1
|
Liu Y, Zhou Y, Zhou C, Wang Z, Fan Z, Tang K, Chen S. Machine learning method based on radiomics help differentiate posterior pituitary tumors from pituitary neuroendocrine tumors and craniopharyngioma. Sci Rep 2025; 15:19967. [PMID: 40481169 PMCID: PMC12144140 DOI: 10.1038/s41598-025-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 05/30/2025] [Indexed: 06/11/2025] Open
Abstract
Posterior pituitary tumors (PPTs) are rare neoplasms, but easily misdiagnosed as pituitary neuroendocrine tumor (PitNET) and craniopharyngioma. This study aimed to differentiate PPTs from PitNET and craniopharyngioma using a machine learning method based on radiomics. The cohort used for training and testing contained 33 PPTs and 99 non-posterior pituitary tumors (NPPTs). The validation cohort consisted of prospectively included patients (9 PPTs and 33 NPPTs). Radiomics features based on T1-weighted images and contrast-enhanced (CE) T1-weighted images were extracted, or both. Data of training and testing cohort were input to a nested 10-fold to build models, which were independently validated in the validation cohort. A least absolute shrinkage and selection operator (LASSO) was used for dimensionality reduction and random forest was used as classifier. Predictive models were successfully established, and models based on CE features had the best performance with an accuracy of 0.786, precision of 0.929, specificity of 0.778, sensitivity of 0.788, and area under the curve of 0.818 in validation. Nine features selected by more than 75% of the models based on CE features were identified as the most predictive features. We established a group of machine learning models to noninvasively differentiate PPTs from NPPTs before surgery, which may improve the surgical plan of PPTs to better complete resection of the tumors and protection of important structures around the tumors.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
- Department of Neurosurgery, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Yanpeng Zhou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Chunyao Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhenmin Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China
| | - Ziwen Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Kai Tang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China.
| | - Siyuan Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100071, China.
| |
Collapse
|
2
|
Qu H, Ban Q, Zhou L, Duan H, Wang W, Peng A. Radiomic study of common sellar region lesions differentiation in magnetic resonance imaging based on multi-classification machine learning model. BMC Med Imaging 2025; 25:147. [PMID: 40319246 PMCID: PMC12049783 DOI: 10.1186/s12880-025-01690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
OBJECTIVE Pituitary adenomas (PAs), craniopharyngiomas (CRs), Rathke's cleft cysts (RCCs), and tuberculum sellar meningiomas (TSMs) are common sellar region lesions with similar imaging characteristics, making differential diagnosis challenging. This study aims to develop and evaluate machine learning models using MRI-based radiomics features to differentiate these lesions. METHODS Two hundred and fifty-eight pathologically diagnosed sellar region lesions, including 54 TSMs, 81 CRs, 61 RCCs and 63 PAs, were retrospectively studied. All patients underwent conventional MR examinations. Feature extraction and data normalization and balance were performed. Extreme gradient boosting (XGBoost), support vector machine (SVM), and logistic regression (LR) models were trained with the radiomics features. Five-fold cross-validation was used to evaluate model performance. RESULTS The XGBoost model showed better performance than the SVM and LR models built from contrast-enhanced T1-weighted MRI features (balanced accuracy 0.83, 0.77, 0.75; AUC 0.956, 0.938, 0.929, respectively). Additionally, these models demonstrated significant differences in sensitivity (P = 0.032) and specificity (P = 0.045). The performance of the XGBoost model was superior to that of the SVM and LR models in differentiating sellar region lesions by using contrast-enhanced T1-weighted MRI features. CONCLUSION The proposed model has the potential to improve the diagnostic accuracy in differentiating sellar region lesions.
Collapse
Affiliation(s)
- Hang Qu
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu province, 225000, China
| | - Qiqi Ban
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu province, 225000, China
| | - LiangXue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, 610065, China
| | - HaiHan Duan
- College of Computer Science, Sichuan University, Chengdu, Sichuan province, 610065, China
| | - Wei Wang
- Department of Radiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu province, 225000, China
| | - AiJun Peng
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou University, No.368, Hanjiang Middle Road, Hanjiang district, Yangzhou city, Jiangsu province, 225000, China.
| |
Collapse
|
3
|
Hacioglu A, Tekiner H, Altinoz MA, Ekinci G, Bonneville JF, Yaltirik K, Sav A, Ture U, Kelestimur F. Rathke's cleft cyst: From history to molecular genetics. Rev Endocr Metab Disord 2025; 26:229-260. [PMID: 39939491 PMCID: PMC11920404 DOI: 10.1007/s11154-025-09949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
A Rathke's cleft cyst (RCC) is a remnant of the embryologic Rathke's pouch and a common pituitary lesion. A true RCC is lined with ciliated cuboidal or columnar epithelia with occasional goblet cells and squamous metaplasia. A RCC is frequently diagnosed incidentally through magnetic resonance imaging and computed tomography of the brain or pituitary gland. Presentation can range from an asymptomatic clinical picture to a rapidly progressive disease. RCC are located most often in the sellar and suprasellar regions and a careful differential diagnosis is crucial, especially to exclude craniophryngioma. Recent studies illuminate novel molecular mechanisms and markers for understanding the pathogenesis of RCC. PROP-1, a paired-like homeodomain transcription factor, controls pituitary ontogeny and its high expression induces RCCs. Both transgenic mouse models and immunohistochemical analysis of human RCCs indicate that the leukemia inhibitory factor is involved in pathogenesis. The expression of cytokeratins 8 and 2 in RCCs, but not in craniopharyngiomas, and the presence of beta-catenin mutations in many craniopharyngiomas, but not in RCCs, help with the differential diagnosis. For asymptomatic and small RCCs, observation is appropriate, with serial magnetic resonance imaging and hormonal investigation depending on the patient's clinical status. Surgical resection may be required for symptomatic RCC and recurrence rates are generally low. For patients with a recurrence, stereotactic radiosurgery is an effective approach with low risk.
Collapse
Affiliation(s)
- Aysa Hacioglu
- Department of Endocrinology, Erciyes University, Kayseri, Turkey
| | - Halil Tekiner
- Department of Medical History, Erciyes University, Kayseri, Turkey
| | - Meric A Altinoz
- Department of Biochemistry, Acibadem University, Istanbul, Turkey
| | - Gazanfer Ekinci
- Department of Radiology, Yeditepe University, Istanbul, Turkey
| | - Jean-François Bonneville
- Departments of Medical Imaging and Endocrinology, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Kaan Yaltirik
- Department of Neurosurgery, Yeditepe University, Istanbul, Turkey
| | - Aydin Sav
- Department of Pathology, Yeditepe University, Istanbul, Turkey
| | - Ugur Ture
- Department of Neurosurgery, Yeditepe University, Istanbul, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
4
|
Zhao X, Fu X, Wang X, Wang S, Chen L, Yuan M, Liu J, Sun S. Radiomics based on preoperative magnetic resonance imaging predict the cell lineages of nonfunctioning pituitary neuroendocrine tumors. Neuroradiology 2025:10.1007/s00234-025-03593-2. [PMID: 40116948 DOI: 10.1007/s00234-025-03593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE Accurate preoperative predict the cell lineages of non-functioning pituitary neuroendocrine tumors (NFPitNETs) can help neurosurgeons develop treatment strategies. This study aimed to predict the three cell lineages of NFPitNETs using radiomics based on MRI. METHODS NFPitNETs patients from January 2019 and January 2023 were retrospectively enrolled, with adenoma lineages including SF-1 (n = 239), TPIT (n = 204), and PIT-1 (n = 100). Sagittal T1-weighted images (T1WI), contrast-enhanced (CE) sagittal T1WI, CE-coronal T1WI, and axial T2WI were obtained for tumor segmentation on ITK-SNAP. Pyradiomics was used for features extracted. Variance threshold method, t-test, and LASSO were used for feature selection. Support vector machine (SVM) and random forest (RF) were used to predict the three-lineages adenomas based on their radiomics and semantic features. Receiver operating characteristic curve-area under the curve (ROC-AUC) analysis was used to assess the model's performance. RESULTS A total of 543 patients with NFPitNETs (mean age, 49.46 ± 12.39) were included. Patients with SF-1 adenomas had a higher mean age than those with TPIT and PIT-1 adenomas (52.84 ± 11.56 vs 49.94 ± 10.54 vs 40.42 ± 13.41, p < 0.001). Female patients are more common in TPIT and PIT-1 adenomas than SF-1 ones (96.57% vs 69% vs 41%, p < 0.001). The SVM model incorporating semantic and radiomics features based on CE-coronal T1WI performed the best, with a macro-average AUC of 0.899. CE-coronal T1WI were the best among all the MR sequences for predicting the cell lineages of NFPitNETs. CONCLUSION Radiomics based on preoperative MRI can help predict the cell lineages of NFPitNETs, which prove useful to neurosurgeons to develop treatment strategies.
Collapse
Affiliation(s)
- Xuening Zhao
- Beijing Tian Tan Hospital, Beijing, China
- Beijing Institute of Neurosurgery, Beijing, China
| | - Xu Fu
- Beihang University, Beijing, China
| | - Xiaochen Wang
- Beijing Tian Tan Hospital, Beijing, China
- Beijing Institute of Neurosurgery, Beijing, China
| | - Sihui Wang
- Beijing Tian Tan Hospital, Beijing, China
- Beijing Institute of Neurosurgery, Beijing, China
| | - Lingxu Chen
- Beijing Tian Tan Hospital, Beijing, China
- Beijing Institute of Neurosurgery, Beijing, China
| | - Mengyuan Yuan
- Beijing Tian Tan Hospital, Beijing, China
- Beijing Institute of Neurosurgery, Beijing, China
| | | | - Shengjun Sun
- Beijing Tian Tan Hospital, Beijing, China.
