1
|
Chong JJR, Kirpalani A, Moreland R, Colak E. Artificial Intelligence in Gastrointestinal Imaging: Advances and Applications. Radiol Clin North Am 2025; 63:477-490. [PMID: 40221188 DOI: 10.1016/j.rcl.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
While artificial intelligence (AI) has shown considerable progress in many areas of medical imaging, applications in abdominal imaging, particularly for the gastrointestinal (GI) system, have notably lagged behind advancements in other body regions. This article reviews foundational concepts in AI and highlights examples of AI applications in GI tract imaging. The discussion on AI applications includes acute & emergent GI imaging, inflammatory bowel disease, oncology, and other miscellaneous applications. It concludes with a discussion of important considerations for implementing AI tools in clinical practice, and steps we can take to accelerate future developments in the field.
Collapse
Affiliation(s)
- Jaron J R Chong
- Department of Medical Imaging, Schulich School of Medicine and Dentistry, Western University, 800 Commissioners Road East, London, Ontario N6A 5W9, Canada
| | - Anish Kirpalani
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, Ontario M5B 1C9, Canada; Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada
| | - Robert Moreland
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, Ontario M5B 1C9, Canada
| | - Errol Colak
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, Ontario M5B 1C9, Canada; Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Mao H, Li S. Letter to "The potential of an artificial intelligence for diagnosing MRI images in rectal cancer: multicenter collaborative trial". J Gastroenterol 2025:10.1007/s00535-025-02255-7. [PMID: 40285861 DOI: 10.1007/s00535-025-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Haoxun Mao
- Department of Anorectal Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, China
| | - Sheng Li
- Department of Anorectal Surgery, Ningbo No.2 Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
3
|
Rama NJG, Sousa I. Bridging the gap: The role of technological advances in shaping gastrointestinal oncological outcomes. World J Gastrointest Oncol 2025; 17:101752. [PMID: 40092923 PMCID: PMC11866242 DOI: 10.4251/wjgo.v17.i3.101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 02/14/2025] Open
Abstract
Gastrointestinal (GI) cancers are highly prevalent and considered a major global health challenge. Their approach has undergone a remarkable transformation over the past years due to the development of new technologies that enabled better outcomes regarding their diagnosis and management. These include artificial intelligence, robotics, next-generation sequencing and personalized medicine. Nonetheless, the integration of these advances into everyday clinical practice remains complex and challenging as we are still trying to figure out if these innovations tangibly improve oncological outcomes or if the current state of art should remain as the gold standard for the treatment of these patients. Additionally, there are also some issues regarding ethical subjects, data privacy, finances and governance. Precision surgery concept has evolved considerably over the past decades, especially for oncological patients. It aims to customize medical treatments and to operate on those patients who most likely will benefit from a specific surgical procedure. In the future, to improve GI oncological outcomes, a delicate balance between technological advances adoption and evidence-based care should be chased. As we move forward, the question will be to harness the power of innovation while keeping up the highest standards of patient care.
Collapse
Affiliation(s)
- Nuno J G Rama
- Division of Colorectal Surgical, Leiria Hospital Centre, Leiria 2410-021, Portugal
| | - Inês Sousa
- Department of Surgical, Leiria Hospital Centre, Leiria 2410-021, Portugal
| |
Collapse
|
4
|
Liao Z, Luo D, Tang X, Huang F, Zhang X. MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Front Oncol 2025; 15:1550838. [PMID: 40129922 PMCID: PMC11930822 DOI: 10.3389/fonc.2025.1550838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose To evaluate the value of MRI-based radiomics for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) through a systematic review and meta-analysis. Methods A systematic literature search was conducted in PubMed, Embase, Proquest, Cochrane Library, and Web of Science databases, covering studies up to July 1st, 2024, on the diagnostic accuracy of MRI radiomics for predicting pCR in LARC patients following NCRT. Two researchers independently evaluated and selected studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) tool. A random-effects model was employed to calculate the pooled sensitivity, specificity, and diagnostic odds ratio (DOR) for MRI radiomics in predicting pCR. Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity. Statistical analyses were performed using RevMan 5.4, Stata 17.0, and Meta-Disc 1.4. Results A total of 35 studies involving 9,696 LARC patients were included in this meta-analysis. The average RQS score of the included studies was 13.91 (range 9.00-24.00), accounting for 38.64% of the total score. According to QUADAS-2, there were risks of bias in patient selection and flow and timing domain, though the overall quality of the studies was acceptable. MRI-based radiomics showed no significant threshold effect in predicting pCR (Spearman correlation coefficient=0.119, P=0.498) but exhibited high heterogeneity (I2≥50%). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and DOR were 0.83, 0.82, 5.1, 0.23 and 27.22 respectively, with an area under the summary receiver operating characteristic (sROC) curve of 0.91. According to joint model analysis, publication year, country, multi-magnetic field strength, multi-MRI sequence, ROI structure, contour consistency, feature extraction software, and feature quantity after feature dimensionality reduction were potential sources of heterogeneity. Deeks' funnel plot suggested no significant publication bias (P=0.69). Conclusions MRI-based radiomics demonstrates high efficacy for predicting pCR in LARC patients following NCRT, holding significant promise for informing clinical decision-making processes and advancing individualized treatment in rectal cancer patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024611733.
Collapse
Affiliation(s)
| | | | | | | | - Xuhui Zhang
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
5
|
Zhu M, Zhai Z, Wang Y, Chen F, Liu R, Yang X, Zhao G. Advancements in the application of artificial intelligence in the field of colorectal cancer. Front Oncol 2025; 15:1499223. [PMID: 40071094 PMCID: PMC11893421 DOI: 10.3389/fonc.2025.1499223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor in the digestive system. As reported in the 2020 global cancer statistics, CRC accounted for more than 1.9 million new cases and 935,000 deaths, making it the third most common cancer worldwide in terms of incidence and the second leading cause of cancer-related deaths globally. This poses a significant threat to global public health. Early screening methods, such as fecal occult blood tests, colonoscopies, and imaging techniques, are crucial for detecting early lesions and enabling timely intervention before cancer becomes invasive. Early detection greatly enhances treatment possibilities, such as surgery, radiation therapy, and chemotherapy, with surgery being the main approach for treating early-stage CRC. In this context, artificial intelligence (AI) has shown immense potential in revolutionizing CRC management, serving as one of the most effective screening tools. AI, utilizing machine learning (ML) and deep learning (DL) algorithms, improves early detection, diagnosis, and treatment by processing large volumes of medical data, uncovering hidden patterns, and forecasting disease development. DL, a more advanced form of ML, simulates the brain's processing power, enhancing the accuracy of tumor detection, differentiation, and prognosis predictions. These innovations offer the potential to revolutionize cancer care by boosting diagnostic accuracy, refining treatment approaches, and ultimately enhancing patient outcomes.
Collapse
Affiliation(s)
- Mengying Zhu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhenzhu Zhai
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Fang Chen
- Department of Gynecology, People’s Hospital of Liaoning Province, Shenyang, China
| | - Ruibin Liu
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xiaoquan Yang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Guohua Zhao
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
6
|
Abdul Rasool Hassan B, Mohammed AH, Hallit S, Malaeb D, Hosseini H. Exploring the role of artificial intelligence in chemotherapy development, cancer diagnosis, and treatment: present achievements and future outlook. Front Oncol 2025; 15:1475893. [PMID: 39990683 PMCID: PMC11843581 DOI: 10.3389/fonc.2025.1475893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/13/2025] [Indexed: 02/25/2025] Open
Abstract
Background Artificial intelligence (AI) has emerged as a transformative tool in oncology, offering promising applications in chemotherapy development, cancer diagnosis, and predicting chemotherapy response. Despite its potential, debates persist regarding the predictive accuracy of AI technologies, particularly machine learning (ML) and deep learning (DL). Objective This review aims to explore the role of AI in forecasting outcomes related to chemotherapy development, cancer diagnosis, and treatment response, synthesizing current advancements and identifying critical gaps in the field. Methods A comprehensive literature search was conducted across PubMed, Embase, Web of Science, and Cochrane databases up to 2023. Keywords included "Artificial Intelligence (AI)," "Machine Learning (ML)," and "Deep Learning (DL)" combined with "chemotherapy development," "cancer diagnosis," and "cancer treatment." Articles published within the last four years and written in English were included. The Prediction Model Risk of Bias Assessment tool was utilized to assess the risk of bias in the selected studies. Conclusion This review underscores the substantial impact of AI, including ML and DL, on cancer diagnosis, chemotherapy innovation, and treatment response for both solid and hematological tumors. Evidence from recent studies highlights AI's potential to reduce cancer-related mortality by optimizing diagnostic accuracy, personalizing treatment plans, and improving therapeutic outcomes. Future research should focus on addressing challenges in clinical implementation, ethical considerations, and scalability to enhance AI's integration into oncology care.
