1
|
Yadav RN, Oravec DJ, Drost J, Flynn MJ, Divine GW, Rao SD, Yeni YN. Textural and geometric measures derived from digital tomosynthesis discriminate women with and without vertebral fracture. Eur J Radiol 2025; 183:111925. [PMID: 39832416 DOI: 10.1016/j.ejrad.2025.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Vertebral fractures are a common and debilitating consequence of osteoporosis. Bone mineral density (BMD), measured by dual energy x-ray absorptiometry (DXA), is the clinical standard for assessing overall bone quantity but falls short in accurately predicting vertebral fracture. Fracture risk prediction may be improved by incorporating metrics of microstructural organization from an appropriate imaging modality. Digital tomosynthesis (DTS)-derived textural and microstructural parameters have been previously correlated to vertebral bone strength in vitro, but the in vivo utility has not been explored. Therefore, the current study sought to establish the extent to which DTS-derived measurements of vertebral microstructure and size discriminate patients with and without vertebral fracture. In a cohort of 93 postmenopausal women with or without history of vertebral fracture, DTS-derived microstructural parameters and vertebral width were calculated for T12 and L1 vertebrae, as well as lumbar spine BMD and trabecular bone score (TBS) from DXA images. Fracture patients had lower BMD and TBS, while DTS-derived degree of anisotropy and vertebral width were higher, compared to nonfracture (p < 0.02 to p < 0.003) patients. The addition of DTS-derived parameters (fractal dimension, lacunarity, degree of anisotropy and vertebral width) improved discriminative capability for models of fracture status (AUC = 0.79) compared to BMD alone (AUC = 0.67). For twelve additional participants who were imaged twice, in vivo repeatability errors for DTS parameters were low (0.2 % - 7.3 %). The current results support the complementary use of DTS imaging for assessing bone quality and improving the accuracy of fracture risk assessment beyond that achievable by DXA alone.
Collapse
Affiliation(s)
- Ram N Yadav
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | | | - Joshua Drost
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA
| | - Michael J Flynn
- Department of Radiology, Henry Ford Health, Detroit, MI, USA
| | - George W Divine
- Department of Public Health Science, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Sudhaker D Rao
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA; Division of Endocrinology, Diabetes and Bone & Mineral Disorders, and Bone & Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
| | - Yener N Yeni
- Bone and Joint Center, Henry Ford Health, Detroit, MI, USA; Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA.
| |
Collapse
|
2
|
Praveen AD, Sollmann N, Baum T, Ferguson SJ, Benedikt H. CT image-based biomarkers for opportunistic screening of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int 2024; 35:971-996. [PMID: 38353706 PMCID: PMC11136833 DOI: 10.1007/s00198-024-07029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/19/2024] [Indexed: 05/30/2024]
Abstract
The use of opportunistic computed tomography (CT) image-based biomarkers may be a low-cost strategy for screening older individuals at high risk for osteoporotic fractures and populations that are not sufficiently targeted. This review aimed to assess the discriminative ability of image-based biomarkers derived from existing clinical routine CT scans for hip, vertebral, and major osteoporotic fracture prediction. A systematic search in PubMed MEDLINE, Embase, Cochrane, and Web of Science was conducted from the earliest indexing date until July 2023. The evaluation of study quality was carried out using a modified Quality Assessment Tool for Diagnostic Accuracy Studies (QUADAS-2) checklist. The primary outcome of interest was the area under the curve (AUC) and its corresponding 95% confidence intervals (CIs) obtained for four main categories of biomarkers: areal bone mineral density (BMD), image attenuation, volumetric BMD, and finite element (FE)-derived biomarkers. The meta-analyses were performed using random effects models. Sixty-one studies were included in this review, among which 35 were synthesized in a meta-analysis and the remaining articles were qualitatively synthesized. In comparison to the pooled AUC of areal BMD (0.73 [95% CI 0.71-0.75]), the pooled AUC values for predicting osteoporotic fractures for FE-derived parameters (0.77 [95% CI 0.72-0.81]; p < 0.01) and volumetric BMD (0.76 [95% CI 0.71-0.81]; p < 0.01) were significantly higher, but there was no significant difference with the pooled AUC for image attenuation (0.73 [95% CI 0.66-0.79]; p = 0.93). Compared to areal BMD, volumetric BMD and FE-derived parameters may provide a significant improvement in the discrimination of osteoporotic fractures using opportunistic CT assessments.
