1
|
Ito Y, Sakumoto J, Hirabayashi H, Haruna S, Konno W, Nakajima I, Ishida K, Haruyama Y, Sairenchi T, Nishihara E, Fukata S, Hishinuma A, Kogai T. Assessing the potential of high-mobility group AT-hook 2 immunohistochemical staining as a prognostic marker of metastatic recurrence in follicular thyroid cancer: a retrospective cohort study. Endocr J 2025; 72:535-543. [PMID: 39971318 PMCID: PMC12086272 DOI: 10.1507/endocrj.ej24-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/05/2025] [Indexed: 02/21/2025] Open
Abstract
High-mobility group AT-hook 2 (HMGA2) is a nuclear protein involved in the differentiation and proliferation of epithelial-derived tumors and also considered to be involved in the growth and differentiation of various malignant tumors, including thyroid cancer. Immunohistochemistry (IHC) for HMGA2 has been reported to show diffuse positivity in several follicular thyroid carcinoma (FTC) cases. This study aimed to investigate whether positive immunohistochemical staining for HMGA2 in primary tumors can be used to predict the prognosis and detect prognostic factors in malignant thyroid tumors associated with metastatic recurrence in FTC. Formalin-fixed, paraffin-embedded (FFPE) resected specimens used for the IHC for HMGA2. The association of positive HMGA2 staining with metastasis and recurrence, along with the potential of HMGA2 as a prognostic marker of metastatic recurrence, was statistically determined. HMGA2 staining was positive in most malignant tissues, whereas benign tissues were unstained. HMGA2 staining of the marginal and invasive regions was observed in FTC tissues. The association of HMGA2 staining with metastasis and recurrence was significant (p = 0.018). Kaplan-Meier curves showed an association of negative HMGA2 staining with metastasis and disease-free survival (p = 0.090). Tumor size (>4 cm) and wide invasion were also significant factors (p = 0.043, p < 0.001). The risk ratio without HMGA2 was significantly reduced by 30% compared to that with HMGA2. In primary tumors, positive HMGA2 staining can be used to predict prognosis in malignant thyroid tumors associated with metastatic recurrence in FTC and negative HMGA2 staining may indicate longer disease-free survival after surgery.
Collapse
Affiliation(s)
- Yuka Ito
- Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Junko Sakumoto
- Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Hideki Hirabayashi
- Department of Otorhinolaryngology, Head and Neck Surgery, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shinichi Haruna
- Department of Otorhinolaryngology, Head and Neck Surgery, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Wataru Konno
- Department of Otorhinolaryngology, Head and Neck Surgery, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Itsuo Nakajima
- Department of Otorhinolaryngology, Head and Neck Surgery, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yasuo Haruyama
- Department of Public Health, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toshimi Sairenchi
- Medical Science of Nursing, Dokkyo Medical University School of Nursing, Tochigi 321-0293, Japan
| | | | | | | | - Takahiko Kogai
- Department of Genetic Diagnosis and Laboratory Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| |
Collapse
|
2
|
Zhang X, Li Z, Nie H, Huang Y, Du J, Xi Y, Guo C, Mu M, Li X, Zheng X, Xu Q, Huang D, Tu L, Cheng L. The IGF2BP2-lncRNA TRPC7-AS1 axis promotes hepatocellular carcinoma cell proliferation and invasion. Cell Signal 2024; 117:111078. [PMID: 38320625 DOI: 10.1016/j.cellsig.2024.111078] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Hepatocellular carcinoma(HCC) is one of the most common tumors in the world. Human insulin-like growth factor 2(IGF2) mRNA binding protein 2(IGF2BP2) plays an important role in the progression of hepatocellular carcinoma. Additionally, long non-coding RNA(lncRNA) has been confirmed as a key regulator of hepatocellular carcinoma occurrence. However, the function of TRPC7-AS1 has not been verified in hepatocellular carcinoma. The research results revealed that high IGF2BP2 expression was associated with a decreased survival rate in patients with hepatocellular carcinoma. Furthermore, IGF2BP2 knockdown inhibited and IGF2BP2 overexpression promoted the cell proliferation and invasion of hepatocellular carcinoma cells. The research illuminated that IGF2BP2 regulated the expression of TRPC7-AS1, and a correlation was observed between IGF2BP2 and TRPC7-AS1 expression. TRPC7-AS1 silencing repressed and its overexpression promoted the progression of hepatocellular carcinoma. After silencing or overexpressing TRPC7-AS1, the expression of the high-mobility group AT-hook 2 (HMGA2) gene decreased or increased, respectively. IGF2BP2 enhanced the expression of TRPC7-AS1 and thus affected the expression of HMGA2, thereby promoting hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Xu Zhang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zilin Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Huizong Nie