Collapse
Affiliation(s)
| | | | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
- Department of Psychology, College of Humanities, Effat University, Jeddah, Saudi Arabia
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Diana Malaeb
- College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Hassan Hosseini
- Institut Coeur et Cerveau de l’Est Parisien (ICCE), UPEC-University Paris-Est, Creteil, France
- RAMSAY SANTÉ, Hôpital Paul D’Egine (HPPE), Champigny sur Marne, France
| |
Collapse
|
7
|
Ferrari R, Trinci M, Casinelli A, Treballi F, Leone E, Caruso D, Polici M, Faggioni L, Neri E, Galluzzo M. Radiomics in radiology: What the radiologist needs to know about technical aspects and clinical impact. LA RADIOLOGIA MEDICA 2024; 129:1751-1765. [PMID: 39472389 DOI: 10.1007/s11547-024-01904-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/16/2024] [Indexed: 12/17/2024]
Abstract
Radiomics represents the science of extracting and analyzing a multitude of quantitative features from medical imaging, revealing the quantitative potential of radiologic images. This scientific review aims to provide radiologists with a comprehensive understanding of radiomics, emphasizing its principles, applications, challenges, limits, and prospects. The limitations of standardization in current scientific production are analyzed, along with possible solutions proposed by some of the referenced papers. As the continuous evolution of medical imaging is ongoing, radiologists must be aware of new perspectives to play a central role in patient management.
Collapse
Affiliation(s)
- Riccardo Ferrari
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy.
| | - Margherita Trinci
- Dipartimento Di Radiologia, P.O. Colline Dell'Albegna, Orbetello, Grosseto, Italy
| | - Alice Casinelli
- Diagnostic Imaging Department, Sandro Pertini Hospital, Rome, Italy
| | | | - Edoardo Leone
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant'Andrea University Hospital, Rome, Italy
| | - Lorenzo Faggioni
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Emanuele Neri
- Department of Translational Research on New Technologies in Medicine e Surgery, Pisa University, Pisa, Italy
| | - Michele Galluzzo
- Emergency Radiology Department, San Camillo-Forlanini Hospital, Rome, Italy
| |
Collapse
|
8
|
He J, Wang SX, Liu P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. Br J Radiol 2024; 97:1243-1254. [PMID: 38730550 PMCID: PMC11186567 DOI: 10.1093/bjr/tqae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging. METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science for studies published before March 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the methodological quality of the included studies, random-effects models were used to calculate sensitivity and specificity, I2 values were used for heterogeneity measurements, and subgroup analyses were carried out to detect potential sources of heterogeneity. RESULTS A total of 1699 patients from 24 studies were included. For machine learning models in predicting pCR to nCRT, the meta-analysis calculated a pooled area under the curve (AUC) of 0.91 (95% CI, 0.88-0.93), pooled sensitivity of 0.83 (95% CI, 0.74-0.89), and pooled specificity of 0.86 (95% CI, 0.80-0.91). We investigated 6 studies that mainly contributed to heterogeneity. After performing meta-analysis again excluding these 6 studies, the heterogeneity was significantly reduced. In subgroup analysis, the pooled AUC of the deep-learning model was 0.93 and 0.89 for the traditional statistical model; the pooled AUC of studies that used diffusion-weighted imaging (DWI) was 0.90 and 0.92 in studies that did not use DWI; the pooled AUC of studies conducted in China was 0.93, and was 0.83 in studies conducted in other countries. CONCLUSIONS This systematic study showed that machine learning has promising potential in predicting pCR to nCRT in patients with locally advanced rectal cancer. Compared to traditional machine learning models, although deep-learning-based studies are less predominant and more heterogeneous, they are able to obtain higher AUC. ADVANCES IN KNOWLEDGE Compared to traditional machine learning models, deep-learning-based studies are able to obtain higher AUC, although they are less predominant and more heterogeneous. Together with clinical information, machine learning-based models may bring us closer towards precision medicine.
Collapse
Affiliation(s)
- Jia He
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| | | | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| |
Collapse
|
9
|
Bangolo A, Wadhwani N, Nagesh VK, Dey S, Tran HHV, Aguilar IK, Auda A, Sidiqui A, Menon A, Daoud D, Liu J, Pulipaka SP, George B, Furman F, Khan N, Plumptre A, Sekhon I, Lo A, Weissman S. Impact of artificial intelligence in the management of esophageal, gastric and colorectal malignancies. Artif Intell Gastrointest Endosc 2024; 5:90704. [DOI: 10.37126/aige.v5.i2.90704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 05/11/2024] Open
Abstract
The incidence of gastrointestinal malignancies has increased over the past decade at an alarming rate. Colorectal and gastric cancers are the third and fifth most commonly diagnosed cancers worldwide but are cited as the second and third leading causes of mortality. Early institution of appropriate therapy from timely diagnosis can optimize patient outcomes. Artificial intelligence (AI)-assisted diagnostic, prognostic, and therapeutic tools can assist in expeditious diagnosis, treatment planning/response prediction, and post-surgical prognostication. AI can intercept neoplastic lesions in their primordial stages, accurately flag suspicious and/or inconspicuous lesions with greater accuracy on radiologic, histopathological, and/or endoscopic analyses, and eliminate over-dependence on clinicians. AI-based models have shown to be on par, and sometimes even outperformed experienced gastroenterologists and radiologists. Convolutional neural networks (state-of-the-art deep learning models) are powerful computational models, invaluable to the field of precision oncology. These models not only reliably classify images, but also accurately predict response to chemotherapy, tumor recurrence, metastasis, and survival rates post-treatment. In this systematic review, we analyze the available evidence about the diagnostic, prognostic, and therapeutic utility of artificial intelligence in gastrointestinal oncology.
Collapse
Affiliation(s)
- Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nikita Wadhwani
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Vignesh K Nagesh
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Auda Auda
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aman Sidiqui
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Deborah Daoud
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - James Liu
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Blessy George
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Flor Furman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Nareeman Khan
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Adewale Plumptre
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Imranjot Sekhon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Abraham Lo
- Department of Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
10
|
Palomba G, Fernicola A, Corte MD, Capuano M, De Palma GD, Aprea G. Artificial intelligence in screening and diagnosis of surgical diseases: A narrative review. AIMS Public Health 2024; 11:557-576. [PMID: 39027395 PMCID: PMC11252578 DOI: 10.3934/publichealth.2024028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 07/20/2024] Open
Abstract
Artificial intelligence (AI) is playing an increasing role in several fields of medicine. It is also gaining popularity among surgeons as a valuable screening and diagnostic tool for many conditions such as benign and malignant colorectal, gastric, thyroid, parathyroid, and breast disorders. In the literature, there is no review that groups together the various application domains of AI when it comes to the screening and diagnosis of main surgical diseases. The aim of this review is to describe the use of AI in these settings. We performed a literature review by searching PubMed, Web of Science, Scopus, and Embase for all studies investigating the role of AI in the surgical setting, published between January 01, 2000, and June 30, 2023. Our focus was on randomized controlled trials (RCTs), meta-analysis, systematic reviews, and observational studies, dealing with large cohorts of patients. We then gathered further relevant studies from the reference list of the selected publications. Based on the studies reviewed, it emerges that AI could strongly enhance the screening efficiency, clinical ability, and diagnostic accuracy for several surgical conditions. Some of the future advantages of this technology include implementing, speeding up, and improving the automaticity with which AI recognizes, differentiates, and classifies the various conditions.
Collapse
Affiliation(s)
- Giuseppe Palomba
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Agostino Fernicola
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Marcello Della Corte
- Azienda Ospedaliera Universitaria San Giovanni di Dio e Ruggi d'Aragona - OO. RR. Scuola Medica Salernitana, Salerno, Italy
| | - Marianna Capuano
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Domenico De Palma
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples, “Federico II”, Sergio Pansini 5, 80131, Naples, Italy
| |
Collapse
|
11
|
Shen H, Jin Z, Chen Q, Zhang L, You J, Zhang S, Zhang B. Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:598-614. [PMID: 38512622 DOI: 10.1007/s11547-024-01796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Artificial intelligence (AI) holds enormous potential for noninvasively identifying patients with rectal cancer who could achieve pathological complete response (pCR) following neoadjuvant chemoradiotherapy (nCRT). We aimed to conduct a meta-analysis to summarize the diagnostic performance of image-based AI models for predicting pCR to nCRT in patients with rectal cancer. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A literature search of PubMed, Embase, Cochrane Library, and Web of Science was performed from inception to July 29, 2023. Studies that developed or utilized AI models for predicting pCR to nCRT in rectal cancer from medical images were included. The Quality Assessment of Diagnostic Accuracy Studies-AI was used to appraise the methodological quality of the studies. The bivariate random-effects model was used to summarize the individual sensitivities, specificities, and areas-under-the-curve (AUCs). Subgroup and meta-regression analyses were conducted to identify potential sources of heterogeneity. Protocol for this study was registered with PROSPERO (CRD42022382374). RESULTS Thirty-four studies (9933 patients) were identified. Pooled estimates of sensitivity, specificity, and AUC of AI models for pCR prediction were 82% (95% CI: 76-87%), 84% (95% CI: 79-88%), and 90% (95% CI: 87-92%), respectively. Higher specificity was seen for the Asian population, low risk of bias, and deep-learning, compared with the non-Asian population, high risk of bias, and radiomics (all P < 0.05). Single-center had a higher sensitivity than multi-center (P = 0.001). The retrospective design had lower sensitivity (P = 0.012) but higher specificity (P < 0.001) than the prospective design. MRI showed higher sensitivity (P = 0.001) but lower specificity (P = 0.044) than non-MRI. The sensitivity and specificity of internal validation were higher than those of external validation (both P = 0.005). CONCLUSIONS Image-based AI models exhibited favorable performance for predicting pCR to nCRT in rectal cancer. However, further clinical trials are warranted to verify the findings.