Collapse
Affiliation(s)
- Anitha D Praveen
- Early Detection of Health Risks and Prevention, Future Health Technologies, Singapore-ETH Centre (SEC), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, CREATE Tower, #06-01, Singapore, 138602, Singapore.
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephen J Ferguson
- Early Detection of Health Risks and Prevention, Future Health Technologies, Singapore-ETH Centre (SEC), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, CREATE Tower, #06-01, Singapore, 138602, Singapore
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
| | - Helgason Benedikt
- Early Detection of Health Risks and Prevention, Future Health Technologies, Singapore-ETH Centre (SEC), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, CREATE Tower, #06-01, Singapore, 138602, Singapore
- Institute for Biomechanics, ETH-Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Allam AK, Anand A, Flores AR, Ropper AE. Computer Vision in Osteoporotic Vertebral Fracture Risk Prediction: A Systematic Review. Neurospine 2023; 20:1112-1123. [PMID: 38171281 PMCID: PMC10762393 DOI: 10.14245/ns.2347022.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporotic vertebral fractures (OVFs) are a significant health concern linked to increased morbidity, mortality, and diminished quality of life. Traditional OVF risk assessment tools like bone mineral density (BMD) only capture a fraction of the risk profile. Artificial intelligence, specifically computer vision, has revolutionized other fields of medicine through analysis of videos, histopathology slides and radiological scans. In this review, we provide an overview of computer vision algorithms and current computer vision models used in predicting OVF risk. We highlight the clinical applications, future directions and limitations of computer vision in OVF risk prediction.
Collapse
Affiliation(s)
- Anthony K. Allam
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Alex R. Flores
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
4
|
Fleps I, Morgan EF. A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning. Curr Osteoporos Rep 2022; 20:309-319. [PMID: 36048316 PMCID: PMC10941185 DOI: 10.1007/s11914-022-00743-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We reviewed advances over the past 3 years in assessment of fracture risk based on CT scans, considering methods that use finite element models, machine learning, or a combination of both. RECENT FINDINGS Several studies have demonstrated that CT-based assessment of fracture risk, using finite element modeling or biomarkers derived from machine learning, is equivalent to currently used clinical tools. Phantomless calibration of CT scans for bone mineral density enables accurate measurements from routinely taken scans. This opportunistic use of CT scans for fracture risk assessment is facilitated by high-quality automated segmentation with deep learning, enabling workflows that do not require user intervention. Modeling of more realistic and diverse loading conditions, as well as improved modeling of fracture mechanisms, has shown promise to enhance our understanding of fracture processes and improve the assessment of fracture risk beyond the performance of current clinical tools. CT-based screening for fracture risk is effective and, by analyzing scans that were taken for other indications, could be used to expand the pool of people screened, therefore improving fracture prevention. Finite element modeling and machine learning both provide valuable tools for fracture risk assessment. Future approaches should focus on including more loading-related aspects of fracture risk.
Collapse
Affiliation(s)
- Ingmar Fleps
- College of Mechanical Engineering, Boston University, Boston, USA.
| | - Elise F Morgan
- College of Mechanical Engineering, Boston University, Boston, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Patient-Specific Finite Element Modeling of the Whole Lumbar Spine Using Clinical Routine Multi-Detector Computed Tomography (MDCT) Data-A Pilot Study. Biomedicines 2022; 10:biomedicines10071567. [PMID: 35884872 PMCID: PMC9312902 DOI: 10.3390/biomedicines10071567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
(1) Background: To study the feasibility of developing finite element (FE) models of the whole lumbar spine using clinical routine multi-detector computed tomography (MDCT) scans to predict failure load (FL) and range of motion (ROM) parameters. (2) Methods: MDCT scans of 12 subjects (6 healthy controls (HC), mean age ± standard deviation (SD): 62.16 ± 10.24 years, and 6 osteoporotic patients (OP), mean age ± SD: 65.83 ± 11.19 years) were included in the current study. Comprehensive FE models of the lumbar spine (5 vertebrae + 4 intervertebral discs (IVDs) + ligaments) were generated (L1−L5) and simulated. The coefficients of correlation (ρ) were calculated to investigate the relationship between FE-based FL and ROM parameters and bone mineral density (BMD) values of L1−L3 derived from MDCT (BMDQCT-L1-3). Finally, Mann−Whitney U tests were performed to analyze differences in FL and ROM parameters between HC and OP cohorts. (3) Results: Mean FE-based FL value of the HC cohort was significantly higher than that of the OP cohort (1471.50 ± 275.69 N (HC) vs. 763.33 ± 166.70 N (OP), p < 0.01). A strong correlation of 0.8 (p < 0.01) was observed between FE-based FL and BMDQCT-L1-L3 values. However, no significant differences were observed between ROM parameters of HC and OP cohorts (p = 0.69 for flexion; p = 0.69 for extension; p = 0.47 for lateral bending; p = 0.13 for twisting). In addition, no statistically significant correlations were observed between ROM parameters and BMDQCT- L1-3. (4) Conclusions: Clinical routine MDCT data can be used for patient-specific FE modeling of the whole lumbar spine. ROM parameters do not seem to be significantly altered between HC and OP. In contrast, FE-derived FL may help identify patients with increased osteoporotic fracture risk in the future.