- Beijing Institute of Neurosurgery, Beijing, China.
| |
Collapse
|
5
|
Zang Y, Zheng F, Feng L, Shi X, Chen X. Preoperatively Predicting PIT1 Expression in Pituitary Adenomas Using Habitat, Intra-tumoral and Peri-tumoral Radiomics Based on MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-024-01376-4. [PMID: 39904941 DOI: 10.1007/s10278-024-01376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/10/2024] [Accepted: 12/08/2024] [Indexed: 02/06/2025]
Abstract
The study aimed to predict expression of pituitary transcription factor 1 (PIT1) in pituitary adenomas using habitat, intra-tumoral and peri-tumoral radiomics models. A total of 129 patients with pituitary adenoma (training set, n = 103; test set, n = 26) were retrospectively enrolled. A total of 12, 18, 14, 13, and 14 radiomics features were selected from the ROIintra, ROIintra+peri (ROIintra+2mm, ROIintra+4mm, ROIintra+6mm), and ROIhabitat, respectively. Then, three machine learning algorithms were employed to develop radiomic models, including logistic regression (LR), support vector machines (SVM), and multilayer perceptron (MLP). The performances of the intra-tumoral, combined intra-tumoral and peri-tumoral, and habitat models were evaluated. The peritumoral region (ROI2mm, ROI4mm, ROI6mm) of the combined model with the highest performance was individually selected for further peritumoral analysis. Moreover, a deep learning radiomics nomogram (DLRN) was constructed incorporating clinical characteristics and the peri-tumoral and habitat models for individual prediction. The combined modelintra+2mm based on ROIintra+2mm achieved a better performance (AUC, 0.800) than that of the intra-tumoral model alone (AUC, 0.731). And the habitat model showed a higher performance (AUC, 0.806) than that of the intra-tumoral model. In addition, the performance of the peri-tumoral model based on ROI2mm was 0.694 in the testing set. Furthermore, the DLRN achieved the highest performance of 0.900 in the test set. The DLRN showed the best performance for PIT1 expression in pituitary adenomas, followed by the habitat, combined modelintra+2mm, intra-tumoral model, and peri-tumoral model based on ROI2mm, respectively. These different models are helpful for the model choice in clinical work.
Collapse
Affiliation(s)
- Yuying Zang
- Department of Radiology, The Affiliated Children's Hospital, Capital Institute of Pediatrics, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Zheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Peking University People's Hospital, Beijing, China
| | - Limei Feng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyao Shi
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
6
|
Liu F, Zang Y, Feng L, Shi X, Wu W, Liu X, Song Y, Xu J, Gui S, Chen X. Concomitant Prediction of the Ki67 and PIT-1 Expression in Pituitary Adenoma Using Different Radiomics Models. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:394-409. [PMID: 38750186 PMCID: PMC11810862 DOI: 10.1007/s10278-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 02/12/2025]
Abstract
OBJECTIVES To preoperatively predict the high expression of Ki67 and positive pituitary transcription factor 1 (PIT-1) simultaneously in pituitary adenoma (PA) using three different radiomics models. METHODS A total of 247 patients with PA (training set: n = 198; test set: n = 49) were included in this retrospective study. The imaging features were extracted from preoperative contrast-enhanced T1WI (T1CE), T1-weighted imaging (T1WI), and T2-weighted imaging (T2WI). Feature selection was performed using Spearman's rank correlation coefficient and least absolute shrinkage and selection operator (LASSO). The classic machine learning (CML), deep learning (DL), and deep learning radiomics (DLR) models were constructed using logistic regression (LR), support vector machine (SVM), and multi-layer perceptron (MLP) algorithms. The area under the receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, accuracy, negative predictive value (NPV) and positive predictive value (PPV) were calculated for the training and test sets. In addition, combined with clinical characteristics, the best CML and the best DL models (SVM classifier), the DL radiomics nomogram (DLRN) was constructed to aid clinical decision-making. RESULTS Seven CML features, 96 DL features, and 107 DLR features were selected to construct CML, DL and DLR models. Compared to CML and DL model, the DLR model had the best performance. The AUC, sensitivity, specificity, accuracy, NPV and PPV were 0.827, 0.792, 0.800, 0.796, 0.800 and 0.792 in the test set, respectively. CONCLUSIONS Compared with CML and DL models, the DLR model shows the best performance in predicting the Ki67 and PIT-1 expression in PAs simultaneously.
Collapse
Affiliation(s)
- Fangzheng Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Yuying Zang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Limei Feng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Xinyao Shi
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Wentao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Xin Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Yifan Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Jintian Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China.
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, 100070, Beijing, China.
| |
Collapse
|
7
|
Guo T, Luan J, Gao J, Liu B, Shen T, Yu H, Ma G, Wang K. Computer-aided diagnosis of pituitary microadenoma on dynamic contrast-enhanced MRI based on spatio-temporal features. EXPERT SYSTEMS WITH APPLICATIONS 2025; 260:125414. [DOI: 10.1016/j.eswa.2024.125414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
8
|
Li H, Liu Z, Li F, Xia Y, Zhang T, Shi F, Zeng Q. Identification of Prolactinoma in Pituitary Neuroendocrine Tumors Using Radiomics Analysis Based on Multiparameter MRI. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2865-2873. [PMID: 38844718 PMCID: PMC11612092 DOI: 10.1007/s10278-024-01153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 12/05/2024]
Abstract
This study aims to investigate the feasibility of preoperatively predicting histological subtypes of pituitary neuroendocrine tumors (PitNETs) using machine learning and radiomics based on multiparameter MRI. Patients with PitNETs from January 2016 to May 2022 were retrospectively enrolled from four medical centers. A cfVB-Net network was used to automatically segment PitNET multiparameter MRI. Radiomics features were extracted from the MRI, and the radiomics score (Radscore) of each patient was calculated. To predict histological subtypes, the Gaussian process (GP) machine learning classifier based on radiomics features was performed. Multi-classification (six-class histological subtype) and binary classification (PRL vs. non-PRL) GP model was constructed. Then, a clinical-radiomics nomogram combining clinical factors and Radscores was constructed using the multivariate logistic regression analysis. The performance of the models was evaluated using receiver operating characteristic (ROC) curves. The PitNET auto-segmentation model eventually achieved the mean Dice similarity coefficient of 0.888 in 1206 patients (mean age 49.3 ± SD years, 52% female). In the multi-classification model, the GP of T2WI got the best area under the ROC curve (AUC), with 0.791, 0.801, and 0.711 in the training, validation, and external testing set, respectively. In the binary classification model, the GP of T2WI combined with CE T1WI demonstrated good performance, with AUC of 0.936, 0.882, and 0.791 in training, validation, and external testing sets, respectively. In the clinical-radiomics nomogram, Radscores and Hardy' grade were identified as predictors for PRL expression. Machine learning and radiomics analysis based on multiparameter MRI exhibited high efficiency and clinical application value in predicting the PitNET histological subtypes.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Radiology, The Second Hospital of Shandong University, No.247 Beiyuan Road, Jinan, 250033, China
| | - Zhiling Liu
- Department of Radiology, Shandong Provincial Hospital, Jinan, 250098, China
| | - Fuyan Li
- Department of Radiology, Shandong Medical Imaging Research Institute, Jinan, 250021, China
| | - Yuwei Xia
- Shanghai United Imaging Intelligence, Co., Ltd, 701 Yunjin Road, Xuhui District, Shanghai, 200030, China
| | - Tong Zhang
- Department of Radiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, China
| | - Feng Shi
- Shanghai United Imaging Intelligence, Co., Ltd, 701 Yunjin Road, Xuhui District, Shanghai, 200030, China
| | - Qingshi Zeng
- Department of Radiology, Shandong Provincial Qianfoshan Hospital, No.16766 Jingshi Road, Jinan, 250013, China.
| |
Collapse
|
9
|
Zilka T, Benesova W. Radiomics of pituitary adenoma using computer vision: a review. Med Biol Eng Comput 2024; 62:3581-3597. [PMID: 39012416 PMCID: PMC11568991 DOI: 10.1007/s11517-024-03163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.
Collapse
Affiliation(s)
- Tomas Zilka
- Saint Michal's Hospital, Bratislava, Slovakia
- Masaryk University, Brno, Czech Republic
| | - Wanda Benesova
- Slovak University of Technology in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
10
|
Ayoub NF, Glicksman JT. Artificial Intelligence in Rhinology. Otolaryngol Clin North Am 2024; 57:831-842. [PMID: 38821734 DOI: 10.1016/j.otc.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Rhinology, allergy, and skull base surgery are fields primed for the integration and implementation of artificial intelligence (AI). The heterogeneity of the disease processes within these fields highlights the opportunity for AI to augment clinical care and promote personalized medicine. Numerous research studies have been published demonstrating the development and clinical potential of AI models within the field. Most describe in silico evaluation models without direct clinical implementation. The major themes of existing studies include diagnostic or clinical decisions support, clustering patients into specific phenotypes or endotypes, predicting post-treatment outcomes, and surgical planning.