Collapse
Affiliation(s)
- Hui Shen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Jingjing You
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
12
|
Noori J, Yeung T, Pham T, Warrier S, Behrenbruch C, Heriot AG. Revolutionizing colorectal surgery with artificial intelligence: not just a pretty robot. ANZ J Surg 2024; 94:295-296. [PMID: 38178570 DOI: 10.1111/ans.18847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Affiliation(s)
- Jawed Noori
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Trevor Yeung
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Toan Pham
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Satish Warrier
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Corina Behrenbruch
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Colorectal Surgery, St Vincent's Hospital, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Alexander G Heriot
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, St Vincent's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Kim M, Park T, Oh BY, Kim MJ, Cho BJ, Son IT. Performance reporting design in artificial intelligence studies using image-based TNM staging and prognostic parameters in rectal cancer: a systematic review. Ann Coloproctol 2024; 40:13-26. [PMID: 38414120 PMCID: PMC10915525 DOI: 10.3393/ac.2023.00892.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
PURPOSE The integration of artificial intelligence (AI) and magnetic resonance imaging in rectal cancer has the potential to enhance diagnostic accuracy by identifying subtle patterns and aiding tumor delineation and lymph node assessment. According to our systematic review focusing on convolutional neural networks, AI-driven tumor staging and the prediction of treatment response facilitate tailored treat-ment strategies for patients with rectal cancer. METHODS This paper summarizes the current landscape of AI in the imaging field of rectal cancer, emphasizing the performance reporting design based on the quality of the dataset, model performance, and external validation. RESULTS AI-driven tumor segmentation has demonstrated promising results using various convolutional neural network models. AI-based predictions of staging and treatment response have exhibited potential as auxiliary tools for personalized treatment strategies. Some studies have indicated superior performance than conventional models in predicting microsatellite instability and KRAS status, offer-ing noninvasive and cost-effective alternatives for identifying genetic mutations. CONCLUSION Image-based AI studies for rectal can-cer have shown acceptable diagnostic performance but face several challenges, including limited dataset sizes with standardized data, the need for multicenter studies, and the absence of oncologic relevance and external validation for clinical implantation. Overcoming these pitfalls and hurdles is essential for the feasible integration of AI models in clinical settings for rectal cancer, warranting further research.
Collapse
Affiliation(s)
- Minsung Kim
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Taeyong Park
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Bo Young Oh
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Min Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Bum-Joo Cho
- Medical Artificial Intelligence Center, Hallym University Medical Center, Anyang, Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| |
Collapse
|
14
|
Yang J, Huang J, Han D, Ma X. Artificial Intelligence Applications in the Treatment of Colorectal Cancer: A Narrative Review. Clin Med Insights Oncol 2024; 18:11795549231220320. [PMID: 38187459 PMCID: PMC10771756 DOI: 10.1177/11795549231220320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024] Open
Abstract
Colorectal cancer is the third most prevalent cancer worldwide, and its treatment has been a demanding clinical problem. Beyond traditional surgical therapy and chemotherapy, newly revealed molecular mechanisms diversify therapeutic approaches for colorectal cancer. However, the selection of personalized treatment among multiple treatment options has become another challenge in the era of precision medicine. Artificial intelligence has recently been increasingly investigated in the treatment of colorectal cancer. This narrative review mainly discusses the applications of artificial intelligence in the treatment of colorectal cancer patients. A comprehensive literature search was conducted in MEDLINE, EMBASE, and Web of Science to identify relevant papers, resulting in 49 articles being included. The results showed that, based on different categories of data, artificial intelligence can predict treatment outcomes and essential guidance information of traditional and novel therapies, thus enabling individualized treatment strategy selection for colorectal cancer patients. Some frequently implemented machine learning algorithms and deep learning frameworks have also been employed for long-term prognosis prediction in patients with colorectal cancer. Overall, artificial intelligence shows encouraging results in treatment strategy selection and prognosis evaluation for colorectal cancer patients.
Collapse
Affiliation(s)
- Jiaqing Yang
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Huang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Deqian Han
- Department of Oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Das K, Paltani M, Tripathi PK, Kumar R, Verma S, Kumar S, Jain CK. Current implications and challenges of artificial intelligence technologies in therapeutic intervention of colorectal cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1286-1300. [PMID: 38213536 PMCID: PMC10776591 DOI: 10.37349/etat.2023.00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024] Open
Abstract
Irrespective of men and women, colorectal cancer (CRC), is the third most common cancer in the population with more than 1.85 million cases annually. Fewer than 20% of patients only survive beyond five years from diagnosis. CRC is a highly preventable disease if diagnosed at the early stage of malignancy. Several screening methods like endoscopy (like colonoscopy; gold standard), imaging examination [computed tomographic colonography (CTC)], guaiac-based fecal occult blood (gFOBT), immunochemical test from faeces, and stool DNA test are available with different levels of sensitivity and specificity. The available screening methods are associated with certain drawbacks like invasiveness, cost, or sensitivity. In recent years, computer-aided systems-based screening, diagnosis, and treatment have been very promising in the early-stage detection and diagnosis of CRC cases. Artificial intelligence (AI) is an enormously in-demand, cost-effective technology, that uses various tools machine learning (ML), and deep learning (DL) to screen, diagnose, and stage, and has great potential to treat CRC. Moreover, different ML algorithms and neural networks [artificial neural network (ANN), k-nearest neighbors (KNN), and support vector machines (SVMs)] have been deployed to predict precise and personalized treatment options. This review examines and summarizes different ML and DL models used for therapeutic intervention in CRC cancer along with the gap and challenges for AI.
Collapse
Affiliation(s)
- Kriti Das
- Department of Artificial Intelligence and Precision Medicine, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Maanvi Paltani
- Department of Artificial Intelligence and Precision Medicine, School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Pankaj Kumar Tripathi
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, Uttar Pradesh, India
| | - Rajnish Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi 110017, India
| | - Saniya Verma
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi 110017, India
| | - Subodh Kumar
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Delhi Pharmaceutical Sciences and Research University, Delhi 110017, India
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201309, Uttar Pradesh, India
| |
Collapse
|
16
|
Yadav A, Kumar A. Artificial intelligence in rectal cancer: What is the future? Artif Intell Cancer 2023; 4:11-22. [DOI: 10.35713/aic.v4.i2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer in both men and women, and it is the second leading cause of cancer-related deaths globally. Around 60%-70% of CRC patients are diagnosed at advanced stages, with nearly 20% having liver metastases. It is noteworthy that the 5-year survival rates decline significantly from 80%-90% for localized disease to a mere 10%-15% for patients with metastasis at the time of diagnosis. Early diagnosis, appropriate therapeutic strategy, accurate assessment of treatment response, and prognostication is essential for better outcome. There has been significant technological development in the last couple of decades to improve the outcome of rectal cancer including Artificial intelligence (AI). AI is a broad term used to describe the study of machines that mimic human intelligence, such as perceiving the environment, drawing logical conclusions from observations, and performing complex tasks. At present AI has demonstrated a promising role in early diagnosis, prognosis, and treatment outcomes for patients with rectal cancer, a limited role in surgical decision making, and had a bright future.
Collapse
Affiliation(s)
- Alka Yadav
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, UP, India
| |
Collapse
|
17
|
Tsang B, Gupta A, Takahashi MS, Baffi H, Ola T, Doria AS. Applications of artificial intelligence in magnetic resonance imaging of primary pediatric cancers: a scoping review and CLAIM score assessment. Jpn J Radiol 2023; 41:1127-1147. [PMID: 37395982 DOI: 10.1007/s11604-023-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/18/2023] [Indexed: 07/04/2023]
Abstract
PURPOSES To review the uses of AI for magnetic resonance (MR) imaging assessment of primary pediatric cancer and identify common literature topics and knowledge gaps. To assess the adherence of the existing literature to the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines. MATERIALS AND METHODS A scoping literature search using MEDLINE, EMBASE and Cochrane databases was performed, including studies of > 10 subjects with a mean age of < 21 years. Relevant data were summarized into three categories based on AI application: detection, characterization, treatment and monitoring. Readers independently scored each study using CLAIM guidelines, and inter-rater reproducibility was assessed using intraclass correlation coefficients. RESULTS Twenty-one studies were included. The most common AI application for pediatric cancer MR imaging was pediatric tumor diagnosis and detection (13/21 [62%] studies). The most commonly studied tumor was posterior fossa tumors (14 [67%] studies). Knowledge gaps included a lack of research in AI-driven tumor staging (0/21 [0%] studies), imaging genomics (1/21 [5%] studies), and tumor segmentation (2/21 [10%] studies). Adherence to CLAIM guidelines was moderate in primary studies, with an average (range) of 55% (34%-73%) CLAIM items reported. Adherence has improved over time based on publication year. CONCLUSION The literature surrounding AI applications of MR imaging in pediatric cancers is limited. The existing literature shows moderate adherence to CLAIM guidelines, suggesting that better adherence is required for future studies.
Collapse
Affiliation(s)
- Brian Tsang
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Aaryan Gupta
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Marcelo Straus Takahashi
- Instituto de Radiologia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InRad/HC-FMUSP), São Paulo, SP, Brazil
- Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP), São Paulo, SP, Brazil
- DasaInova, Diagnósticos da América SA (Dasa), São Paulo, SP, Brazil
| | | | - Tolulope Ola
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Andrea S Doria
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.
