1
|
Braun SK, Jorge DW, Pedron VF. Influence of Preprocedural Statin Usage on Primary Patency and Amputation in Patients Undergoing Lower Limb Peripheral Angioplasty. Ann Vasc Surg 2024; 106:213-226. [PMID: 38821472 DOI: 10.1016/j.avsg.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Peripheral arterial disease can progress to critical limb ischemia, which is associated with high amputation rates and requires revascularization. The endovascular approach has lower long-term patency because of restenosis due to neointimal hyperplasia. Statins are significantly advantageous for patients undergoing percutaneous interventions; however, only few studies have reported surgical improvements with statin therapy after endovascular treatment in such patients. This retrospective cohort study assessed the effects of preprocedural statins on lower limb arterial angioplasty outcomes by evaluating patency and amputation rates and comparing with those without statins. METHODS Patients who underwent percutaneous transluminal angioplasty of the lower limbs for critical ischemia of the lower limbs or for limiting claudication were included in this retrospective cohort study. Patients were categorized according to statin use prior to and during hospitalization. Patient demographics, lesion morphology, primary patency, and limb salvage rates were compared between these groups. Statistical analyses were performed using Kaplan-Meier and multivariate regression analysis. RESULTS A total of 178 patients undergoing endovascular intervention by critical ischemia or limiting claudication were included. Approximately 80% of the procedures were ballon angioplasty. Primary patency was 73% in 1 year and preprocedural statin usage was not associated with improved primary patency rates (P = 0.2798). After adjusting the amputation outcomes for pre-established variables, such as prehospitalization statin use, diabetes, procedure indication, disease location, Trans-Atlantic Inter-Society Consensus classification, and current smoking, there was no statistically significant difference associated with preprocedural statin use in primary patency (hazard ratio: 0.87 [0.33-2.29], P = 0.79) or amputation (hazard ratio: 0.70 [0.40-1.23], P = 0.22). CONCLUSIONS The use of preprocedural statin did not improve primary patency or amputation rates in patients undergoing peripheral angioplasty.
Collapse
Affiliation(s)
- Stela Karine Braun
- Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Surgery Department, Universidade Franciscana, Santa Maria, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
2
|
Systemic Delivery of Clopidogrel Inhibits Neointimal Formation in a Mouse Vein Graft Model. J Cardiovasc Pharmacol 2022; 80:832-841. [PMID: 36027583 DOI: 10.1097/fjc.0000000000001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/30/2022] [Indexed: 12/13/2022]
Abstract
ABSTRACT Clopidogrel inhibits platelet aggregation and has beneficial effects on patients undergoing coronary artery bypass grafting surgery, but it is unknown whether clopidogrel inhibits the neointima formation of grafted veins. In this study, we used a murine vein graft model to study the effect of clopidogrel on intima hyperplasia of the vein graft. Vein grafting was performed among C57BL/6J mice, immediately after surgery; 1 mg/kg clopidogrel and vehicle control were used to inject mice peritoneally daily for 2 weeks. As compared with the vehicle, clopidogrel significantly inhibited the neointima formation of vein grafts at 4 weeks after surgeries. The immunohistochemistry study showed that as compared with the vehicle, clopidogrel significantly decreased the rate of proliferating cell nuclear antigen-positive cells in the wall of vein grafts and significantly increased the expression of vascular smooth muscle cell (VSMC) contractile protein markers (α-smooth muscle actin, calponin, and SM22) within the neointima area of vein grafts. Clopidogrel significantly decreased the plasma interleukin 6 (IL-6) level at 1 week after surgery as compared with the vehicle. We isolated VSMCs from mouse aortic arteries. As compared with the vehicle, clopidogrel significantly inhibited thrombin-induced VSMC proliferation and migration, significantly decreased IL-6 mRNA expression and protein secretion, and increased intracellular cyclic adenosine monophosphate generation in a dose-dependent manner. In conclusion, systemic delivery of clopidogrel inhibits neointima formation of the mouse vein graft, the mechanisms of which are associated with its inhibitory effects on VSMC proliferation, migration, and the tendency to synthetic phenotype after vein graft surgery, reducing the expression of IL-6 and increasing the intracellular cyclic adenosine monophosphate level.