Collapse
Affiliation(s)
- Noel F Ayoub
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye and Ear/Harvard Medical School, Boston, MA, USA.
| | - Jordan T Glicksman
- Department of Otolaryngology-Head & Neck Surgery, Mass Eye and Ear/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Maroufi SF, Doğruel Y, Pour-Rashidi A, Kohli GS, Parker CT, Uchida T, Asfour MZ, Martin C, Nizzola M, De Bonis A, Tawfik-Helika M, Tavallai A, Cohen-Gadol AA, Palmisciano P. Current status of artificial intelligence technologies in pituitary adenoma surgery: a scoping review. Pituitary 2024; 27:91-128. [PMID: 38183582 DOI: 10.1007/s11102-023-01369-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE Pituitary adenoma surgery is a complex procedure due to critical adjacent neurovascular structures, variations in size and extensions of the lesions, and potential hormonal imbalances. The integration of artificial intelligence (AI) and machine learning (ML) has demonstrated considerable potential in assisting neurosurgeons in decision-making, optimizing surgical outcomes, and providing real-time feedback. This scoping review comprehensively summarizes the current status of AI/ML technologies in pituitary adenoma surgery, highlighting their strengths and limitations. METHODS PubMed, Embase, Web of Science, and Scopus were searched following the PRISMA-ScR guidelines. Studies discussing the use of AI/ML in pituitary adenoma surgery were included. Eligible studies were grouped to analyze the different outcomes of interest of current AI/ML technologies. RESULTS Among the 2438 identified articles, 44 studies met the inclusion criteria, with a total of seventeen different algorithms utilized across all studies. Studies were divided into two groups based on their input type: clinicopathological and imaging input. The four main outcome variables evaluated in the studies included: outcome (remission, recurrence or progression, gross-total resection, vision improvement, and hormonal recovery), complications (CSF leak, readmission, hyponatremia, and hypopituitarism), cost, and adenoma-related factors (aggressiveness, consistency, and Ki-67 labeling) prediction. Three studies focusing on workflow analysis and real-time navigation were discussed separately. CONCLUSION AI/ML modeling holds promise for improving pituitary adenoma surgery by enhancing preoperative planning and optimizing surgical strategies. However, addressing challenges such as algorithm selection, performance evaluation, data heterogeneity, and ethics is essential to establish robust and reliable ML models that can revolutionize neurosurgical practice and benefit patients.
Collapse
Affiliation(s)
- Seyed Farzad Maroufi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neurosurgical Research Network (NRN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yücel Doğruel
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
| | - Ahmad Pour-Rashidi
- Department of Neurosurgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Gurkirat S Kohli
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | - Tatsuya Uchida
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Mohamed Z Asfour
- Department of Neurosurgery, Nasser Institute for Research and Treatment Hospital, Cairo, Egypt
| | - Clara Martin
- Department of Neurosurgery, Hospital de Alta Complejidad en Red "El Cruce", Florencio Varela, Buenos Aires, Argentina
| | | | - Alessandro De Bonis
- Department of Neurosurgery and Gamma Knife Radiosurgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Amin Tavallai
- Department of Pediatric Neurosurgery, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Paolo Palmisciano
- Department of Neurological Surgery, University of California, Davis, 4860 Y Street, Suite 3740, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Zhang K, Abdoli N, Gilley P, Sadri Y, Chen X, Thai TC, Dockery L, Moore K, Mannel RS, Qiu Y. Developing a novel image marker to predict the clinical outcome of neoadjuvant chemotherapy (NACT) for ovarian cancer patients. Comput Biol Med 2024; 172:108240. [PMID: 38460312 PMCID: PMC11544763 DOI: 10.1016/j.compbiomed.2024.108240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
OBJECTIVE Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients. However, due to the nature of tumor heterogeneity, the clinical outcomes to NACT vary significantly among different subgroups. Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis. To address this clinical challenge, the purpose of this study is to develop a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage. METHODS For this purpose, we first computed a total of 1373 radiomics features to quantify the tumor characteristics, which can be grouped into three categories: geometric, intensity, and texture features. Second, all these features were optimized by principal component analysis algorithm to generate a compact and informative feature cluster. This cluster was used as input for developing and optimizing support vector machine (SVM) based classifiers, which indicated the likelihood of receiving suboptimal cytoreduction after the NACT treatment. Two different kernels for SVM algorithm were explored and compared. A total of 42 ovarian cancer cases were retrospectively collected to validate the scheme. A nested leave-one-out cross-validation framework was adopted for model performance assessment. RESULTS The results demonstrated that the model with a Gaussian radial basis function kernel SVM yielded an AUC (area under the ROC [receiver characteristic operation] curve) of 0.806 ± 0.078. Meanwhile, this model achieved overall accuracy (ACC) of 83.3%, positive predictive value (PPV) of 81.8%, and negative predictive value (NPV) of 83.9%. CONCLUSION This study provides meaningful information for the development of radiomics based image markers in NACT treatment outcome prediction.
Collapse
Affiliation(s)
- Ke Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA, 73019; School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019
| | - Neman Abdoli
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019
| | - Patrik Gilley
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019
| | - Youkabed Sadri
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019
| | - Xuxin Chen
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019
| | - Theresa C Thai
- Department of Radiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 73104
| | - Lauren Dockery
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 73104
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 73104
| | - Robert S Mannel
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 73104
| | - Yuchen Qiu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA, 73019; School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA, 73019.
| |
Collapse
|
14
|
Zhao Z, Nie C, Zhao L, Xiao D, Zheng J, Zhang H, Yan P, Jiang X, Zhao H. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Eur Radiol 2024; 34:2468-2479. [PMID: 37812296 PMCID: PMC10957672 DOI: 10.1007/s00330-023-10252-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE The purpose of this study was to develop and validate a nomogram combined multiparametric MRI and clinical indicators for identifying the WHO grade of meningioma. MATERIALS AND METHODS Five hundred and sixty-eight patients were included in this study, who were diagnosed pathologically as having meningiomas. Firstly, radiomics features were extracted from CE-T1, T2, and 1-cm-thick tumor-to-brain interface (BTI) images. Then, difference analysis and the least absolute shrinkage and selection operator were orderly used to select the most representative features. Next, the support vector machine algorithm was conducted to predict the WHO grade of meningioma. Furthermore, a nomogram incorporated radiomics features and valuable clinical indicators was constructed by logistic regression. The performance of the nomogram was assessed by calibration and clinical effectiveness, as well as internal validation. RESULTS Peritumoral edema volume and gender are independent risk factors for predicting meningioma grade. The multiparametric MRI features incorporating CE-T1, T2, and BTI features showed the higher performance for prediction of meningioma grade with a pooled AUC = 0.885 (95% CI, 0.821-0.946) and 0.860 (95% CI, 0.788-0.923) in the training and test groups, respectively. Then, a nomogram with a pooled AUC = 0.912 (95% CI, 0.876-0.961), combined radiomics score, peritumoral edema volume, and gender improved diagnostic performance compared to radiomics model or clinical model and showed good calibration as the true results. Moreover, decision curve analysis demonstrated satisfactory clinical effectiveness of the proposed nomogram. CONCLUSIONS A novel nomogram is simple yet effective in differentiating WHO grades of meningioma and thus can be used in patients with meningiomas. CLINICAL RELEVANCE STATEMENT We proposed a nomogram that included clinical indicators and multi-parameter radiomics features, which can accurately, objectively, and non-invasively differentiate WHO grading of meningioma and thus can be used in clinical work. KEY POINTS • The study combined radiomics features and clinical indicators for objectively predicting the meningioma grade. • The model with CE-T1 + T2 + brain-to-tumor interface features demonstrated the best predictive performance by investigating seven different radiomics models. • The nomogram potentially has clinical applications in distinguishing high-grade and low-grade meningiomas.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Zhao
- International Education College of Henan University, Kaifeng, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Geriatric Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Sathya A, Goyal-Honavar A, Chacko AG, Jasper A, Chacko G, Devakumar D, Seelam JA, Sasidharan BK, Pavamani SP, Thomas HMT. Is radiomics a useful addition to magnetic resonance imaging in the preoperative classification of PitNETs? Acta Neurochir (Wien) 2024; 166:91. [PMID: 38376544 PMCID: PMC7617731 DOI: 10.1007/s00701-024-05977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The WHO 2021 introduced the term pituitary neuroendocrine tumours (PitNETs) for pituitary adenomas and incorporated transcription factors for subtyping, prompting the need for fresh diagnostic methods. Current biomarkers struggle to distinguish between high- and low-risk non-functioning PitNETs. We explored if radiomics can enhance preoperative decision-making. METHODS Pre-treatment magnetic resonance (MR) images of patients who underwent surgery between 2015 and 2019 with available WHO 2021 classification were used. The tumours were manually segmented on the T1w, T1-contrast enhanced, and T2w images using 3D Slicer. One hundred Pyradiomic features were extracted from each MR sequence. Models were built to classify (1) somatotroph and gonadotroph PitNETs and (2) high- and low-risk subtypes of non-functioning PitNETs. Feature were selected independently from the MR sequences and multi-sequence (combining data from more than one MR sequence) using Boruta and Pearson correlation. Support vector machine (SVM), logistic regression (LR), random forest (RF), and multi-layer perceptron (MLP) were the classifiers used. Data imbalance was addressed using the Synthetic Minority Oversampling TEchnique (SMOTE). Performance of the models were evaluated using area under the receiver operating curve (AUC), accuracy, sensitivity, and specificity. RESULTS A total of 222 PitNET patients (train, n = 149; test, n = 73) were enrolled in this retrospective study. Multi-sequence-based LR model discriminated best between somatotroph and gonadotroph PitNETs, with a test AUC of 0.84, accuracy of 0.74, specificity of 0.81, and sensitivity of 0.70. Multi-sequence-based MLP model perfomed best for the high- and low-risk non-functioning PitNETs, achieving a test AUC of 0.76, accuracy of 0.67, specificity of 0.72, and sensitivity of 0.66. CONCLUSIONS Utilizing pre-treatment MRI and radiomics holds promise for distinguishing high-risk from low-risk non-functioning PitNETs based on the latest WHO classification. This could assist neurosurgeons in making critical decisions regarding surgery or alternative management strategies for PitNETs after further clinical validation.