- Department of Diagnostic Imaging, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
18
|
Jiang H, Guo W, Yu Z, Lin X, Zhang M, Jiang H, Zhang H, Sun Z, Li J, Yu Y, Zhao S, Hu H. A Comprehensive Prediction Model Based on MRI Radiomics and Clinical Factors to Predict Tumor Response After Neoadjuvant Chemoradiotherapy in Rectal Cancer. Acad Radiol 2023; 30 Suppl 1:S185-S198. [PMID: 37394412 DOI: 10.1016/j.acra.2023.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
RATIONALE AND OBJECTIVES To establish a prediction model for the efficacy of neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC), using pretreatment magnetic resonance imaging (MRI) multisequence image features and clinical parameters. MATERIALS AND METHODS Patients with clinicopathologically confirmed LARC were included (training and validation datasets, n = 100 and 27, respectively). Clinical data of patients were collected retrospectively. We analyzed MRI multisequence imaging features. The tumor regression grading (TRG) system proposed by Mandard et al was adopted. Grade 1-2 of TRG was a good response group, and grade 3-5 of TRG was a poor response group. In this study, a clinical model, a single sequence imaging model, and a comprehensive model combined with clinical imaging were constructed, respectively. The area under the subject operating characteristic curve (AUC) was used to evaluate the predictive efficacy of clinical, imaging, and comprehensive models. The decision curve analysis method evaluated the clinical benefit of several models, and the nomogram of efficacy prediction was constructed. RESULTS The AUC value of the comprehensive prediction model is 0.99 in the training data set and 0.94 in the test data set, which is significantly higher than other models. Radiomic Nomo charts were developed using Rad scores obtained from the integrated image omics model, circumferential resection margin(CRM), DoTD, and carcinoembryonic antigen(CEA). Nomo charts showed good resolution. The calibrating and discriminating ability of the synthetic prediction model is better than that of the single clinical model and the single sequence clinical image omics fusion model. CONCLUSION Nomograph, based on pretreatment MRI characteristics and clinical risk factors, has the potential to be used as a noninvasive tool to predict outcomes in patients with LARC after nCRT.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| | - Wei Guo
- Department of PET/CT-MRI, Harbin Medical University Cancer Hospital, Harbin, China (W.G.)
| | - Zhuo Yu
- Huiying Medical Technology (Beijing) Co, Beijing, China (Z.Y.)
| | - Xue Lin
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| | - Mingyu Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China (M.Z.)
| | - Huijie Jiang
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.).
| | - Hongxia Zhang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China (H.Z., Y.Y.)
| | - Zhongqi Sun
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| | - Jinping Li
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| | - Yanyan Yu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China (H.Z., Y.Y.)
| | - Sheng Zhao
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| | - Hongbo Hu
- Department of Radiology, the Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China (H.J., X.L., H.J., Z.S., J.L., S.Z., H.H.)
| |
Collapse
|
19
|
Prabhakaran S, Choong KWK, Prabhakaran S, Choy KT, Kong JC. Accuracy of deep neural learning models in the imaging prediction of pathological complete response after neoadjuvant chemoradiotherapy for locally advanced rectal cancer: a systematic review. Langenbecks Arch Surg 2023; 408:321. [PMID: 37594552 DOI: 10.1007/s00423-023-03039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
PURPOSE Up to 15-27% of patients achieve pathologic complete response (pCR) following neoadjuvant chemoradiotherapy (CRT) for locally advanced rectal cancer (LARC). Deep neural learning (DL) algorithms have been suggested to be a useful adjunct to allow accurate prediction of pCR and to identify patients who could potentially avoid surgery. This systematic review aims to interrogate the accuracy of DL algorithms at predicting pCR. METHODS Embase (PubMed, MEDLINE) databases and Google Scholar were searched to identify eligible English-language studies, with the search concluding in July 2022. Studies reporting on the accuracy of DL models in predicting pCR were selected for review and information pertaining to study characteristics and diagnostic measures was extracted from relevant studies. Risk of bias was evaluated using the Newcastle-Ottawa scale (NOS). RESULTS Our search yielded 85 potential publications. Nineteen full texts were reviewed, and a total of 12 articles were included in this systematic review. There were six retrospective and six prospective cohort studies. The most common DL algorithm used was the Convolutional Neural Network (CNN). Performance comparison was carried out via single modality comparison. The median performance for each best-performing algorithm was an AUC of 0.845 (range 0.71-0.99) and Accuracy of 0.85 (0.83-0.98). CONCLUSIONS There is a promising role for DL models in the prediction of pCR following neoadjuvant-CRT for LARC. Further studies are needed to provide a standardised comparison in order to allow for large-scale clinical application. PROPERO REGISTRATION PROSPERO 2021 CRD42021269904 Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021269904 .
Collapse
Affiliation(s)
- Sowmya Prabhakaran
- Department of General Surgical Specialties, The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
| | | | - Swetha Prabhakaran
- Department of Colorectal Surgery, Alfred Hospital, Melbourne, Victoria, Australia
| | - Kay Tai Choy
- Department of Surgery, Austin Health, Melbourne, Victoria, Australia
| | - Joseph Ch Kong
- Department of Colorectal Surgery, Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Yin Z, Yao C, Zhang L, Qi S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect. Front Med (Lausanne) 2023; 10:1128084. [PMID: 36968824 PMCID: PMC10030915 DOI: 10.3389/fmed.2023.1128084] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
In the past few decades, according to the rapid development of information technology, artificial intelligence (AI) has also made significant progress in the medical field. Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and its incidence and mortality rates are increasing yearly, especially in developing countries. This article reviews the latest progress in AI in diagnosing and treating CRC based on a systematic collection of previous literature. Most CRCs transform from polyp mutations. The computer-aided detection systems can significantly improve the polyp and adenoma detection rate by early colonoscopy screening, thereby lowering the possibility of mutating into CRC. Machine learning and bioinformatics analysis can help screen and identify more CRC biomarkers to provide the basis for non-invasive screening. The Convolutional neural networks can assist in reading histopathologic tissue images, reducing the experience difference among doctors. Various studies have shown that AI-based high-level auxiliary diagnostic systems can significantly improve the readability of medical images and help clinicians make more accurate diagnostic and therapeutic decisions. Moreover, Robotic surgery systems such as da Vinci have been more and more commonly used to treat CRC patients, according to their precise operating performance. The application of AI in neoadjuvant chemoradiotherapy has further improved the treatment and efficacy evaluation of CRC. In addition, AI represented by deep learning in gene sequencing research offers a new treatment option. All of these things have seen that AI has a promising prospect in the era of precision medicine.
Collapse
Affiliation(s)
- Zugang Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenhui Yao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Limin Zhang
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaohua Qi
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Ouyang G, Chen Z, Dou M, Luo X, Wen H, Deng X, Meng W, Yu Y, Wu B, Jiang D, Wang Z, Yao Y, Wang X. Predicting Rectal Cancer Response to Total Neoadjuvant Treatment Using an Artificial Intelligence Model Based on Magnetic Resonance Imaging and Clinical Data. Technol Cancer Res Treat 2023; 22:15330338231186467. [PMID: 37431270 PMCID: PMC10338728 DOI: 10.1177/15330338231186467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 07/12/2023] Open
Abstract
PURPOSE To develop a model for predicting response to total neoadjuvant treatment (TNT) for patients with locally advanced rectal cancer (LARC) based on baseline magnetic resonance imaging (MRI) and clinical data using artificial intelligence methods. METHODS Baseline MRI and clinical data were curated from patients with LARC and analyzed using logistic regression (LR) and deep learning (DL) methods to predict TNT response retrospectively. We defined two groups of response to TNT as pathological complete response (pCR) versus non-pCR (Group 1), and high sensitivity [tumor regression grade (TRG) 0 and TRG 1] versus moderate sensitivity (TRG 2 or patients with TRG 3 and a reduction in tumor volume of at least 20% compared to baseline) versus low sensitivity (TRG 3 and a reduction in tumor volume <20% compared to baseline) (Group 2). We extracted and selected clinical and radiomic features on baseline T2WI. Then we built LR models and DL models. Receiver operating characteristic (ROC) curves analysis was performed to assess predictive performance of models. RESULTS Eighty-nine patients were assigned to the training cohort, and 29 patients were assigned to the testing cohort. The area under receiver operating characteristics curve (AUC) of LR models, which were predictive of high sensitivity and pCR, were 0.853 and 0.866, respectively. Whereas the AUCs of DL models were 0.829 and 0.838, respectively. After 10 rounds of cross validation, the accuracy of the models in Group 1 is higher than in Group 2. CONCLUSION There was no significant difference between LR model and DL model. Artificial Intelligence-based radiomics biomarkers may have potential clinical implications for adaptive and personalized therapy.
