
29
|
Hu L, Zhou DW, Fu CX, Benkert T, Jiang CY, Li RT, Wei LM, Zhao JG. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study. Eur Radiol 2020; 31:1760-1769. [PMID: 32935192 DOI: 10.1007/s00330-020-07227-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/16/2020] [Accepted: 08/26/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVES We aimed to compare the efficiency of prostate cancer (PCa) detection using a radiomics signature based on advanced zoomed diffusion-weighted imaging and conventional full-field-of-view DWI. METHODS A total of 136 patients, including 73 patients with PCa and 63 without PCa, underwent multi-parametric magnetic resonance imaging (mp-MRI). Radiomic features were extracted from prostate lesion areas segmented on full-field-of-view DWI with b-value = 1500 s/mm2 (f-DWIb1500), advanced zoomed DWI images with b-value = 1500 s/mm2 (z-DWIb1500), calculated zoomed DWI with b-value = 2000 s/mm2 (z-calDWIb2000), and apparent diffusion coefficient (ADC) maps derived from both sequences (f-ADC and z-ADC). Single-imaging modality radiomics signature, mp-MRI radiomics signature, and a mixed model based on mp-MRI and clinically independent risk factors were built to predict PCa probability. The diagnostic efficacy and the potential net benefits of each model were evaluated. RESULTS Both z-DWIb1500 and z-calDWIb2000 had significantly better predictive performance than f-DWIb1500 (z-DWIb1500 vs. f-DWIb1500: p = 0.048; z-calDWIb2000 vs. f-DWIb1500: p = 0.014). z-ADC had a slightly higher area under the curve (AUC) value compared with f-ADC value but was not significantly different (p = 0.127). For predicting the presence of PCa, the AUCs of clinical independent risk factors model, mp-MRI model, and mixed model were 0.81, 0.93, and 0.94 in training sets, and 0.74, 0.92, and 0.93 in validation sets, respectively. CONCLUSION Radiomics signatures based on the z-DWI technology had better diagnostic accuracy for PCa than that based on the f-DWI technology. The mixed model was better at diagnosing PCa and guiding clinical interventions for patients with suspected PCa compared with mp-MRI signatures and clinically independent risk factors. KEY POINTS • Advanced zoomed DWI technology can improve the diagnostic accuracy of radiomics signatures for PCa. • Radiomics signatures based on z-calDWIb2000 have the best diagnostic performance among individual imaging modalities. • Compared with the independent clinical risk factors and the mp-MRI model, the mixed model has the best diagnostic efficiency.
Collapse
Affiliation(s)
- Lei Hu
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Da Wei Zhou
- State Key Laboratory of Integrated Services Networks, School of Telecommunications Engineering, Xidian University, 2 South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Cai Xia Fu
- MR Application Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Chun Yu Jiang
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Rui Ting Li
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Li Ming Wei
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China
| | - Jun Gong Zhao
- Department of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
30
|
Impact of radiomics on prostate cancer detection: a systematic review of clinical applications. Curr Opin Urol 2020; 30:754-781. [DOI: 10.1097/mou.0000000000000822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Extracting and Selecting Robust Radiomic Features from PET/MR Images in Nasopharyngeal Carcinoma. Mol Imaging Biol 2020; 22:1581-1591. [DOI: 10.1007/s11307-020-01507-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M. Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol 2020; 129:109095. [PMID: 32531722 DOI: 10.1016/j.ejrad.2020.109095] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiomics have the potential to further increase the value of MRI in prostate cancer management. However, implementation in clinical practice is still far and concerns have been raised regarding the methodological quality of radiomic studies. Therefore, we aimed to systematically review the literature to assess the quality of prostate MRI radiomic studies using the radiomics quality score (RQS). METHODS Multiple medical literature archives (PubMed, Web of Science and EMBASE) were searched to retrieve original investigations focused on prostate MRI radiomic approaches up to the end of June 2019. Three researchers independently assessed each paper using the RQS. Data from the most experienced researcher were used for descriptive analysis. Inter-rater reproducibility was assessed using the intraclass correlation coefficient (ICC) on the total RQS score. RESULTS 73 studies were included in the analysis. Overall, the average RQS total score was 7.93 ± 5.13 on a maximum of 36 points, with a final average percentage of 23 ± 13%. Among the most critical items, the lack of feature robustness testing strategies and external validation datasets. The ICC resulted poor to moderate, with an average value of 0.57 and 95% Confidence Intervals between 0.44 and 0.69. CONCLUSIONS Current studies on prostate MRI radiomics still lack the quality required to allow their introduction in clinical practice.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Michele Gambardella
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
33
|