Collapse
Affiliation(s)
- Sathya A
- Quantitative Imaging Research and Artificial Intelligence Lab, Department of Radiation Oncology Unit II, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, India
| | | | - Ari G Chacko
- Department of Neurosurgery, Christian Medical College, Vellore, India
| | - Anitha Jasper
- Department of Radiodiagnosis, Christian Medical College, Vellore, India
| | - Geeta Chacko
- Department of General Pathology, Christian Medical College, Vellore, India
| | - Devadhas Devakumar
- Department of Nuclear Medicine, Christian Medical College, Vellore, India
| | | | - Balu Krishna Sasidharan
- Quantitative Imaging Research and Artificial Intelligence Lab, Department of Radiation Oncology Unit II, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, India
| | - Simon P Pavamani
- Quantitative Imaging Research and Artificial Intelligence Lab, Department of Radiation Oncology Unit II, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, India
| | - Hannah Mary T Thomas
- Quantitative Imaging Research and Artificial Intelligence Lab, Department of Radiation Oncology Unit II, Ida B Scudder Cancer Centre, Christian Medical College, Vellore, India.
| |
Collapse
|
16
|
Bioletto F, Prencipe N, Berton AM, Aversa LS, Cuboni D, Varaldo E, Gasco V, Ghigo E, Grottoli S. Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives. J Clin Med 2024; 13:336. [PMID: 38256471 PMCID: PMC10816809 DOI: 10.3390/jcm13020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Radiomic analysis has emerged as a valuable tool for extracting quantitative features from medical imaging data, providing in-depth insights into various contexts and diseases. By employing methods derived from advanced computational techniques, radiomics quantifies textural information through the evaluation of the spatial distribution of signal intensities and inter-voxel relationships. In recent years, these techniques have gained considerable attention also in the field of pituitary tumors, with promising results. Indeed, the extraction of radiomic features from pituitary magnetic resonance imaging (MRI) images has been shown to provide useful information on various relevant aspects of these diseases. Some of the key topics that have been explored in the existing literature include the association of radiomic parameters with histopathological and clinical data and their correlation with tumor invasiveness and aggressive behavior. Their prognostic value has also been evaluated, assessing their role in the prediction of post-surgical recurrence, response to medical treatments, and long-term outcomes. This review provides a comprehensive overview of the current knowledge and application of radiomics in pituitary tumors. It also examines the current limitations and future directions of radiomic analysis, highlighting the major challenges that need to be addressed before a consistent integration of these techniques into routine clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (F.B.); (N.P.); (A.M.B.); (L.S.A.); (D.C.); (E.V.); (V.G.); (E.G.)
| |
Collapse
|
17
|
Patel RV, Groff KJ, Bi WL. Applications and Integration of Radiomics for Skull Base Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:285-305. [PMID: 39523272 DOI: 10.1007/978-3-031-64892-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Radiomics, a quantitative approach to extracting features from medical images, represents a new frontier in skull base oncology. Novel image analysis approaches have enabled us to capture patterns from images imperceptible by the human eye. This rich source of data can be combined with a range of clinical features, holding the potential to be a noninvasive source of biomarkers. Applications of radiomics in skull base pathologies have centered around three common tumor classes: meningioma, sellar/parasellar tumors, and vestibular schwannomas. Radiomic investigations can be categorized into five domains: tumor detection/segmentation, classification between tumor types, tumor grading, detection of tumor features, and prognostication. Various computational architectures have been employed across these domains, with deep-learning methods becoming more common versus machine learning. Across radiomic applications, contrast-enhanced T1-weighted MRI images remain the most utilized sequence for model development. Efforts to standardize and connect radiomic features to tumor biology have facilitated more clinically applicable radiomic models. Despite the advancement in model performance, several challenges continue to hinder translatability, including small sample sizes and model training on homogenous single institution data. To recognize the potential of radiomics for skull base oncology, prospective, multi-institutional collaboration will be the cornerstone for a validated radiomic technology.
Collapse
Affiliation(s)
- Ruchit V Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- New York University Grossman School of Medicine, New York, NY, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Koechli C, Zwahlen DR, Schucht P, Windisch P. Radiomics and machine learning for predicting the consistency of benign tumors of the central nervous system: A systematic review. Eur J Radiol 2023; 164:110866. [PMID: 37207398 DOI: 10.1016/j.ejrad.2023.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE Predicting the consistency of benign central nervous system (CNS) tumors prior to surgery helps to improve surgical outcomes. This review summarizes and analyzes the literature on using radiomics and/or machine learning (ML) for consistency prediction. METHOD The Medical Literature Analysis and Retrieval System Online (MEDLINE) database was screened for studies published in English from January 1st 2000. Data was extracted according to the PRISMA guidelines and quality of the studies was assessed in compliance with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS Eight publications were included focusing on pituitary macroadenomas (n = 5), pituitary adenomas (n = 1), and meningiomas (n = 2) using a retrospective (n = 6), prospective (n = 1), and unknown (n = 1) study design with a total of 763 patients for the consistency prediction. The studies reported an area under the curve (AUC) of 0.71-0.99 for their respective best performing model regarding the consistency prediction. Of all studies, four articles validated their models internally whereas none validated their models externally. Two articles stated making data available on request with the remaining publications lacking information with regard to data availability. CONCLUSIONS The research on consistency prediction of CNS tumors is still at an early stage regarding the use of radiomics and different ML techniques. Best-practice procedures regarding radiomics and ML need to be followed more rigorously to facilitate the comparison between publications and, accordingly, the possible implementation into clinical practice in the future.
Collapse
Affiliation(s)
- Carole Koechli
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland; Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland.
| | - Daniel R Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| |
Collapse
|
19
|
MacFarlane J, Huynh KA, Powlson AS, Kolias AG, Mannion RJ, Scoffings DJ, Mendichovszky IA, Cheow HK, Bashari WA, Jones J, Gillett D, Koulouri O, Gurnell M. Novel imaging techniques in refractory pituitary adenomas. Pituitary 2023:10.1007/s11102-023-01304-9. [PMID: 36971899 DOI: 10.1007/s11102-023-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 04/08/2023]
Abstract
Accurate localization of the site(s) of active disease is key to informing decision-making in the management of refractory pituitary adenomas when autonomous hormone secretion and/or continued tumor growth challenge conventional therapeutic approaches. In this context, the use of non-standard MR sequences, alternative post-acquisition image processing, or molecular (functional) imaging may provide valuable additional information to inform patient management.