Collapse
Affiliation(s)
- Ganlu Ouyang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhebin Chen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Dou
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xu Luo
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Wen
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiangbing Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Wenjian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongyang Yu
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yao
- Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Chen R, Fu Y, Yi X, Pei Q, Zai H, Chen BT. Application of Radiomics in Predicting Treatment Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: Strategies and Challenges. JOURNAL OF ONCOLOGY 2022; 2022:1590620. [PMID: 36471884 PMCID: PMC9719428 DOI: 10.1155/2022/1590620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 08/01/2023]
Abstract
Neoadjuvant chemoradiotherapy (nCRT) followed by total mesorectal excision is the standard treatment for locally advanced rectal cancer (LARC). A noninvasive preoperative prediction method should greatly assist in the evaluation of response to nCRT and for the development of a personalized strategy for patients with LARC. Assessment of nCRT relies on imaging and radiomics can extract valuable quantitative data from medical images. In this review, we examined the status of radiomic application for assessing response to nCRT in patients with LARC and indicated a potential direction for future research.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qian Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongyan Zai
- Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
23
|
Lyu PF, Wang Y, Meng QX, Fan PM, Ma K, Xiao S, Cao XC, Lin GX, Dong SY. Mapping intellectual structures and research hotspots in the application of artificial intelligence in cancer: A bibliometric analysis. Front Oncol 2022; 12:955668. [PMID: 36212413 PMCID: PMC9535738 DOI: 10.3389/fonc.2022.955668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background Artificial intelligence (AI) is more and more widely used in cancer, which is of great help to doctors in diagnosis and treatment. This study aims to summarize the current research hotspots in the Application of Artificial Intelligence in Cancer (AAIC) and to assess the research trends in AAIC. Methods Scientific publications for AAIC-related research from 1 January 1998 to 1 July 2022 were obtained from the Web of Science database. The metrics analyses using bibliometrics software included publication, keyword, author, journal, institution, and country. In addition, the blustering analysis on the binary matrix was performed on hot keywords. Results The total number of papers in this study is 1592. The last decade of AAIC research has been divided into a slow development phase (2013-2018) and a rapid development phase (2019-2022). An international collaboration centered in the USA is dedicated to the development and application of AAIC. Li J is the most prolific writer in AAIC. Through clustering analysis and high-frequency keyword research, it has been shown that AI plays a significantly important role in the prediction, diagnosis, treatment and prognosis of cancer. Classification, diagnosis, carcinogenesis, risk, and validation are developing topics. Eight hotspot fields of AAIC were also identified. Conclusion AAIC can benefit cancer patients in diagnosing cancer, assessing the effectiveness of treatment, making a decision, predicting prognosis and saving costs. Future AAIC research may be dedicated to optimizing AI calculation tools, improving accuracy, and promoting AI.
Collapse
Affiliation(s)
- Peng-fei Lyu
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Wang
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qing-Xiang Meng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Ping-ming Fan
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Sha Xiao
- International School of Public Health and One Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, China
| | - Xun-chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- *Correspondence: Guang-Xun Lin, ; Si-yuan Dong,
| | - Si-yuan Dong
- Thoracic Department, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Guang-Xun Lin, ; Si-yuan Dong,
| |
Collapse
|
24
|
Zerunian M, Pucciarelli F, Caruso D, Polici M, Masci B, Guido G, De Santis D, Polverari D, Principessa D, Benvenga A, Iannicelli E, Laghi A. Artificial intelligence based image quality enhancement in liver MRI: a quantitative and qualitative evaluation. Radiol Med 2022; 127:1098-1105. [PMID: 36070066 PMCID: PMC9512724 DOI: 10.1007/s11547-022-01539-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
Purpose To compare liver MRI with AIR Recon Deep Learning™(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAÏVE) sequences, in terms of quantitative and qualitative image analysis and scanning time. Material and methods This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 ± 20 years) from September to November 2021. 1.5 T MRI was performed and included three sets of images: axial single-shot fast spin-echo (SSFSE) T2 images, diffusion-weighted images(DWI) and apparent diffusion coefficient(ADC) maps acquired with both ARDL and NAÏVE protocol; the NON-DL images, were also assessed. Two radiologists in consensus drew fixed regions of interest in liver parenchyma to calculate signal-to-noise-ratio (SNR) and contrast to-noise-ratio (CNR). Subjective image quality was assessed by two other radiologists independently with a five-point Likert scale. Acquisition time was recorded. Results SSFSE T2 objective analysis showed higher SNR and CNR for ARDL vs NAÏVE, ARDL vs NON-DL(all P < 0.013). Regarding DWI, no differences were found for SNR with ARDL vs NAÏVE and, ARDL vs NON-DL (all P > 0.2517).CNR was higher for ARDL vs NON-DL(P = 0.0170), whereas no differences were found between ARDL and NAÏVE(P = 1). No differences were observed for all three comparisons, in terms of SNR and CNR, for ADC maps (all P > 0.32). Qualitative analysis for all sequences showed better overall image quality for ARDL with lower truncation artifacts, higher sharpness and contrast (all P < 0.0070) with excellent inter-rater agreement (k ≥ 0.8143). Acquisition time was lower in ARDL sequences compared to NAÏVE (SSFSE T2 = 19.08 ± 2.5 s vs. 24.1 ± 2 s and DWI = 207.3 ± 54 s vs. 513.6 ± 98.6 s, all P < 0.0001). Conclusion ARDL applied on upper abdomen showed overall better image quality and reduced scanning time compared with NAÏVE protocol.
Collapse
Affiliation(s)
- Marta Zerunian
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Francesco Pucciarelli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Michela Polici
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Benedetta Masci
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Gisella Guido
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Domenico De Santis
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Daniele Polverari
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Daniele Principessa
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Antonella Benvenga
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Elsa Iannicelli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome - Sant'Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189, Rome, Italy.
| |
Collapse
|
25
|
Vicini S, Bortolotto C, Rengo M, Ballerini D, Bellini D, Carbone I, Preda L, Laghi A, Coppola F, Faggioni L. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol Med 2022; 127:819-836. [DOI: 10.1007/s11547-022-01512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022]
|
26
|
Capelli G, Campi C, Bao QR, Morra F, Lacognata C, Zucchetta P, Cecchin D, Pucciarelli S, Spolverato G, Crimì F. 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy. Nucl Med Commun 2022; 43:815-822. [PMID: 35471653 PMCID: PMC9177153 DOI: 10.1097/mnm.0000000000001570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/05/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Reliable markers to predict the response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) are lacking. We aimed to assess the ability of 18F-FDG PET/MRI to predict response to nCRT among patients undergoing curative-intent surgery. METHODS Patients with histological-confirmed LARC who underwent curative-intent surgery following nCRT and restaging with 18F-FDG PET/MRI were included. Statistical correlation between radiomic features extracted in PET, apparent diffusion coefficient (ADC) and T2w images and patients' histopathologic response to chemoradiotherapy using a multivariable logistic regression model ROC-analysis. RESULTS Overall, 50 patients were included in the study. A pathological complete response was achieved in 28.0% of patients. Considering second-order textural features, nine parameters showed a statistically significant difference between the two groups in ADC images, six parameters in PET images and four parameters in T2w images. Combining all the features selected for the three techniques in the same multivariate ROC curve analysis, we obtained an area under ROC curve of 0.863 (95% CI, 0.760-0.966), showing a sensitivity, specificity and accuracy at the Youden's index of 100% (14/14), 64% (23/36) and 74% (37/50), respectively. CONCLUSION PET/MRI texture analysis seems to represent a valuable tool in the identification of rectal cancer patients with a complete pathological response to nCRT.
Collapse
Affiliation(s)
- Giulia Capelli
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova
| | | | - Quoc Riccardo Bao
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova
| | - Francesco Morra
- Institute of Radiology, Department of Medicine, University of Padova
| | | | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova
| | - Gaya Spolverato
- General Surgery 3, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova
| | - Filippo Crimì
- Institute of Radiology, Department of Medicine, University of Padova
| |
Collapse
|
27
|
Awidi M, Bagga A. Artificial intelligence and machine learning in colorectal cancer. Artif Intell Gastrointest Endosc 2022; 3:31-43. [DOI: 10.37126/aige.v3.i3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
|
28
|
Shahzadi I, Zwanenburg A, Lattermann A, Linge A, Baldus C, Peeken JC, Combs SE, Diefenhardt M, Rödel C, Kirste S, Grosu AL, Baumann M, Krause M, Troost EGC, Löck S. Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Sci Rep 2022; 12:10192. [PMID: 35715462 PMCID: PMC9205935 DOI: 10.1038/s41598-022-13967-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Radiomics analyses commonly apply imaging features of different complexity for the prediction of the endpoint of interest. However, the prognostic value of each feature class is generally unclear. Furthermore, many radiomics models lack independent external validation that is decisive for their clinical application. Therefore, in this manuscript we present two complementary studies. In our modelling study, we developed and validated different radiomics signatures for outcome prediction after neoadjuvant chemoradiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC) based on computed tomography (CT) and T2-weighted (T2w) magnetic resonance (MR) imaging datasets of 4 independent institutions (training: 122, validation 68 patients). We compared different feature classes extracted from the gross tumour volume for the prognosis of tumour response and freedom from distant metastases (FFDM): morphological and first order (MFO) features, second order texture (SOT) features, and Laplacian of Gaussian (LoG) transformed intensity features. Analyses were performed for CT and MRI separately and combined. Model performance was assessed by the area under the curve (AUC) and the concordance index (CI) for tumour response and FFDM, respectively. Overall, intensity features of LoG transformed CT and MR imaging combined with clinical T stage (cT) showed the best performance for tumour response prediction, while SOT features showed good performance for FFDM in independent validation (AUC = 0.70, CI = 0.69). In our external validation study, we aimed to validate previously published radiomics signatures on our multicentre cohort. We identified relevant publications on comparable patient datasets through a literature search and applied the reported radiomics models to our dataset. Only one of the identified studies could be validated, indicating an overall lack of reproducibility and the need of further standardization of radiomics before clinical application.
