1
|
Ellmann S, von Rohr F, Komina S, Bayerl N, Amann K, Polifka I, Hartmann A, Sikic D, Wullich B, Uder M, Bäuerle T. Tumor grade-titude: XGBoost radiomics paves the way for RCC classification. Eur J Radiol 2025; 188:112146. [PMID: 40334367 DOI: 10.1016/j.ejrad.2025.112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 RCC patients who underwent contrast-enhanced CT scans were included in the analysis. Radiomic features were extracted, and a two-step feature selection methodology was applied to identify the most relevant features for classification. The XGBoost model demonstrated high performance in both training (AUC = 0.87) and testing (AUC = 0.92) sets, with no significant difference between the two (p = 0.521). The model also exhibited high sensitivity, specificity, positive predictive value, and negative predictive value. The selected radiomic features captured both the distribution of intensity values and spatial relationships, which may provide valuable insights for personalized treatment decision-making. Our findings suggest that the XGBoost model has the potential to be integrated into clinical workflows to facilitate personalized adjuvant immunotherapy decision-making, ultimately improving patient outcomes. Further research is needed to validate the model in larger, multicentre cohorts and explore the potential of combining radiomic features with other clinical and molecular data.
Collapse
Affiliation(s)
- Stephan Ellmann
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Radiologisch-Nuklearmedizinisches Zentrum (RNZ), Martin-Richter-Straße 43, 90489 Nürnberg, Germany.
| | - Felicitas von Rohr
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Selim Komina
- Institute of Pathology, Faculty of Medicine, Ss Cyril and Methodius University ul. 50 Divizija bb 1000 Skopje, North Macedonia
| | - Nadine Bayerl
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; BZKF: Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Humanpathologie Dr. Weiß MVZ GmbH, Am Weichselgarten 30a, 91058 Erlangen-Tennenlohe, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen - EMD, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; BZKF: Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Danijel Sikic
- Clinic of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; BZKF: Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Bernd Wullich
- Clinic of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen - EMD, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; BZKF: Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen - EMD, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; BZKF: Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; University Medical Center of Johannes Gutenberg-University Mainz, Department of Diagnostic and Interventional Radiology, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
2
|
Kocak B, Ponsiglione A, Stanzione A, Ugga L, Klontzas ME, Cannella R, Cuocolo R. CLEAR guideline for radiomics: Early insights into current reporting practices endorsed by EuSoMII. Eur J Radiol 2024; 181:111788. [PMID: 39437630 DOI: 10.1016/j.ejrad.2024.111788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aims to evaluate current reporting practices in radiomics research, with a focus on CheckList for EvaluAtion of Radiomics research (CLEAR). METHODS We conducted a citation search using Google Scholar to collect original research articles on radiomics citing the CLEAR guideline up to June 17, 2024. We examined the adoption of the guideline, adherence scores per publication, item-wise adherence rates, and self-reporting practices. An expert panel from the European Society of Medical Imaging Informatics Radiomics Auditing Group conducted a detailed item-by-item confirmation analysis of the self-reported CLEAR checklists. RESULTS Out of 100 unique citations from 104 records, 48 original research papers on radiomics were included. The overall adoption rate in the literature was 2 %. Among the citing articles, 94 % (45/48) adopted CLEAR for reporting purposes, applying it to both hand-crafted radiomics (89 %) and deep learning (24 %). Self-reported checklists were included in 58 % (26/45) of these papers. Median study-wise adherence score for self-reported data was 91 % (interquartile range = 18 %). Mean confirmed adherence score was 66 % (standard deviation = 14 %). Difference between these scores was statistically significant, (mean = 21 %; standard deviation = 11 %), p < 0.001. Using an arbitrary 50 % adherence cut-off, the number of items with poor adherence increased from 3 to 15 after confirmation analysis, mostly comprised of open science-related items. In addition, several items were frequently misreported. CONCLUSION This study revealed significant discrepancies between self-reported and confirmed adherence to the CLEAR guideline in radiomics research, indicating a need for improved reporting accuracy and verification practices.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, Türkiye.