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yue Huang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jingyang Du
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiling Xi
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chaoqin Guo
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Mingshan Mu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangyu Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou City, Zhejiang Province, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China
| | - Qiuran Xu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| | - Dongsheng Huang
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| | - Liyan Cheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, 182 Tianmushan Road, Xihu District, Hangzhou City, Zhejiang Province, China; Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, China.
| |
Collapse
|
3
|
Pawaskar R, Huang KZ, Pham H, Nagrial A, Wong M, O’Neill S, Pleass H, Yuen L, Lam VWT, Richardson A, Pang T, Nahm CB. Systematic Review of Preoperative Prognostic Biomarkers in Perihilar Cholangiocarcinoma. Cancers (Basel) 2024; 16:698. [PMID: 38398089 PMCID: PMC10886549 DOI: 10.3390/cancers16040698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Perihilar cholangiocarcinoma (pCCA) is an uncommon malignancy with generally poor prognosis. Surgery is the primary curative treatment; however, the perioperative mortality and morbidity rates are high, with a low 5-year survival rate. Use of preoperative prognostic biomarkers to predict survival outcomes after surgery for pCCA are not well-established currently. This systematic review aimed to identify and summarise preoperative biomarkers associated with survival in pCCA, thereby potentially improving treatment decision-making. The Embase, Medline, and Cochrane databases were searched, and a systematic review was performed using the PRISMA guidelines. English-language studies examining the association between serum and/or tissue-derived biomarkers in pCCA and overall and/or disease-free survival were included. Our systematic review identified 64 biomarkers across 48 relevant studies. Raised serum CA19-9, bilirubin, CEA, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) and tumour MMP9, and low serum albumin were most associated with poorer survival; however, the cutoff values used widely varied. Several promising molecular markers with prognostic significance were also identified, including tumour HMGA2, MUC5AC/6, IDH1, PIWIL2, and DNA index. In conclusion, several biomarkers have been identified in serum and tumour specimens that prognosticate overall and disease-free survival after pCCA resection. These, however, require external validation in large cohort studies and/or in preoperatively obtained specimens, especially tissue biopsy, to recommend their use.
Collapse
Affiliation(s)
- Rishaan Pawaskar
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
| | | | - Helen Pham
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Adnan Nagrial
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Mark Wong
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Siobhan O’Neill
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Henry Pleass
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Lawrence Yuen
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Vincent W. T. Lam
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
- Macquarie University Medical School, Macquarie University, Sydney, NSW 2145, Australia
| | - Arthur Richardson
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
| | - Tony Pang
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| | - Christopher B. Nahm
- Department of Upper GI Surgery, Westmead Hospital, Sydney, NSW 2145, Australia; (R.P.); (H.P.); (H.P.); (L.Y.); (V.W.T.L.); (A.R.); (T.P.)
- Westmead Hospital, Sydney, NSW 2145, Australia;
- Surgical Innovations Unit, Westmead Hospital, Sydney, NSW 2145, Australia
- Westmead Clinical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (A.N.); (M.W.)
| |
Collapse
|