Collapse
Affiliation(s)
- Iram Shahzadi
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alex Zwanenburg
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Annika Lattermann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Annett Linge
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Baldus
- Department of Radiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan C Peeken
- German Cancer Consortium (DKTK) partner site Munich, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- German Cancer Consortium (DKTK) partner site Munich, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, München, Germany.,Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Neuherberg, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) partner site Frankfurt, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) partner site Freiburg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. .,German Cancer Consortium (DKTK) partner site Dresden, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Qiu H, Ding S, Liu J, Wang L, Wang X. Applications of Artificial Intelligence in Screening, Diagnosis, Treatment, and Prognosis of Colorectal Cancer. Curr Oncol 2022; 29:1773-1795. [PMID: 35323346 PMCID: PMC8947571 DOI: 10.3390/curroncol29030146] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Accurate early detection and diagnosis, comprehensive assessment of treatment response, and precise prediction of prognosis are essential to improve the patients’ survival rate. In recent years, due to the explosion of clinical and omics data, and groundbreaking research in machine learning, artificial intelligence (AI) has shown a great application potential in clinical field of CRC, providing new auxiliary approaches for clinicians to identify high-risk patients, select precise and personalized treatment plans, as well as to predict prognoses. This review comprehensively analyzes and summarizes the research progress and clinical application value of AI technologies in CRC screening, diagnosis, treatment, and prognosis, demonstrating the current status of the AI in the main clinical stages. The limitations, challenges, and future perspectives in the clinical implementation of AI are also discussed.
Collapse
Affiliation(s)
- Hang Qiu
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Correspondence: (H.Q.); (X.W.)
| | - Shuhan Ding
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA;
| | - Jianbo Liu
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 611731, China;
| | - Xiaodong Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China;
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (H.Q.); (X.W.)
| |
Collapse
|
30
|
Rectal cancer response to neoadjuvant chemoradiotherapy evaluated with MRI: Development and validation of a classification algorithm. Eur J Radiol 2022; 147:110146. [PMID: 34998098 DOI: 10.1016/j.ejrad.2021.110146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to develop and validate a decision support model using data mining algorithms, based on morphologic features derived from MRI images, to discriminate between complete responders (CR) and non-complete responders (NCR) patients after neoadjuvant chemoradiotherapy (CRT), in a population of patients with locally advanced rectal cancer (LARC). METHODS Two populations were retrospectively enrolled: group A (65 patients) was used to train a data mining decision tree algorithm whereas group B (30 patients) was used to validate it. All patients underwent surgery; according to the histology evaluation, patients were divided in CR and NCR. Staging and restaging MRI examinations were retrospectively analysed and seven parameters were considered for data mining classification. Five different classification methods were tested and evaluated in terms of sensitivity, specificity, accuracy and AUC in order to identify the classification model able to achieve the best performance. The best classification algorithm was subsequently applied to group B for validation: sensitivity, specificity, positive and negative predictive value, accuracy and ROC curve were calculated. Inter and intra-reader agreement were calculated. RESULTS Four features were selected for the development of the classification algorithm: MRI tumor regression grade (MR-TRG), staging volume (SV), tumor volume reduction rate (TVRR) and signal intensity reduction rate (SIRR). The decision tree J48 showed the highest efficiency: when applied to group B, all the CR and 18/21 NCR were correctly classified (sensitivity 85.71%, specificity 100%, PPV 100%, NPV 94.2%, accuracy 95.7%, AUC 0.833). Both inter- and intra-reader evaluation showed good agreement (κ > 0.6). CONCLUSIONS The proposed decision support model may help in distinguishing between CR and NCR patients with LARC after CRT.
Collapse
|
31
|
Abstract
Artificial intelligence (AI) is a fascinating new technology that incorporates machine learning and neural networks to improve existing technology or create new ones. Potential applications of AI are introduced to aid in the fight against colorectal cancer (CRC). This includes how AI will affect the epidemiology of colorectal cancer and the new methods of mass information gathering like GeoAI, digital epidemiology and real-time information collection. Meanwhile, this review also examines existing tools for diagnosing disease like CT/MRI, endoscopes, genetics, and pathological assessments also benefitted greatly from implementation of deep learning. Finally, how treatment and treatment approaches to CRC can be enhanced when applying AI is under discussion. The power of AI regarding the therapeutic recommendation in colorectal cancer demonstrates much promise in clinical and translational field of oncology, which means better and personalized treatments for those in need.
Collapse
Affiliation(s)
- Chaoran Yu
- Department of General Surgery, Shanghai Ninth People’ Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People’s Republic of China
| | - Ernest Johann Helwig
- Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030 People’s Republic of China
| |
Collapse
|
32
|
Bektaş M, Tuynman JB, Costa Pereira J, Burchell GL, van der Peet DL. Machine Learning Algorithms for Predicting Surgical Outcomes after Colorectal Surgery: A Systematic Review. World J Surg 2022; 46:3100-3110. [PMID: 36109367 PMCID: PMC9636121 DOI: 10.1007/s00268-022-06728-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Machine learning (ML) has been introduced in various fields of healthcare. In colorectal surgery, the role of ML has yet to be reported. In this systematic review, an overview of machine learning models predicting surgical outcomes after colorectal surgery is provided. METHODS Databases PubMed, EMBASE, Cochrane, and Web of Science were searched for studies using machine learning models for patients undergoing colorectal surgery. To be eligible for inclusion, studies needed to apply machine learning models for patients undergoing colorectal surgery. Absence of machine learning or colorectal surgery or studies reporting on reviews, children, study abstracts were excluded. The Probast risk of bias tool was used to evaluate the methodological quality of machine learning models. RESULTS A total of 1821 studies were analysed, resulting in the inclusion of 31 articles. A vast proportion of ML algorithms have been used to predict the course of disease and response to neoadjuvant chemoradiotherapy. Radiomics have been applied most frequently, along with predictive accuracies up to 91%. However, most studies included a retrospective study design without external validation or calibration. CONCLUSIONS Machine learning models have shown promising potential in predicting surgical outcomes after colorectal surgery. However, large-scale data is warranted to bridge the gap between calibration and external validation. Clinical implementation is needed to demonstrate the contribution of ML within daily practice.
Collapse
Affiliation(s)
- Mustafa Bektaş
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jurriaan B. Tuynman
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Jaime Costa Pereira
- Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Donald L. van der Peet
- Department of Surgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
33
|
Cianci P, Restini E. Artificial intelligence in colorectal cancer management. Artif Intell Cancer 2021; 2:79-89. [DOI: 10.35713/aic.v2.i6.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) is a new branch of computer science involving many disciplines and technologies. Since its application in the medical field, it has been constantly studied and developed. AI includes machine learning and neural networks to create new technologies or to improve existing ones. Various AI supporting systems are available for a personalized and novel strategy for the management of colorectal cancer (CRC). This mini-review aims to summarize the progress of research and possible clinical applications of AI in the investigation, early diagnosis, treatment, and management of CRC, to offer elements of knowledge as a starting point for new studies and future applications.
Collapse
Affiliation(s)
- Pasquale Cianci
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| | - Enrico Restini
- Department of Surgery and Traumatology, ASL BAT, Lorenzo Bonomo Hospital, Andria 76123, Puglia, Italy
| |
Collapse
|
34
|
Wu Y, Kang K, Han C, Wang S, Chen Q, Chen Y, Zhang F, Liu Z. A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy. Cancer Med 2021; 11:166-175. [PMID: 34811957 PMCID: PMC8704175 DOI: 10.1002/cam4.4441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Background Delineation of clinical target volume (CTV) for radiotherapy is a time‐consuming and labor‐intensive work. This study aims to propose a novel convolutional neural network (CNN)‐based model for fast auto‐segmentation of CTV. To evaluate its performance and clinical utility, a blind randomized validation method was used. Methods Our proposed model was based on the generally accepted U‐Net architecture using computed tomography slices with CTV contours delineated by experienced radiation clinicians from 135 rectal patients receiving neoadjuvant radiotherapy. The Dice similarity coefficient (DSC) and 95th percentile Hausdorff distance (95HD) were used to measure segmentation performance. The validated dataset of additional 20 patients for clinical evaluation by 10 experienced oncology clinicians from 7 centers was randomly and blindly divided into two groups for clinicians' scoring and Turing test, respectively. Second evaluation was performed with different randomization after 2 weeks. Results The mean DSC and 95HD values of the proposed model were 0.90 ± 0.02 and 8.11 ± 1.93 mm for CTV of rectal cancer patients, respectively. The average time for automatic segmentation in the validation groups was 15 s per patient. By clinicians' scoring, the AI model performed better than manually delineating, though the differences were not significant (Week 0: 2.59 vs. 2.52, p = 0.086; Week 2: 2.55 vs. 2.47, p = 0.115). Additionally, the mean positive rates in the Turing test were 40.5% in Week 0 and 45.2% in Week 2, which demonstrated the great intelligence of our model. Conclusions Our proposed model can be used clinically for assisting contouring of CTVs in rectal cancer patients receiving neoadjuvant radiotherapy, which improves the efficiency and consistency of radiation clinicians' work.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kai Kang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chang Han
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Qi Chen
- MedMind Technology Co., Ltd., Beijing, China
| | - Yu Chen
- MedMind Technology Co., Ltd., Beijing, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Garbarino GM, Zerunian M, Berardi E, Mainardi F, Pilozzi E, Polici M, Guido G, Rucci C, Polidori T, Tarallo M, Laracca GG, Iannicelli E, Mercantini P, Annibale B, Laghi A, Caruso D. Perioperative Chemotherapy with FLOT Scheme in Resectable Gastric Adenocarcinoma: A Preliminary Correlation between TRG and Radiomics. APPLIED SCIENCES 2021; 11:9211. [DOI: 10.3390/app11199211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Perioperative chemotherapy (p-ChT) with a fluorouracil plus leucovorin, oxaliplatin, and docetaxel (FLOT) scheme is the gold standard of care for locally advanced gastric cancer. We aimed to test CT radiomics performance in early response prediction for p-ChT. Patients with advanced gastric cancer who underwent contrast enhanced CT prior to and post p-ChT were retrospectively enrolled. Histologic evaluation of resected specimens was used as the reference standard, and patients were divided into responders (TRG 1a-1b) and non-responders (TRG 2-3) according to their Becker tumor regression grade (TRG). A volumetric region of interest including the whole tumor tissue was drawn from a CT portal-venous phase before and after p-ChT; 120 radiomic features, both first and second order, were extracted. CT radiomics performances were derived from baseline CT radiomics alone and ΔRadiomics to predict response to p-ChT according to the TRG and tested using a receiver operating characteristic (ROC) curve. The final population comprised 15 patients, 6 (40%) responders and 9 (60%) non-responders. Among pre-treatment CT radiomics parameters, Shape, GLCM, First order, and NGTDM features showed a significant ability to discriminate between responders and non-responders (p < 0.011), with Cluster Shade and Autocorrelation (GLCM features) having AUC = 0.907. ΔRadiomics showed significant differences for Shape, GLRLM, GLSZM, and NGTDM features (p < 0.007). MeshVolume (Shape feature) and LongRunEmphasis (GLRLM feature) had AUC = 0.889. In conclusion, CT radiomics may represent an important supportive approach for the radiologic evaluation of advanced gastric cancer patients.