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Michail E Klontzas
- Artificial Intelligence and Translational Imaging (ATI) Laboratory, Department of Radiology, School of Medicine, University of Crete, Heraklion, Crete, Greece; Computational Biomedicine Lab, Institute of Computer Science, Foundation for Research and Technology (ICS-FORTH), Heraklion, Crete, Greece; Division of Radiology, Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institute, Sweden
| | - Roberto Cannella
- Section of Radiology, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Renato Cuocolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| |
Collapse
|
3
|
Kocak B, Akinci D'Antonoli T, Ates Kus E, Keles A, Kala A, Kose F, Kadioglu M, Solak S, Sunman S, Temiz ZH. Self-reported checklists and quality scoring tools in radiomics: a meta-research. Eur Radiol 2024; 34:5028-5040. [PMID: 38180530 DOI: 10.1007/s00330-023-10487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE To evaluate the use of reporting checklists and quality scoring tools for self-reporting purposes in radiomics literature. METHODS Literature search was conducted in PubMed (date, April 23, 2023). The radiomics literature was sampled at random after a sample size calculation with a priori power analysis. A systematic assessment for self-reporting, including the use of documentation such as completed checklists or quality scoring tools, was conducted in original research papers. These eligible papers underwent independent evaluation by a panel of nine readers, with three readers assigned to each paper. Automatic annotation was used to assist in this process. Then, a detailed item-by-item confirmation analysis was carried out on papers with checklist documentation, with independent evaluation of two readers. RESULTS The sample size calculation yielded 117 papers. Most of the included papers were retrospective (94%; 110/117), single-center (68%; 80/117), based on their private data (89%; 104/117), and lacked external validation (79%; 93/117). Only seven papers (6%) had at least one self-reported document (Radiomics Quality Score (RQS), Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), or Checklist for Artificial Intelligence in Medical Imaging (CLAIM)), with a statistically significant binomial test (p < 0.001). Median rate of confirmed items for all three documents was 81% (interquartile range, 6). For quality scoring tools, documented scores were higher than suggested scores, with a mean difference of - 7.2 (standard deviation, 6.8). CONCLUSION Radiomic publications often lack self-reported checklists or quality scoring tools. Even when such documents are provided, it is essential to be cautious, as the accuracy of the reported items or scores may be questionable. CLINICAL RELEVANCE STATEMENT Current state of radiomic literature reveals a notable absence of self-reporting with documentation and inaccurate reporting practices. This critical observation may serve as a catalyst for motivating the radiomics community to adopt and utilize such tools appropriately, thereby fostering rigor, transparency, and reproducibility of their research, moving the field forward. KEY POINTS • In radiomics literature, there has been a notable absence of self-reporting with documentation. • Even if such documents are provided, it is critical to exercise caution because the accuracy of the reported items or scores may be questionable. • Radiomics community needs to be motivated to adopt and appropriately utilize the reporting checklists and quality scoring tools.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey.
| | - Tugba Akinci D'Antonoli
- Institute of Radiology and Nuclear Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Ece Ates Kus
- Department of Neuroradiology, Klinikum Lippe, Lemgo, Germany
| | - Ali Keles
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Ahmet Kala
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Fadime Kose
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Mehmet Kadioglu
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Sila Solak
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Seyma Sunman
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| | - Zisan Hayriye Temiz
- Department of Radiology, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir, Istanbul, 34480, Turkey
| |
Collapse
|
4
|
Demircioğlu A. Applying oversampling before cross-validation will lead to high bias in radiomics. Sci Rep 2024; 14:11563. [PMID: 38773233 PMCID: PMC11109211 DOI: 10.1038/s41598-024-62585-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 05/23/2024] Open
Abstract
Class imbalance is often unavoidable for radiomic data collected from clinical routine. It can create problems during classifier training since the majority class could dominate the minority class. Consequently, resampling methods like oversampling or undersampling are applied to the data to class-balance the data. However, the resampling must not be applied upfront to all data because it would lead to data leakage and, therefore, to erroneous results. This study aims to measure the extent of this bias. Five-fold cross-validation with 30 repeats was performed using a set of 15 radiomic datasets to train predictive models. The training involved two scenarios: first, the models were trained correctly by applying the resampling methods during the cross-validation. Second, the models were trained incorrectly by performing the resampling on all the data before cross-validation. The bias was defined empirically as the difference between the best-performing models in both scenarios in terms of area under the receiver operating characteristic curve (AUC), sensitivity, specificity, balanced accuracy, and the Brier score. In addition, a simulation study was performed on a randomly generated dataset for verification. The results demonstrated that incorrectly applying the oversampling methods to all data resulted in a large positive bias (up to 0.34 in AUC, 0.33 in sensitivity, 0.31 in specificity, and 0.37 in balanced accuracy). The bias depended on the data balance, and approximately an increase of 0.10 in the AUC was observed for each increase in imbalance. The models also showed a bias in calibration measured using the Brier score, which differed by up to -0.18 between the correctly and incorrectly trained models. The undersampling methods were not affected significantly by bias. These results emphasize that any resampling method should be applied correctly only to the training data to avoid data leakage and, subsequently, biased model performance and calibration.
Collapse
Affiliation(s)
- Aydin Demircioğlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|