Collapse
|
6
|
Sollmann N, Becherucci EA, Boehm C, Husseini ME, Ruschke S, Burian E, Kirschke JS, Link TM, Subburaj K, Karampinos DC, Krug R, Baum T, Dieckmeyer M. Texture Analysis Using CT and Chemical Shift Encoding-Based Water-Fat MRI Can Improve Differentiation Between Patients With and Without Osteoporotic Vertebral Fractures. Front Endocrinol (Lausanne) 2021; 12:778537. [PMID: 35058878 PMCID: PMC8763669 DOI: 10.3389/fendo.2021.778537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Osteoporosis is a highly prevalent skeletal disease that frequently entails vertebral fractures. Areal bone mineral density (BMD) derived from dual-energy X-ray absorptiometry (DXA) is the reference standard, but has well-known limitations. Texture analysis can provide surrogate markers of tissue microstructure based on computed tomography (CT) or magnetic resonance imaging (MRI) data of the spine, thus potentially improving fracture risk estimation beyond areal BMD. However, it is largely unknown whether MRI-derived texture analysis can predict volumetric BMD (vBMD), or whether a model incorporating texture analysis based on CT and MRI may be capable of differentiating between patients with and without osteoporotic vertebral fractures. MATERIALS AND METHODS Twenty-six patients (15 females, median age: 73 years, 11 patients showing at least one osteoporotic vertebral fracture) who had CT and 3-Tesla chemical shift encoding-based water-fat MRI (CSE-MRI) available were analyzed. In total, 171 vertebral bodies of the thoracolumbar spine were segmented using an automatic convolutional neural network (CNN)-based framework, followed by extraction of integral and trabecular vBMD using CT data. For CSE-MRI, manual segmentation of vertebral bodies and consecutive extraction of the mean proton density fat fraction (PDFF) and T2* was performed. First-order, second-order, and higher-order texture features were derived from texture analysis using CT and CSE-MRI data. Stepwise multivariate linear regression models were computed using integral vBMD and fracture status as dependent variables. RESULTS Patients with osteoporotic vertebral fractures showed significantly lower integral and trabecular vBMD when compared to patients without fractures (p<0.001). For the model with integral vBMD as the dependent variable, T2* combined with three PDFF-based texture features explained 40% of the variance (adjusted R2[Ra2] = 0.40; p<0.001). Furthermore, regarding the differentiation between patients with and without osteoporotic vertebral fractures, a model including texture features from CT and CSE-MRI data showed better performance than a model based on integral vBMD and PDFF only ( Ra2 = 0.47 vs. Ra2 = 0.81; included texture features in the final model: integral vBMD, CT_Short-run_emphasis, CT_Varianceglobal, and PDFF_Variance). CONCLUSION Using texture analysis for spine CT and CSE-MRI can facilitate the differentiation between patients with and without osteoporotic vertebral fractures, implicating that future fracture prediction in osteoporosis may be improved.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- *Correspondence: Nico Sollmann,
| | - Edoardo A. Becherucci
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Malek El Husseini
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Egon Burian
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas M. Link
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Karupppasamy Subburaj
- Engineering Product Development (EPD) Pillar, Singapore University of Technology and Design (SUTD), Singapore, Singapore
- Changi General Hospital, Singapore, Singapore
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|