Collapse
Affiliation(s)
- J MacFarlane
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - K A Huynh
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - A S Powlson
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - A G Kolias
- Department of Neurosurgery, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - R J Mannion
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - D J Scoffings
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - I A Mendichovszky
- Department of Radiology, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - H K Cheow
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - W A Bashari
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - J Jones
- Department of Radiology, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - D Gillett
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Nuclear Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - O Koulouri
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Mark Gurnell
- Cambridge Endocrine Molecular Imaging Group, Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge and National Institute for Health Research Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
20
|
Li N, Desiderio DM, Zhan X. The use of mass spectrometry in a proteome-centered multiomics study of human pituitary adenomas. MASS SPECTROMETRY REVIEWS 2022; 41:964-1013. [PMID: 34109661 DOI: 10.1002/mas.21710] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
A pituitary adenoma (PA) is a common intracranial neoplasm, and is a complex, chronic, and whole-body disease with multicausing factors, multiprocesses, and multiconsequences. It is very difficult to clarify molecular mechanism and treat PAs from the single-factor strategy model. The rapid development of multiomics and systems biology changed the paradigms from a traditional single-factor strategy to a multiparameter systematic strategy for effective management of PAs. A series of molecular alterations at the genome, transcriptome, proteome, peptidome, metabolome, and radiome levels are involved in pituitary tumorigenesis, and mutually associate into a complex molecular network system. Also, the center of multiomics is moving from structural genomics to phenomics, including proteomics and metabolomics in the medical sciences. Mass spectrometry (MS) has been extensively used in phenomics studies of human PAs to clarify molecular mechanisms, and to discover biomarkers and therapeutic targets/drugs. MS-based proteomics and proteoform studies play central roles in the multiomics strategy of PAs. This article reviews the status of multiomics, multiomics-based molecular pathway networks, molecular pathway network-based pattern biomarkers and therapeutic targets/drugs, and future perspectives for personalized, predeictive, and preventive (3P) medicine in PAs.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| | - Dominic M Desiderio
- The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
21
|
Won SY, Lee N, Park YW, Ahn SS, Ku CR, Kim EH, Lee SK. Quality reporting of radiomics analysis in pituitary adenomas: promoting clinical translation. Br J Radiol 2022; 95:20220401. [PMID: 36018049 PMCID: PMC9793472 DOI: 10.1259/bjr.20220401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE To evaluate the quality of radiomics studies on pituitary adenoma according to the radiomics quality score (RQS) and Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD). METHODS PubMed MEDLINE and EMBASE were searched to identify radiomics studies on pituitary adenomas. From 138 articles, 20 relevant original research articles were included. Studies were scored based on RQS and TRIPOD guidelines. RESULTS Most included studies did not perform pre-processing; isovoxel resampling, signal intensity normalization, and N4 bias field correction were performed in only five (25%), eight (40%), and four (20%) studies, respectively. Only two (10%) studies performed external validation. The mean RQS and basic adherence rate were 2.8 (7.6%) and 26.6%, respectively. There was a low adherence rate for conducting comparison to "gold-standard" (20%), multiple segmentation (25%), and stating potential clinical utility (25%). No study stated the biological correlation, conducted a test-retest or phantom study, was a prospective study, conducted cost-effectiveness analysis, or provided open-source code and data, which resulted in low-level evidence. The overall adherence rate for TRIPOD was 54.6%, and it was low for reporting the title (5%), abstract (0%), explaining the sample size (10%), and suggesting a full prediction model (5%). CONCLUSION The radiomics reporting quality for pituitary adenoma is insufficient. Pre-processing is required for feature reproducibility and external validation is necessary. Feature reproducibility, clinical utility demonstration, higher evidence levels, and open science are required. Titles, abstracts, and full prediction model suggestions should be improved for transparent reporting. ADVANCES IN KNOWLEDGE Despite the rapidly increasing number of radiomics researches on pituitary adenoma, the quality of science in these researches is unknown. Our study indicates that the overall quality needs to be significantly improved in radiomics studies on pituitary adenoma, and since the concept of RQS and IBSI is still unfamiliar to clinicians and radiologist researchers, our study may help to reach higher technical and clinical impact in the future study.
Collapse
Affiliation(s)
| | - Narae Lee
- Department of Nuclear Medicine, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yae Won Park
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research, Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Lee T, Song K, Sohn B, Eom J, Ahn SS, Kim HS, Lee SK. A Radiomics-Based Model with the Potential to Differentiate Growth Hormone Deficiency and Idiopathic Short Stature on Sella MRI. Yonsei Med J 2022; 63:856-863. [PMID: 36031786 PMCID: PMC9424774 DOI: 10.3349/ymj.2022.63.9.856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We hypothesized that a radiomics approach could be employed to classify children with growth hormone deficiency (GHD) and idiopathic short stature (ISS) on sella magnetic resonance imaging (MRI). Accordingly, we aimed to develop a radiomics prediction model for differentiating GHD from ISS and to evaluate the diagnostic performance thereof. MATERIALS AND METHODS Short stature pediatric patients diagnosed with GHD or ISS from March 2011 to July 2020 at our institution were recruited. We enrolled 312 patients (GHD 210, ISS 102) with normal sella MRI and temporally split them into training and test sets (7:3). Pituitary glands were semi-automatically segmented, and 110 radiomic features were extracted from the coronal T2-weighted images. Feature selection and model development were conducted by applying mutual information (MI) and a light gradient boosting machine, respectively. After training, the model's performance was validated in the test set. We calculated mean absolute Shapley values for each of the selected input features using the Shapley additive explanations (SHAP) algorithm. Volumetric comparison was performed for GHD and ISS groups. RESULTS Ten radiomic features were selected by MI. The receiver operating characteristics curve of the developed model in the test set was 0.705, with an accuracy of 70.6%. When analyzing SHAP plots, root mean squared values had the highest impact in the model, followed by various texture features. In volumetric analysis, sagittal height showed a significant difference between GHD and ISS groups. CONCLUSION Radiomic analysis of sella MRI may be able to differentiate between GHD and ISS in clinical practice for short-statured children.
Collapse
Affiliation(s)
- Taeyoun Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungchul Song
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Beomseok Sohn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Jihwan Eom
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Department of Computer Science, Yonsei University, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Seong Kim
- Department of Pediatrics, Severance Children's Hospital, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Zhang C, Heng X, Neng W, Chen H, Sun A, Li J, Wang M. Prediction of high infiltration levels in pituitary adenoma using MRI-based radiomics and machine learning. Chin Neurosurg J 2022; 8:21. [PMID: 35962442 PMCID: PMC9373412 DOI: 10.1186/s41016-022-00290-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Background Infiltration is important for the surgical planning and prognosis of pituitary adenomas. Differences in preoperative diagnosis have been noted. The aim of this article is to assess the accuracy of machine learning analysis of texture-derived parameters of pituitary adenoma obtained from preoperative MRI for the prediction of high infiltration. Methods A total of 196 pituitary adenoma patients (training set: n = 176; validation set: n = 20) were enrolled in this retrospective study. In total, 4120 quantitative imaging features were extracted from CE-T1 MR images. To select the most informative features, the least absolute shrinkage and selection operator (LASSO) and variance threshold method were performed. The linear support vector machine (SVM) was used to fit the predictive model based on infiltration features. Furthermore, the receiver operating characteristic curve (ROC) was generated, and the diagnostic performance of the model was evaluated by calculating the area under the curve (AUC), accuracy, precision, recall, and F1 value. Results A variance threshold of 0.85 was used to exclude 16 features with small differences using the LASSO algorithm, and 19 optimal features were finally selected. The SVM models for predicting high infiltration yielded an AUC of 0.86 (sensitivity: 0.81, specificity 0.79) in the training set and 0.73 (sensitivity: 0.87, specificity: 0.80) in the validation set. The four evaluation indicators of the predictive model achieved good diagnostic capabilities in the training set (accuracy: 0.80, precision: 0.82, recall: 0.81, F1 score: 0.81) and independent verification set (accuracy: 0.85, precision: 0.93, recall: 0.87, F1 score: 0.90). Conclusions The radiomics model developed in this study demonstrates efficacy for the prediction of pituitary adenoma infiltration. This model could potentially aid neurosurgeons in the preoperative prediction of infiltration in PAs and contribute to the selection of ideal surgical strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s41016-022-00290-4.
Collapse
|
24
|
Buchlak QD, Esmaili N, Bennett C, Wang YY, King J, Goldschlager T. Predictors of improvement in quality of life at 12-month follow-up in patients undergoing anterior endoscopic skull base surgery. PLoS One 2022; 17:e0272147. [PMID: 35895728 PMCID: PMC9328523 DOI: 10.1371/journal.pone.0272147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022] Open
Abstract
Background Patients with pituitary lesions experience decrements in quality of life (QoL) and treatment aims to arrest or improve QoL decline. Objective To detect associations with QoL in trans-nasal endoscopic skull base surgery patients and train supervised learning classifiers to predict QoL improvement at 12 months. Methods A supervised learning analysis of a prospective multi-institutional dataset (451 patients) was conducted. QoL was measured using the anterior skull base surgery questionnaire (ASBS). Factors associated with QoL at baseline and at 12-month follow-up were identified using multivariate logistic regression. Multiple supervised learning models were trained to predict postoperative QoL improvement with five-fold cross-validation. Results ASBS at 12-month follow-up was significantly higher (132.19,SD = 24.87) than preoperative ASBS (121.87,SD = 25.72,p<0.05). High preoperative scores were significantly associated with institution, diabetes and lesions at the planum sphenoidale / tuberculum sella site. Patients with diabetes were five times less likely to report high preoperative QoL. Low preoperative QoL was significantly associated with female gender, a vision-related presentation, diabetes, secreting adenoma and the cavernous sinus site. Top quartile change in postoperative QoL at 12-month follow-up was negatively associated with baseline hypercholesterolemia, acromegaly and intraoperative CSF leak. Positive associations were detected for lesions at the sphenoid sinus site and deficient preoperative endocrine function. AdaBoost, logistic regression and neural network classifiers yielded the strongest predictive performance. Conclusion It was possible to predict postoperative positive change in QoL at 12-month follow-up using perioperative data. Further development and implementation of these models may facilitate improvements in informed consent, treatment decision-making and patient QoL.
Collapse
Affiliation(s)
- Quinlan D. Buchlak
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia
- * E-mail:
| | - Nazanin Esmaili
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia
| | - Christine Bennett
- School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Yi Yuen Wang
- St Vincent’s Hospital, Melbourne, VIC, Australia
| | - James King
- Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Tony Goldschlager
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review. Cancers (Basel) 2022; 14:cancers14112676. [PMID: 35681655 PMCID: PMC9179850 DOI: 10.3390/cancers14112676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Machine learning in radiology of the central nervous system has seen many interesting publications in the past few years. Since the focus has largely been on malignant tumors such as brain metastases and high-grade gliomas, we conducted a systematic review on benign tumors to summarize what has been published and where there might be gaps in the research. We found several studies that report good results, but the descriptions of methodologies could be improved to enable better comparisons and assessment of biases. Abstract Objectives: To summarize the available literature on using machine learning (ML) for the detection and segmentation of benign tumors of the central nervous system (CNS) and to assess the adherence of published ML/diagnostic accuracy studies to best practice. Methods: The MEDLINE database was searched for the use of ML in patients with any benign tumor of the CNS, and the records were screened according to PRISMA guidelines. Results: Eleven retrospective studies focusing on meningioma (n = 4), vestibular schwannoma (n = 4), pituitary adenoma (n = 2) and spinal schwannoma (n = 1) were included. The majority of studies attempted segmentation. Links to repositories containing code were provided in two manuscripts, and no manuscripts shared imaging data. Only one study used an external test set, which raises the question as to whether some of the good performances that have been reported were caused by overfitting and may not generalize to data from other institutions. Conclusions: Using ML for detecting and segmenting benign brain tumors is still in its infancy. Stronger adherence to ML best practices could facilitate easier comparisons between studies and contribute to the development of models that are more likely to one day be used in clinical practice.