Collapse
Affiliation(s)
- Giovanni Maria Garbarino
- Gastrointestinal Surgery Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Marta Zerunian
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Eva Berardi
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Federico Mainardi
- Pathology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Emanuela Pilozzi
- Pathology Unit, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Michela Polici
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Gisella Guido
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Carlotta Rucci
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Tiziano Polidori
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Mariarita Tarallo
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, Policlinico Umberto I Hospital, Via Giovanni Maria Lancisi, 2, 00161 Roma, Italy
| | - Giovanni Guglielmo Laracca
- Gastrointestinal Surgery Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Elsa Iannicelli
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Paolo Mercantini
- Gastrointestinal Surgery Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Bruno Annibale
- Gastroenterology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Andrea Laghi
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| | - Damiano Caruso
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea Hospital, Via di Grottarossa 1035-39, 00189 Rome, Italy
| |
Collapse
|
36
|
|
37
|
Stanzione A, Verde F, Romeo V, Boccadifuoco F, Mainenti PP, Maurea S. Radiomics and machine learning applications in rectal cancer: Current update and future perspectives. World J Gastroenterol 2021; 27:5306-5321. [PMID: 34539134 PMCID: PMC8409167 DOI: 10.3748/wjg.v27.i32.5306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
The high incidence of rectal cancer in both sexes makes it one of the most common tumors, with significant morbidity and mortality rates. To define the best treatment option and optimize patient outcome, several rectal cancer biological variables must be evaluated. Currently, medical imaging plays a crucial role in the characterization of this disease, and it often requires a multimodal approach. Magnetic resonance imaging is the first-choice imaging modality for local staging and restaging and can be used to detect high-risk prognostic factors. Computed tomography is widely adopted for the detection of distant metastases. However, conventional imaging has recognized limitations, and many rectal cancer characteristics remain assessable only after surgery and histopathology evaluation. There is a growing interest in artificial intelligence applications in medicine, and imaging is by no means an exception. The introduction of radiomics, which allows the extraction of quantitative features that reflect tumor heterogeneity, allows the mining of data in medical images and paved the way for the identification of potential new imaging biomarkers. To manage such a huge amount of data, the use of machine learning algorithms has been proposed. Indeed, without prior explicit programming, they can be employed to build prediction models to support clinical decision making. In this review, current applications and future perspectives of artificial intelligence in medical imaging of rectal cancer are presented, with an imaging modality-based approach and a keen eye on unsolved issues. The results are promising, but the road ahead for translation in clinical practice is rather long.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesco Verde
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Francesca Boccadifuoco
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging, National Council of Research, Napoli 80131, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
38
|
Berbís MA, Aneiros-Fernández J, Mendoza Olivares FJ, Nava E, Luna A. Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases. World J Gastroenterol 2021; 27:4395-4412. [PMID: 34366612 PMCID: PMC8316909 DOI: 10.3748/wjg.v27.i27.4395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The use of artificial intelligence-based tools is regarded as a promising approach to increase clinical efficiency in diagnostic imaging, improve the interpretability of results, and support decision-making for the detection and prevention of diseases. Radiology, endoscopy and pathology images are suitable for deep-learning analysis, potentially changing the way care is delivered in gastroenterology. The aim of this review is to examine the key aspects of different neural network architectures used for the evaluation of gastrointestinal conditions, by discussing how different models behave in critical tasks, such as lesion detection or characterization (i.e. the distinction between benign and malignant lesions of the esophagus, the stomach and the colon). To this end, we provide an overview on recent achievements and future prospects in deep learning methods applied to the analysis of radiology, endoscopy and histologic whole-slide images of the gastrointestinal tract.
Collapse
Affiliation(s)
| | - José Aneiros-Fernández
- Department of Pathology, Hospital Universitario Clínico San Cecilio, Granada 18012, Spain
| | | | - Enrique Nava
- Department of Communications Engineering, University of Málaga, Malaga 29016, Spain
| | - Antonio Luna
- MRI Unit, Department of Radiology, HT Médica, Jaén 23007, Spain
| |
Collapse
|
39
|
Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D, Desideri I. Radiomics in the Setting of Neoadjuvant Radiotherapy: A New Approach for Tailored Treatment. Cancers (Basel) 2021; 13:3590. [PMID: 34298803 PMCID: PMC8303203 DOI: 10.3390/cancers13143590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Neoadjuvant radiotherapy is currently used mainly in locally advanced rectal cancer and sarcoma and in a subset of non-small cell lung cancer and esophageal cancer, whereas in other diseases it is under investigation. The evaluation of the efficacy of the induction strategy is made possible by performing imaging investigations before and after the neoadjuvant therapy and is usually challenging. In the last decade, texture analysis (TA) has been developed to help the radiologist to quantify and identify the parameters related to tumor heterogeneity, which cannot be appreciated by the naked eye. The aim of this narrative is to review the impact of TA on the prediction of response to neoadjuvant radiotherapy and or chemoradiotherapy. MATERIALS AND METHODS Key references were derived from a PubMed query. Hand searching and ClinicalTrials.gov were also used. RESULTS This paper contains a narrative report and a critical discussion of radiomics approaches in different fields of neoadjuvant radiotherapy, including esophageal cancer, lung cancer, sarcoma, and rectal cancer. CONCLUSIONS Radiomics can shed a light on the setting of neoadjuvant therapies that can be used to tailor subsequent approaches or even to avoid surgery in the future. At the same, these results need to be validated in prospective and multicenter trials.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Luca Boldrini
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Roberta Grassi
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (V.N.); (R.G.)
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Davide Franceschini
- Radiotherapy and Radiosurgery Department, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Milan, Italy;
| | - Ilaria Morelli
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Carlotta Becherini
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Mauro Loi
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Daniela Greto
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
| | - Isacco Desideri
- Radiation Oncology Unit, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (M.L.); (D.G.); (I.D.)
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| |
Collapse
|
40
|
Image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance imaging. Radiother Oncol 2021; 161:183-190. [PMID: 34139211 DOI: 10.1016/j.radonc.2021.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION To develop an image-based deep learning model for predicting pathological response in rectal cancer using post-chemoradiotherapy magnetic resonance (MR) imaging. MATERIALS AND METHODS A total of 466 patients with locally advanced rectal cancer who received preoperative chemoradiotherapy followed by surgical resection were collected from single center, among whom 113 (24.3%) were allocated to the holdout testing set. Complete response (pCR) was defined as Dworak tumor regression grade (TRG) 4, while good response (GR) was defined as TRG 3 or 4. Based on post-chemoradiotherapy T2-weighted axial MR images, two deep learning models were developed to predict pCR and GR, respectively. The prediction performance of the deep learning models was evaluated in the testing set and was compared to that of a senior radiologist and a radiation oncologist. RESULTS The deep learning model showed an area under the receiver operating characteristic curve, sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 0.76, 0.30, 0.96, 0.67, 0.87, and 85.0% for predicting pCR and 0.72, 0.54, 0.81, 0.60, 0.77, and 71.7% for predicting GR, respectively. The deep learning model had a superior predictive performance than the observers. Fair agreement between the ground truth and the model was shown for pCR prediction (kappa = 0.34) and GR prediction (kappa = 0.36). CONCLUSIONS The post-chemoradiotherapy T2-weighted axial MR image-based deep learning model showed acceptable performance in predicting pCR or GR in patients with rectal cancer, compared with human observers.
Collapse
|
41
|
Wang Y, Wang X. Research on the framework of traditional culture innovation system based on artificial intelligence. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In order to improve the effect of traditional cultural innovation, this paper proposes a cultural algorithm with dual knowledge, and improves the effect of the algorithm to obtain a cultural algorithm with dual knowledge. Each individual corresponds to its unique dual knowledge, so that the individual’s evolution can move towards the current optimal solution. This paper constructs a traditional cultural innovation system architecture based on artificial intelligence, analyzes its functional modules, and constructs the system structure from the perspectives of cultural classification and cultural innovation. After constructing the system, this paper designs experiments to verify the system performance. The research results show that the system constructed in this paper performs well in traditional cultural analysis and traditional cultural innovation, and can provide references for related research.