Gong L, Xu M, Fang M, Zou J, Yang S, Yu X, Xu D, Zhou L, Li H, He B, Wang Y, Fang X, Dong D, Tian J. Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. J Magn Reson Imaging 2020; 52:1102-1109. [PMID: 32212356 DOI: 10.1002/jmri.27132] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gleason score (GS) is a histologic prognostic factor and the basis of treatment decision-making for prostate cancer (PCa). Treatment regimens between lower-grade (GS ≤7) and high-grade (GS >7) PCa differ largely and have great effects on cancer progression. PURPOSE To investigate the use of different sequences in biparametric MRI (bpMRI) of the prostate gland for noninvasively distinguishing high-grade PCa. STUDY TYPE Retrospective. POPULATION In all, 489 patients (training cohort: N = 326; test cohort: N = 163) with PCa between June 2008 and January 2018. FIELD STRENGTH/SEQUENCE 3.0T, pelvic phased-array coils, bpMRI including T2 -weighted imaging (T2 WI) and diffusion-weighted imaging (DWI); apparent diffusion coefficient map extracted from DWI. ASSESSMENT The whole prostate gland was delineated. Radiomic features were extracted and selected using the Kruskal-Wallis test, the minimum redundancy-maximum relevance, and the sequential backward elimination algorithm. Two single-sequence radiomic (T2 WI, DWI) and two combined (T2 WI-DWI, T2 WI-DWI-Clinic) models were respectively constructed and validated via logistic regression. STATISTICAL TESTS The Kruskal-Wallis test and chi-squared test were utilized to evaluate the differences among variable groups. P < 0.05 determined statistical significance. The area under the receiver operating characteristic curve (AUC), specificity, sensitivity, and accuracy were used to evaluate model performance. The Delong test was conducted to compare the differences between the AUCs of all models. RESULT All radiomic models showed significant (P < 0.001) predictive performances. Between the single-sequence radiomic models, the DWI model achieved the most encouraging results, with AUCs of 0.801 and 0.787 in the training and test cohorts, respectively. For the combined models, the T2 WI-DWI models acquired an AUC of 0.788, which was almost the same with DWI in the test cohort, and no significant difference was found between them (training cohort: P = 0.199; test cohort: P = 0.924). DATA CONCLUSION Radiomics based on bpMRI can noninvasively identify high-grade PCa before the operation, which is helpful for individualized diagnosis of PCa. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:1102-1109.
Collapse
Affiliation(s)
- Lixin Gong
- College of Medicine and Biological Information Engineering School, Northeastern University, Shenyang, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Min Xu
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Mengjie Fang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zou
- Center of Clinical Research, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Shudong Yang
- Department of Pathology, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xinyi Yu
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Dandan Xu
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Lijuan Zhou
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Hailin Li
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bingxi He
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Wang
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Xiangming Fang
- Imaging Center, Wuxi People's Hospital, Nanjing Medical University, Wuxi, China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- College of Medicine and Biological Information Engineering School, Northeastern University, Shenyang, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, China
| |
Collapse
|
34
|
Monti S, Brancato V, Di Costanzo G, Basso L, Puglia M, Ragozzino A, Salvatore M, Cavaliere C. Multiparametric MRI for Prostate Cancer Detection: New Insights into the Combined Use of a Radiomic Approach with Advanced Acquisition Protocol. Cancers (Basel) 2020; 12:cancers12020390. [PMID: 32046196 PMCID: PMC7072162 DOI: 10.3390/cancers12020390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer (PCa) is a disease affecting an increasing number of men worldwide. Several efforts have been made to identify imaging biomarkers to non-invasively detect and characterize PCa, with substantial improvements thanks to multiparametric Magnetic Resonance Imaging (mpMRI). In recent years, diffusion kurtosis imaging (DKI) was proposed to be directly related to tissue physiological and pathological characteristic, while the radiomic approach was proven to be a key method to study cancer imaging phenotypes. Our aim was to compare a standard radiomic model for PCa detection, built using T2-weighted (T2W) and Apparent Diffusion Coefficient (ADC), with an advanced one, including DKI and quantitative Dynamic Contrast Enhanced (DCE), while also evaluating differences in prediction performance when using 2D or 3D lesion segmentation. The obtained results in terms of diagnostic accuracy were high for all of the performed comparisons, reaching values up to 0.99 for the area under a receiver operating characteristic curve (AUC), and 0.98 for both sensitivity and specificity. In comparison, the radiomic model based on standard features led to prediction performances higher than those of the advanced model, while greater accuracy was achieved by the model extracted from 3D segmentation. These results provide new insights into active topics of discussion, such as choosing the most convenient acquisition protocol and the most appropriate postprocessing pipeline to accurately detect and characterize PCa.