Collapse
|
26
|
Kalasauskas D, Kosterhon M, Keric N, Korczynski O, Kronfeld A, Ringel F, Othman A, Brockmann MA. Beyond Glioma: The Utility of Radiomic Analysis for Non-Glial Intracranial Tumors. Cancers (Basel) 2022; 14:cancers14030836. [PMID: 35159103 PMCID: PMC8834271 DOI: 10.3390/cancers14030836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Tumor qualities, such as growth rate, firmness, and intrusion into healthy tissue, can be very important for operation planning and further treatment. Radiomics is a promising new method that allows the determination of some of these qualities on images performed before surgery. In this article, we provide a review of the use of radiomics in various tumors of the central nervous system, such as metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors. Abstract The field of radiomics is rapidly expanding and gaining a valuable role in neuro-oncology. The possibilities related to the use of radiomic analysis, such as distinguishing types of malignancies, predicting tumor grade, determining the presence of particular molecular markers, consistency, therapy response, and prognosis, can considerably influence decision-making in medicine in the near future. Even though the main focus of radiomic analyses has been on glial CNS tumors, studies on other intracranial tumors have shown encouraging results. Therefore, as the main focus of this review, we performed an analysis of publications on PubMed and Web of Science databases, focusing on radiomics in CNS metastases, lymphoma, meningioma, medulloblastoma, and pituitary tumors.
Collapse
Affiliation(s)
- Darius Kalasauskas
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Michael Kosterhon
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Naureen Keric
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Oliver Korczynski
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Andrea Kronfeld
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Florian Ringel
- Department of Neurosurgery, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (D.K.); (M.K.); (N.K.); (F.R.)
| | - Ahmed Othman
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
| | - Marc A. Brockmann
- Department of Neuroradiology, University Medical Centre, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.K.); (A.K.); (A.O.)
- Correspondence:
| |
Collapse
|
27
|
Zhang Y, Luo Y, Kong X, Wan T, Long Y, Ma J. A Preoperative MRI-Based Radiomics-Clinicopathological Classifier to Predict the Recurrence of Pituitary Macroadenoma Within 5 Years. Front Neurol 2022; 12:780628. [PMID: 35069413 PMCID: PMC8767054 DOI: 10.3389/fneur.2021.780628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: To investigate the ability of a MRI-based radiomics-clinicopathological model to predict pituitary macroadenoma (PMA) recurrence within 5 years. Materials and Methods: We recruited 74 recurrent and 94 non-recurrent subjects, following first surgery with 5-year follow-up data. Univariate and multivariate analyses were conducted to identify independent clinicopathological risk factors. Two independent and blinded neuroradiologists used 3D-Slicer software to manually delineate whole tumors using preoperative axial contrast-enhanced T1WI (CE-T1WI) images. 3D-Slicer was then used to extract radiomics features from segmented tumors. Dimensionality reduction was carried out by the least absolute shrinkage and selection operator (LASSO). Two multilayer perceptron (MLP) models were established, including independent clinicopathological risk factors (Model 1) and a combination of screened radiomics features and independent clinicopathological markers (Model 2). The predictive performance of these models was evaluated by receiver operator characteristic (ROC) curve analysis. Results: In total, 1,130 features were identified, and 4 of these were selected by LASSO. In the test set, the area under the curve (AUC) of Model 2 was superior to Model 1 {0.783, [95% confidence interval (CI): 0.718—.860] vs. 0.739, (95% CI: 0.665–0.818)}. Model 2 also yielded the higher accuracy (0.808 vs. 0.692), sensitivity (0.826 vs. 0.652), and specificity (0.793 vs. 0.724) than Model 1. Conclusions: The integrated classifier was superior to a clinical classifier and may facilitate the prediction of individualized prognosis and therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuqi Luo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Kong
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wan
- School of Biomedical Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yunling Long
- Department of Biomedical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing, China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Editorial Comment: Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Eur Radiol 2022; 32:1475-1476. [DOI: 10.1007/s00330-021-08509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 11/04/2022]
|
29
|
Dai C, Sun B, Wang R, Kang J. The Application of Artificial Intelligence and Machine Learning in Pituitary Adenomas. Front Oncol 2022; 11:784819. [PMID: 35004306 PMCID: PMC8733587 DOI: 10.3389/fonc.2021.784819] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Pituitary adenomas (PAs) are a group of tumors with complex and heterogeneous clinical manifestations. Early accurate diagnosis, individualized management, and precise prediction of the treatment response and prognosis of patients with PA are urgently needed. Artificial intelligence (AI) and machine learning (ML) have garnered increasing attention to quantitatively analyze complex medical data to improve individualized care for patients with PAs. Therefore, we critically examined the current use of AI and ML in the management of patients with PAs, and we propose improvements for future uses of AI and ML in patients with PAs. AI and ML can automatically extract many quantitative features based on massive medical data; moreover, related diagnosis and prediction models can be developed through quantitative analysis. Previous studies have suggested that AI and ML have wide applications in early accurate diagnosis; individualized treatment; predicting the response to treatments, including surgery, medications, and radiotherapy; and predicting the outcomes of patients with PAs. In addition, facial imaging-based AI and ML, pathological picture-based AI and ML, and surgical microscopic video-based AI and ML have also been reported to be useful in assisting the management of patients with PAs. In conclusion, the current use of AI and ML models has the potential to assist doctors and patients in making crucial surgical decisions by providing an accurate diagnosis, response to treatment, and prognosis of PAs. These AI and ML models can improve the quality and safety of medical services for patients with PAs and reduce the complication rates of neurosurgery. Further work is needed to obtain more reliable algorithms with high accuracy, sensitivity, and specificity for the management of PA patients.
Collapse
Affiliation(s)
- Congxin Dai
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Bowen Sun
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Kang
- Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Stumpo V, Staartjes VE, Regli L, Serra C. Machine Learning in Pituitary Surgery. ACTA NEUROCHIRURGICA. SUPPLEMENT 2021; 134:291-301. [PMID: 34862553 DOI: 10.1007/978-3-030-85292-4_33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Machine learning applications in neurosurgery are increasingly reported for diverse tasks such as faster and more accurate preoperative diagnosis, enhanced lesion characterization, as well as surgical outcome, complications and healthcare cost prediction. Even though the pertinent literature in pituitary surgery is less extensive with respect to other neurosurgical diseases, past research attempted to answer clinically relevant questions to better assist surgeons and clinicians. In the present chapter we review reported ML applications in pituitary surgery including differential diagnosis, preoperative lesion characterization (immunohistochemistry, cavernous sinus invasion, tumor consistency), surgical outcome and complication predictions (gross total resection, tumor recurrence, and endocrinological remission, cerebrospinal fluid leak, postoperative hyponatremia). Moreover, we briefly discuss from a practical standpoint the current barriers to clinical translation of machine learning research. On the topic of pituitary surgery, published reports can be considered mostly preliminary, requiring larger training populations and strong external validation. Thoughtful selection of clinically relevant outcomes of interest and transversal application of model development pipeline-together with accurate methodological planning and multicenter collaborations-have the potential to overcome current limitations and ultimately provide additional tools for more informed patient management.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Application of artificial intelligence and radiomics in pituitary neuroendocrine and sellar tumors: a quantitative and qualitative synthesis. Neuroradiology 2021; 64:647-668. [PMID: 34839380 DOI: 10.1007/s00234-021-02845-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE To systematically review the literature regarding the application of machine learning (ML) of magnetic resonance imaging (MRI) radiomics in common sellar tumors. To identify future directions for application of ML in sellar tumor MRI. METHODS PubMed, Medline, Embase, Google Scholar, Scopus, ArxIV, and bioRxiv were searched to identify relevant studies published between 2010 and September 2021. Studies were included if they specifically involved ML of MRI radiomics in the analysis of sellar masses. Risk of bias assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) Tool. RESULTS Fifty-eight articles were identified for review. All papers utilized retrospective data, and a quantitative systematic review was performed for thirty-one studies utilizing a public dataset which compared pituitary adenomas, meningiomas, and gliomas. One of the analyzed architectures yielded the highest classification accuracy of 0.996. The remaining twenty-seven articles were qualitatively reviewed and showed promising findings in predicting specific tumor characteristics such as tumor consistency, Ki-67 proliferative index, and post-surgical recurrence. CONCLUSION This review highlights the potential clinical application of ML using MRI radiomic data of the sellar region in diagnosis and predicting treatment outcomes. We describe future directions for practical application in the clinical care of patients with pituitary neuroendocrine and other sellar tumors.