Collapse
Affiliation(s)
- Yanzhen Wang
- School of Architecture and Art, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, China
| | - Xiaofen Wang
- School of Architecture and Art, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, China
| |
Collapse
|
42
|
Zhang H, An H. Shanxi merchant economic history education system based on fuzzy control and quantum evolution algorithm. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In order to improve the economic history education effect of Shanxi merchants, this paper combines fuzzy control and quantum evolution algorithm to construct Shanxi merchant economic history education system. The purpose of this paper to construct the Shanxi merchant economic history education system is to establish a learning platform on the Internet or local area network that allows students to learn outside the classroom. This system will consist of multiple sub-modules, and it will provide knowledge points and networks, problem sets, student assignments, teacher-student interaction links, and teaching resource management for Shanxi merchant economic history teaching. Moreover, this system will be designed as an open network-assisted teaching system. In addition, this paper designs experiments to verify the performance of the algorithm constructed in this paper. The research shows that the Shanxi merchant economic history education system based on fuzzy control and quantum evolution algorithm constructed in this paper performs well in data mining and also has good performance in practical education.
Collapse
Affiliation(s)
- Haoran Zhang
- Center for Studies of Song History, Hebei University, Baoding, Hebei, China
| | - Haifeng An
- Hebei College of Science and Technology, Baoding, Hebei, China
| |
Collapse
|
43
|
Wesdorp NJ, Hellingman T, Jansma EP, van Waesberghe JHTM, Boellaard R, Punt CJA, Huiskens J, Kazemier G. Advanced analytics and artificial intelligence in gastrointestinal cancer: a systematic review of radiomics predicting response to treatment. Eur J Nucl Med Mol Imaging 2021; 48:1785-1794. [PMID: 33326049 PMCID: PMC8113210 DOI: 10.1007/s00259-020-05142-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/29/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Advanced medical image analytics is increasingly used to predict clinical outcome in patients diagnosed with gastrointestinal tumors. This review provides an overview on the value of radiomics in predicting response to treatment in patients with gastrointestinal tumors. METHODS A systematic review was conducted, according to PRISMA guidelines. The protocol was prospectively registered (PROSPERO: CRD42019128408). PubMed, Embase, and Cochrane databases were searched. Original studies reporting on the value of radiomics in predicting response to treatment in patients with a gastrointestinal tumor were included. A narrative synthesis of results was conducted. Results were stratified by tumor type. Quality assessment of included studies was performed, according to the radiomics quality score. RESULTS The comprehensive literature search identified 1360 unique studies, of which 60 articles were included for analysis. In 37 studies, radiomics models and individual radiomic features showed good predictive performance for response to treatment (area under the curve or accuracy > 0.75). Various strategies to construct predictive models were used. Internal validation of predictive models was often performed, while the majority of studies lacked external validation. None of the studies reported predictive models implemented in clinical practice. CONCLUSION Radiomics is increasingly used to predict response to treatment in patients suffering from gastrointestinal cancer. This review demonstrates its great potential to help predict response to treatment and improve patient selection and early adjustment of treatment strategy in a non-invasive manner.
Collapse
Affiliation(s)
- Nina J Wesdorp
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Tessa Hellingman
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elise P Jansma
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan-Hein T M van Waesberghe
- Department of Radiology and Molecular Imaging, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Cornelis J A Punt
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Zhang T, Liu S. Evaluation of the effect of music education on improving students’ mental health based on intelligent fuzzy system. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Traditional control methods and modern accurate mathematical model control methods do not perform well in the evaluation of students’ mental health. In order to improve the evaluation effect of students’ mental health, this paper takes the intelligent fuzzy system as the control center and proposes an evaluation system to evaluate the effect of music education in promoting students’ mental health based on fuzzy neural network. Moreover, according to the working characteristics of the music education system, this paper interprets the design requirements of its control system in detail, and has an in-depth understanding of the fuzzy principle, neural network principle and fuzzy god network principle. Secondly, this paper completes the design of the actual orthosis control algorithm applied to the fuzzy neural network control system and the optimization of the fuzzy neural network algorithm. Finally, this paper realizes the intelligent processing of the non-linear pressure signal output by the corresponding strain, and uses music education to evaluate the students’ mental health and manage the rehabilitation effect. From the experimental research results, it can be seen that the system constructed in this paper has a certain effect.
Collapse
Affiliation(s)
| | - Shengnan Liu
- Shijiazhuang University, Shijiazhuang, Hebei, China
| |
Collapse
|
45
|
Lyu Y. Research on the influence of music educational psychology on saxophone players’ mental state and stage performance. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-219039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Saxophone playing is also a complex process of mental activity. In the learning process of saxophone performance, it is necessary to understand the role of psychological factors in saxophone performance on physiological factors, correctly understand the fluctuations in performance during practice, and remove various psychological obstacles during practice. This article uses clustering method to extract and analyze performers’ mental state. At the same time, based on the existing clustering evaluation indicator, a new evaluation indicator is proposed, which solves the problem that the original evaluation indicator is not applicable to non-convex data sets. In addition, this paper uses intelligent algorithms to extract the mental state characteristics of saxophone players, and on this basis, constructs an intelligent system with music education psychology to improve the mental state of saxophone players and stage performance effects. Finally, this paper analyzes the system performance after constructing the system with algorithms. The research results show that the system constructed in this paper has a certain effect.
Collapse
Affiliation(s)
- Yukun Lyu
- School of Music, Guiyang University, Guiyang, Guizhou
| |
Collapse
|
46
|
Wang PP, Deng CL, Wu B. Magnetic resonance imaging-based artificial intelligence model in rectal cancer. World J Gastroenterol 2021; 27:2122-2130. [PMID: 34025068 PMCID: PMC8117733 DOI: 10.3748/wjg.v27.i18.2122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Rectal magnetic resonance imaging (MRI) is the preferred method for the diagnosis of rectal cancer as recommended by the guidelines. Rectal MRI can accurately evaluate the tumor location, tumor stage, invasion depth, extramural vascular invasion, and circumferential resection margin. We summarize the progress of research on the use of artificial intelligence (AI) in rectal cancer in recent years. AI, represented by machine learning, is being increasingly used in the medical field. The application of AI models based on high-resolution MRI in rectal cancer has been increasingly reported. In addition to staging the diagnosis and localizing radiotherapy, an increasing number of studies have reported that AI models based on high-resolution MRI can be used to predict the response to chemotherapy and prognosis of patients.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chao-Lin Deng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
47
|
Yakar M, Etiz D. Artificial intelligence in rectal cancer. Artif Intell Gastroenterol 2021; 2:10-26. [DOI: 10.35712/aig.v2.i2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
|
48
|
Mitsala A, Tsalikidis C, Pitiakoudis M, Simopoulos C, Tsaroucha AK. Artificial Intelligence in Colorectal Cancer Screening, Diagnosis and Treatment. A New Era. ACTA ACUST UNITED AC 2021; 28:1581-1607. [PMID: 33922402 PMCID: PMC8161764 DOI: 10.3390/curroncol28030149] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
The development of artificial intelligence (AI) algorithms has permeated the medical field with great success. The widespread use of AI technology in diagnosing and treating several types of cancer, especially colorectal cancer (CRC), is now attracting substantial attention. CRC, which represents the third most commonly diagnosed malignancy in both men and women, is considered a leading cause of cancer-related deaths globally. Our review herein aims to provide in-depth knowledge and analysis of the AI applications in CRC screening, diagnosis, and treatment based on current literature. We also explore the role of recent advances in AI systems regarding medical diagnosis and therapy, with several promising results. CRC is a highly preventable disease, and AI-assisted techniques in routine screening represent a pivotal step in declining incidence rates of this malignancy. So far, computer-aided detection and characterization systems have been developed to increase the detection rate of adenomas. Furthermore, CRC treatment enters a new era with robotic surgery and novel computer-assisted drug delivery techniques. At the same time, healthcare is rapidly moving toward precision or personalized medicine. Machine learning models have the potential to contribute to individual-based cancer care and transform the future of medicine.
Collapse
Affiliation(s)
- Athanasia Mitsala
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
- Correspondence: ; Tel.: +30-6986423707
| | - Christos Tsalikidis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Michail Pitiakoudis
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Constantinos Simopoulos
- Second Department of Surgery, University General Hospital of Alexandroupolis, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece; (C.T.); (M.P.); (C.S.)
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery & Surgical Research, Democritus University of Thrace Medical School, Dragana, 68100 Alexandroupolis, Greece;
| |
Collapse
|
49
|
Jiang Z, Wang X. Research on air pollution system based on neural network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper conducts in-depth research and analysis on the commonly used models in the simulation process of air pollutant diffusion. Combining with the actual needs of air pollution, this paper builds an air pollution system model based on neural network based on neural network algorithm, and proposes an image classification method based on deep learning and Gaussian aggregation coding. Moreover, this paper proposes a Gaussian aggregation coding layer to encode image features extracted by deep convolutional neural networks. Learn a fixed-size dictionary to represent the features of the image for final classification. In addition, this paper constructs an air pollution monitoring system based on the actual needs of the air system. Finally, this article designs a controlled experiment to verify the model proposed in this article, uses mathematical statistics to process data, and scientifically analyze the statistical results. The research results show that the model constructed in this paper has a certain effect.
Collapse
Affiliation(s)
- Zhiqi Jiang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
- Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, China
| | - Xidong Wang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
- Beijing Key Laboratory for Solid Waste Utilization and Management, Peking University, Beijing, China
| |
Collapse
|
50
|
Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy. Phys Med 2021; 83:221-241. [DOI: 10.1016/j.ejmp.2021.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/06/2023] Open
|