Collapse
Affiliation(s)
- Serena Monti
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Valentina Brancato
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
- Correspondence: ; Tel.: +39-081-2408-299
| | | | - Luca Basso
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Marta Puglia
- Ospedale S. Maria delle Grazie, 80078 Pozzuoli, Italy; (G.D.C.); (M.P.); (A.R.)
| | - Alfonso Ragozzino
- Ospedale S. Maria delle Grazie, 80078 Pozzuoli, Italy; (G.D.C.); (M.P.); (A.R.)
| | - Marco Salvatore
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| | - Carlo Cavaliere
- IRCCS SDN, 80143 Naples, Italy; (S.M.); (L.B.); (M.S.); (C.C.)
| |
Collapse
|
35
|
Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol 2019; 30:1313-1324. [PMID: 31776744 PMCID: PMC7033141 DOI: 10.1007/s00330-019-06488-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/28/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
Abstract
Objectives To create a radiomics approach based on multiparametric magnetic resonance imaging (mpMRI) features extracted from an auto-fixed volume of interest (VOI) that quantifies the phenotype of clinically significant (CS) peripheral zone (PZ) prostate cancer (PCa). Methods This study included 206 patients with 262 prospectively called mpMRI prostate imaging reporting and data system 3–5 PZ lesions. Gleason scores > 6 were defined as CS PCa. Features were extracted with an auto-fixed 12-mm spherical VOI placed around a pin point in each lesion. The value of dynamic contrast-enhanced imaging(DCE), multivariate feature selection and extreme gradient boosting (XGB) vs. univariate feature selection and random forest (RF), expert-based feature pre-selection, and the addition of image filters was investigated using the training (171 lesions) and test (91 lesions) datasets. Results The best model with features from T2-weighted (T2-w) + diffusion-weighted imaging (DWI) + DCE had an area under the curve (AUC) of 0.870 (95% CI 0.980–0.754). Removal of DCE features decreased AUC to 0.816 (95% CI 0.920–0.710), although not significantly (p = 0.119). Multivariate and XGB outperformed univariate and RF (p = 0.028). Expert-based feature pre-selection and image filters had no significant contribution. Conclusions The phenotype of CS PZ PCa lesions can be quantified using a radiomics approach based on features extracted from T2-w + DWI using an auto-fixed VOI. Although DCE features improve diagnostic performance, this is not statistically significant. Multivariate feature selection and XGB should be preferred over univariate feature selection and RF. The developed model may be a valuable addition to traditional visual assessment in diagnosing CS PZ PCa. Key Points • T2-weighted and diffusion-weighted imaging features are essential components of a radiomics model for clinically significant prostate cancer; addition of dynamic contrast-enhanced imaging does not significantly improve diagnostic performance. • Multivariate feature selection and extreme gradient outperform univariate feature selection and random forest. • The developed radiomics model that extracts multiparametric MRI features with an auto-fixed volume of interest may be a valuable addition to visual assessment in diagnosing clinically significant prostate cancer. Electronic supplementary material The online version of this article (10.1007/s00330-019-06488-y) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Stieb S, McDonald B, Gronberg M, Engeseth GM, He R, Fuller CD. Imaging for Target Delineation and Treatment Planning in Radiation Oncology: Current and Emerging Techniques. Hematol Oncol Clin North Am 2019; 33:963-975. [PMID: 31668214 DOI: 10.1016/j.hoc.2019.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Imaging in radiation oncology has a wide range of applications. It is necessary not only for tumor staging and treatment response assessment after therapy but also for the treatment planning process, including definition of target and organs at risk, as well as treatment plan calculation. This article provides a comprehensive overview of the main imaging modalities currently used for target delineation and treatment planning and gives insight into new and promising techniques.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Brigid McDonald
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Mary Gronberg
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Grete May Engeseth
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Renjie He
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Emberton M. Dropping the GAD - just a fad? The case for a simpler, quicker, safer and cheaper prostate magnetic resonance imaging. BJU Int 2019; 124:183-184. [PMID: 31321868 DOI: 10.1111/bju.14801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mark Emberton
- Division of Surgery and Interventional Science, University College London (UCL), London, UK
| |
Collapse
|