Collapse
|
32
|
Rui W, Qiao N, Wu Y, Zhang Y, Aili A, Zhang Z, Ye H, Wang Y, Zhao Y, Yao Z. Radiomics analysis allows for precise prediction of silent corticotroph adenoma among non-functioning pituitary adenomas. Eur Radiol 2021; 32:1570-1578. [PMID: 34837512 DOI: 10.1007/s00330-021-08361-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To predict silent corticotroph adenomas (SCAs) among non-functioning pituitary adenomas preoperatively using noninvasive radiomics. METHODS A total of 302 patients including 146 patients diagnosed with SCAs and 156 patients with non-SCAs were enrolled (training set: n = 242; test set: n = 60). Tumor segmentation was manually generated using ITK-SNAP. From T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), and contrast-enhanced T1WI, 2550 radiomics features were extracted using Pyradiomics. Pearson's correlation coefficient values were calculated to exclude redundant features. Several machine learning algorithms were developed to predict SCAs incorporating the radiomics and semantic features including clinical, laboratory, and radiology-associated features. The performance of models was evaluated by AUC. RESULTS Patients in the SCA group were younger (49.5 vs 55.2 years old) and more female (85.6% vs 37.2%) than those in the non-SCA group (p < 0.001). More invasiveness (p = 0.011) and cystic and microcystic change (p < 0.001) were observed in patients with SCAs. The ensemble algorithm presented the largest AUC of 0.927 among all the algorithms trained in the test set, and the accuracy, specificity, and sensitivity of predicting SCAs were all 0.867 (at cut-off 0.5). The overall model performed better than that only using semantic features available in the clinic. Radiomics prediction was the most important feature, with gender ranking second and age ranking third. Radiomics features on T2WI were superior to those on other MR modalities in SCA prediction. CONCLUSION Our ensemble learning model outperformed current clinical practice in differentiating patients with SCAs and non-SCAs using radiomics, which might help make appropriate treatment strategies. KEY POINTS • Radiomics might improve the preoperative diagnosis of SCAs by MR images. • T2WI was superior to T1WI and CE-T1WI in the preoperative diagnosis of SCAs. • The ensemble machine learning model outperformed current clinical practice in SCAs diagnosis and treatment decision-making could be more individualised using the nomogram.
Collapse
Affiliation(s)
- Wenting Rui
- Department of Radiology, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Nidan Qiao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, People's Republic of China.,National Center for Neurological Disorders, Shanghai, People's Republic of China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Yong Zhang
- GE Healthcare, MR Research, Huatuo Road, Shanghai, 201203, People's Republic of China
| | - Ababikere Aili
- Department of Radiology, Kuqa County People's Hospital, Aksu, 842000, Xinjiang, People's Republic of China
| | - Zhaoyun Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Hongying Ye
- Department of Endocrinology, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China.,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, People's Republic of China.,National Center for Neurological Disorders, Shanghai, People's Republic of China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China. .,Neurosurgical Institute of Fudan University, Shanghai, People's Republic of China. .,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, People's Republic of China. .,National Center for Neurological Disorders, Shanghai, People's Republic of China.
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Mid Wulumuqi Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
33
|
Machine Learning: Applications and Advanced Progresses of Radiomics in Endocrine Neoplasms. JOURNAL OF ONCOLOGY 2021; 2021:8615450. [PMID: 34671399 PMCID: PMC8523238 DOI: 10.1155/2021/8615450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Endocrine neoplasms remain a great threat to human health. It is extremely important to make a clear diagnosis and timely treatment of endocrine tumors. Machine learning includes radiomics, which has long been utilized in clinical cancer research. Radiomics refers to the extraction of valuable information by analyzing a large amount of standard data with high-throughput medical images mainly including computed tomography, positron emission tomography, magnetic resonance imaging, and ultrasound. With the quantitative imaging analysis and model building, radiomics can reflect specific underlying characteristics of a disease that otherwise could not be evaluated visually. More and more promising results of radiomics in oncological practice have been seen in recent years. Radiomics may have the potential to supplement traditional imaging analysis and assist in providing precision medicine for patients. Radiomics had developed rapidly in endocrine neoplasms practice in the past decade. In this review, we would introduce the general workflow of radiomics and summarize the applications and developments of radiomics in endocrine neoplasms in recent years. The limitations of current radiomic research studies and future development directions would also be discussed.
Collapse
|
34
|
Yi Z, Long L, Zeng Y, Liu Z. Current Advances and Challenges in Radiomics of Brain Tumors. Front Oncol 2021; 11:732196. [PMID: 34722274 PMCID: PMC8551958 DOI: 10.3389/fonc.2021.732196] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Imaging diagnosis is crucial for early detection and monitoring of brain tumors. Radiomics enable the extraction of a large mass of quantitative features from complex clinical imaging arrays, and then transform them into high-dimensional data which can subsequently be mined to find their relevance with the tumor's histological features, which reflect underlying genetic mutations and malignancy, along with grade, progression, therapeutic effect, or even overall survival (OS). Compared to traditional brain imaging, radiomics provides quantitative information linked to meaningful biologic characteristics and application of deep learning which sheds light on the full automation of imaging diagnosis. Recent studies have shown that radiomics' application is broad in identifying primary tumor, differential diagnosis, grading, evaluation of mutation status and aggression, prediction of treatment response and recurrence in pituitary tumors, gliomas, and brain metastases. In this descriptive review, besides establishing a general understanding among protocols, results, and clinical significance of these studies, we further discuss the current limitations along with future development of radiomics.
Collapse
Affiliation(s)
- Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lifu Long
- XiangYa School of Medicine, Central South University, Changsha, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Park YW, Eom J, Kim S, Kim H, Ahn SS, Ku CR, Kim EH, Lee EJ, Kim SH, Lee SK. Radiomics With Ensemble Machine Learning Predicts Dopamine Agonist Response in Patients With Prolactinoma. J Clin Endocrinol Metab 2021; 106:e3069-e3077. [PMID: 33713414 DOI: 10.1210/clinem/dgab159] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Early identification of the response of prolactinoma patients to dopamine agonists (DA) is crucial in treatment planning. OBJECTIVE To develop a radiomics model using an ensemble machine learning classifier with conventional magnetic resonance images (MRIs) to predict the DA response in prolactinoma patients. DESIGN Retrospective study. SETTING Severance Hospital, Seoul, Korea. PATIENTS A total of 177 prolactinoma patients who underwent baseline MRI (109 DA responders and 68 DA nonresponders) were allocated to the training (n = 141) and test (n = 36) sets. Radiomic features (n = 107) were extracted from coronal T2-weighed MRIs. After feature selection, single models (random forest, light gradient boosting machine, extra-trees, quadratic discrimination analysis, and linear discrimination analysis) with oversampling methods were trained to predict the DA response. A soft voting ensemble classifier was used to achieve the final performance. The performance of the classifier was validated in the test set. RESULTS The ensemble classifier showed an area under the curve (AUC) of 0.81 [95% confidence interval (CI), 0.74-0.87] in the training set. In the test set, the ensemble classifier showed an AUC, accuracy, sensitivity, and specificity of 0.81 (95% CI, 0.67-0.96), 77.8%, 78.6%, and 77.3%, respectively. The ensemble classifier achieved the highest performance among all the individual models in the test set. CONCLUSIONS Radiomic features may be useful biomarkers to predict the DA response in prolactinoma patients.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Jihwan Eom
- Department of Computer Science, Yonsei University, Seoul, Korea
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Hwiyoung Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Cheol Ryong Ku
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| |
Collapse
|
36
|
Zhao Z, Xiao D, Nie C, Zhang H, Jiang X, Jecha AR, Yan P, Zhao H. Development of a Nomogram Based on Preoperative Bi-Parametric MRI and Blood Indices for the Differentiation Between Cystic-Solid Pituitary Adenoma and Craniopharyngioma. Front Oncol 2021; 11:709321. [PMID: 34307178 PMCID: PMC8300562 DOI: 10.3389/fonc.2021.709321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Background Given the similarities in clinical manifestations of cystic-solid pituitary adenomas (CS-PAs) and craniopharyngiomas (CPs), this study aims to establish and validate a nomogram based on preoperative imaging features and blood indices to differentiate between CS-PAs and CPs. Methods A departmental database was searched to identify patients who had undergone tumor resection between January 2012 and December 2020, and those diagnosed with CS-PAs or CPs by histopathology were included. Preoperative magnetic resonance imaging (MRI) features as well as blood indices were retrieved and analyzed. Radiological features were extracted from the tumor on contrast-enhanced T1 (CE-T1) weighted and T2 weighted sequences. The two independent samples t-test and principal component analysis (PCA) were used for feature selection, data dimension reduction, and radiomics signature building. Next, the radiomics signature was put in five classification models for exploring the best classifier with superior identification performance. Multivariate logistic regression analysis was then used to establish a radiomic-clinical model containing radiomics and hematological features, and the model was presented as a nomogram. The performance of the radiomics-clinical model was assessed by calibration curve, clinical effectiveness as well as internal validation. Results A total of 272 patients were included in this study: 201 with CS-PAs and 71 with CPs. These patients were randomized into training set (n=182) and test set (n=90). The radiomics signature, which consisted of 18 features after dimensionality reduction, showed superior discrimination performance in 5 different classification models. The area under the curve (AUC) values of the training set and the test set obtained by the radiomics signature are 0.92 and 0.88 in the logistic regression model, 0.90 and 0.85 in the Ridge classifier, 0.88 and 0.82 in the stochastic gradient descent (SGD) classifier, 0.78 and 0.85 in the linear support vector classification (Linear SVC), 0.93 and 0.86 in the multilayers perceptron (MLP) classifier, respectively. The predictive factors of the nomogram included radiomic signature, age, WBC count, and FIB. The nomogram showed good discrimination performance (with an AUC of 0.93 in the training set and 0.90 in the test set) and good calibration. Moreover, decision curve analysis (DCA) demonstrated satisfactory clinical effectiveness of the proposed radiomic-clinical nomogram. Conclusions A personalized nomogram containing radiomics signature and blood indices was proposed in this study. This nomogram is simple yet effective in differentiating between CS-PAs and CPs and thus can be used in routine clinical practice.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongdong Xiao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Nie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Geriatric Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ali Rajab Jecha
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Yan
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Huang ZS, Xiao X, Li XD, Mo HZ, He WL, Deng YH, Lu LJ, Wu YK, Liu H. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomic Model for Discrimination of Pathological Subtypes of Craniopharyngioma. J Magn Reson Imaging 2021; 54:1541-1550. [PMID: 34085336 DOI: 10.1002/jmri.27761] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Preoperative, noninvasive discrimination of the craniopharyngioma subtypes is important because it influences the treatment strategy. PURPOSE To develop a radiomic model based on multiparametric magnetic resonance imaging for noninvasive discrimination of pathological subtypes of craniopharyngioma. STUDY TYPE Retrospective. POPULATION A total of 164 patients from two medical centers were enrolled in this study. Patients from the first medical center were divided into a training cohort (N = 99) and an internal validation cohort (N = 33). Patients from the second medical center were used as the external independent validation cohort (N = 32). FIELD STRENGTH/SEQUENCE Axial T1 -weighted (T1 -w), T2 -weighted (T2 -w), contrast-enhanced T1 -weighted (CET1 -w) on 3.0 T or 1.5 T magnetic resonance scanners. ASSESSMENT Pathological subtypes (squamous papillary craniopharyngioma and adamantinomatous craniopharyngioma) were confirmed by surgery and hematoxylin and eosin staining. Optimal radiomic feature selection was performed by SelectKBest, the least absolute shrinkage and selection operator algorithm, and support vector machine (SVM) with a recursive feature elimination algorithm. Models based on each sequence or combinations of sequences were built using a SVM classifier and used to differentiate pathological subtypes of craniopharyngioma in the training cohort, internal validation, and external validation cohorts. STATISTICAL TESTS The area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance of the radiomic models. RESULTS Seven texture features, three from T1 -w, two from T2 -w, and two from CET1 -w, were selected and used to construct the radiomic model. The AUC values of the radiomic model were 0.899, 0.810, and 0.920 in the training cohort, internal and external validation cohorts, respectively. The AUC values of the clinicoradiological model were 0.677, 0.655, and 0.671 in the training cohort, internal and external validation cohorts, respectively. DATA CONCLUSION The model based on radiomic features from T1 -w, T2 -w, and CET1 -w has a high discriminatory ability for pathological subtypes of craniopharyngioma. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Zhou-San Huang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiang Xiao
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Dan Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-Zhu Mo
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Le He
- Department of Medical Imaging, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yao-Hong Deng
- Yizhun Medical AI Co. Ltd, Beijing, China.,School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Li-Jun Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yuan-Kui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Yizhun Medical AI Co. Ltd, Beijing, China
| |
Collapse
|
38
|
Li H, Zhao Q, Zhang Y, Sai K, Xu L, Mou Y, Xie Y, Ren J, Jiang X. Image-driven classification of functioning and nonfunctioning pituitary adenoma by deep convolutional neural networks. Comput Struct Biotechnol J 2021; 19:3077-3086. [PMID: 34136106 PMCID: PMC8178077 DOI: 10.1016/j.csbj.2021.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 11/28/2022] Open
Abstract
The secreting function of pituitary adenomas (PAs) plays a critical role in making the treatment strategies. However, Magnetic Resonance Imaging (MRI) analysis for pituitary adenomas is labor intensive and highly variable among radiologists. In this work, by applying convolutional neural network (CNN), we built a segmentation and classification model to help distinguish functioning pituitary adenomas from non-functioning subtypes with 3D MRI images from 185 patients with PAs (two centers). Specifically, the classification model adopts the concept of transfer learning and uses the pre-trained segmentation model to extract deep features from conventional MRI images. As a result, both segmentation and classification models obtained high performance in two internal validation datasets and an external testing dataset (for segmentation model: Dice score = 0.8188, 0.8091 and 0.8093 respectively; for classification model: AUROC = 0.8063, 0.7881 and 0.8478, respectively). In addition, the classification model considers the attention mechanism for better model interpretation. Taken together, this work provides the first deep learning-based tumor region segmentation and classification models of PAs, which enables early diagnosis and subtyping PAs from MRI images.
Collapse
Affiliation(s)
- Hongyu Li
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Yihua Zhang
- The Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ke Sai
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lunshan Xu
- The Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
| | - Xiaobing Jiang
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Science, Sun Yat-sen University, Guangzhou, Guangdong 510060, China
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center. State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, China
| |
Collapse
|
39
|
Zhang Y, Luo Y, Kong X, Wan T, Long Y, Ma J. A Preoperative MRI-Based Radiomics-Clinicopathological Classifier to Predict the Recurrence of Pituitary Macroadenoma Within 5 Years. Front Neurol 2021. [PMID: 35069413 DOI: 10.3389/fneur.2021.780628/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Objective: To investigate the ability of a MRI-based radiomics-clinicopathological model to predict pituitary macroadenoma (PMA) recurrence within 5 years. Materials and Methods: We recruited 74 recurrent and 94 non-recurrent subjects, following first surgery with 5-year follow-up data. Univariate and multivariate analyses were conducted to identify independent clinicopathological risk factors. Two independent and blinded neuroradiologists used 3D-Slicer software to manually delineate whole tumors using preoperative axial contrast-enhanced T1WI (CE-T1WI) images. 3D-Slicer was then used to extract radiomics features from segmented tumors. Dimensionality reduction was carried out by the least absolute shrinkage and selection operator (LASSO). Two multilayer perceptron (MLP) models were established, including independent clinicopathological risk factors (Model 1) and a combination of screened radiomics features and independent clinicopathological markers (Model 2). The predictive performance of these models was evaluated by receiver operator characteristic (ROC) curve analysis. Results: In total, 1,130 features were identified, and 4 of these were selected by LASSO. In the test set, the area under the curve (AUC) of Model 2 was superior to Model 1 {0.783, [95% confidence interval (CI): 0.718-.860] vs. 0.739, (95% CI: 0.665-0.818)}. Model 2 also yielded the higher accuracy (0.808 vs. 0.692), sensitivity (0.826 vs. 0.652), and specificity (0.793 vs. 0.724) than Model 1. Conclusions: The integrated classifier was superior to a clinical classifier and may facilitate the prediction of individualized prognosis and therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuqi Luo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Kong
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Wan
- School of Biomedical Science and Medical Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Yunling Long
- Department of Biomedical Engineering, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing, China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Park YW, Kang Y, Ahn SS, Ku CR, Kim EH, Kim SH, Lee EJ, Kim SH, Lee SK. Radiomics model predicts granulation pattern in growth hormone-secreting pituitary adenomas. Pituitary 2020; 23:691-700. [PMID: 32851505 DOI: 10.1007/s11102-020-01077-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate whether radiomic features from magnetic resonance image (MRI) can predict the granulation pattern of growth hormone (GH)-secreting pituitary adenoma patients. METHODS Sixty-nine pathologically proven acromegaly patients (densely granulated [DG] = 50, sparsely granulated [SG] = 19) were included. Radiomic features (n = 214) were extracted from contrast-enhancing and total tumor portions from T2-weighted (T2) MRIs. Imaging features were selected using a least absolute shrinkage and selection operator (LASSO) logistic regression model with fivefold cross-validation. Diagnostic performance for predicting granulation pattern was compared with that for qualitative T2 signal intensity assessment and T2 relative signal intensity (rSI) using the area under the receiver operating characteristics curve (AUC). RESULTS Four significant radiomic features from the contrast-enhancing tumor (1 from shape, 1 from first order feature, and 2 from second order features) were selected by LASSO for model construction. The radiomics model showed an AUC, accuracy, sensitivity, and specificity of 0.834 (95% confidence interval [CI] 0.738-0.930), 73.7%, 74.0%, and 73.9%, respectively. The radiomics model showed significantly better performance than the model using qualitative T2 signal intensity assessment (AUC 0.597 [95% CI 0.447-0.747], P = 0.009) and T2 rSI (AUC 0.647 [95% CI 0.523-0.759], P = 0.037). CONCLUSION Radiomic features may be useful biomarkers to differentiate granulation pattern of GH-secreting pituitary adenoma patients, and showed better performance than qualitative assessment or rSI evaluation.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Yunjun Kang
- Integrated Science and Engineering Division, Underwood International College, Yonsei University, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| | - Cheol Ryong Ku
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
- Department of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Ho Kim
- Department of Neurosurgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
- Pituitary Tumor Center, Severance Hospital, Seoul, Korea
| |
Collapse
|