Collapse
|
3
|
Barcena AJR, Perez JVD, Liu O, Mu A, Heralde FM, Huang SY, Melancon MP. Localized Perivascular Therapeutic Approaches to Inhibit Venous Neointimal Hyperplasia in Arteriovenous Fistula Access for Hemodialysis Use. Biomolecules 2022; 12:biom12101367. [PMID: 36291576 PMCID: PMC9599524 DOI: 10.3390/biom12101367] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/14/2023] Open
Abstract
An arteriovenous fistula (AVF) is the preferred vascular access for chronic hemodialysis, but high failure rates restrict its use. Optimizing patients' perioperative status and the surgical technique, among other methods for preventing primary AVF failure, continue to fall short in lowering failure rates in clinical practice. One of the predominant causes of AVF failure is neointimal hyperplasia (NIH), a process that results from the synergistic effects of inflammation, hypoxia, and hemodynamic shear stress on vascular tissue. Although several systemic therapies have aimed at suppressing NIH, none has shown a clear benefit towards this goal. Localized therapeutic approaches may improve rates of AVF maturation by providing direct structural and functional support to the maturating fistula, as well as by delivering higher doses of pharmacologic agents while avoiding the adverse effects associated with systemic administration of therapeutic agents. Novel materials-such as polymeric scaffolds and nanoparticles-have enabled the development of different perivascular therapies, such as supportive mechanical devices, targeted drug delivery, and cell-based therapeutics. In this review, we summarize various perivascular therapeutic approaches, available data on their effectiveness, and the outlook for localized therapies targeting NIH in the setting of AVF for hemodialysis use. Highlights: Most systemic therapies do not improve AVF patency outcomes; therefore, localized therapeutic approaches may be beneficial. Locally delivered drugs and medical devices may improve AVF patency outcomes by providing biological and mechanical support. Cell-based therapies have shown promise in suppressing NIH by delivering a more extensive array of bioactive substances in response to the biochemical changes in the AVF microenvironment.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Joy Vanessa D. Perez
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Olivia Liu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Amy Mu
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Francisco M. Heralde
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Steven Y. Huang
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marites P. Melancon
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
4
|
Zhao C, Zuckerman ST, Cai C, Kilari S, Singh A, Simeon M, von Recum HA, Korley JN, Misra S. Periadventitial Delivery of Simvastatin-Loaded Microparticles Attenuate Venous Neointimal Hyperplasia Associated With Arteriovenous Fistula. J Am Heart Assoc 2020; 9:e018418. [PMID: 33283594 PMCID: PMC7955373 DOI: 10.1161/jaha.120.018418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Venous neointimal hyperplasia and venous stenosis (VS) formation can result in a decrease in arteriovenous fistula (AVF) patency in patients with end‐stage renal disease. There are limited therapies that prevent VNH/VS. Systemic delivery of simvastatin has been shown to reduce VNH/VS but local delivery may help decrease the side effects associated with statin use. We determined if microparticles (MP) composed of cyclodextrins loaded with simvastatin (MP‐SV) could reduce VS/VNH using a murine arteriovenous fistula model with chronic kidney disease. Methods and Results Male C57BL/6J mice underwent nephrectomy to induce chronic kidney disease. Four weeks later, an arteriovenous fistula was placed and animals were randomized to 3 groups: 20 μL of PBS or 20 μL of PBS with 16.6 mg/mL of either MP or MP‐SV. Animals were euthanized 3 days later and the outflow veins were harvested for quantitative reverse transcriptase–polymerase chain reaction analysis and 28 days later for immunohistochemistical staining with morphometric analysis. Doppler ultrasound was performed weekly. Gene expression of vascular endothelial growth factor‐A (Vegf‐A), matrix metalloproteinase‐9 (Mmp‐9), transforming growth factor beta 1 (Tgf‐β1), and monocyte chemoattractant protein‐1 (Mcp‐1) were significantly decreased in MP‐SV treated vessels compared with controls. There was a significant decrease in the neointimal area, cell proliferation, inflammation, and fibrosis, with an increase in apoptosis and peak velocity in MP‐SV treated outflow veins. MP‐SV treated fibroblasts when exposed to hypoxic injury had decreased gene expression of Vegf‐A and Mmp‐9. Conclusions In experimental arteriovenous fistulas, periadventitial delivery of MP‐SV decreased gene expression of Vegf‐A, Mmp‐9, Tgf‐β1 and Mcp‐1, VNH/VS, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Chenglei Zhao
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery The Second Xiangya HospitalCentral South University Changsha Hunan China
| | | | - Chuanqi Cai
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Vascular Surgery Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| | - Sreenivasulu Kilari
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Avishek Singh
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Michael Simeon
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN
| | - Horst A von Recum
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH
| | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory Department of Radiology Mayo Clinic Rochester MN.,Department of Biochemistry and Molecular Biology Mayo Clinic Rochester MN
| |
Collapse
|
5
|
Daban G, Bayram C, Bozdoğan B, Denkbaş EB. Porous polyurethane film fabricated via the breath figure approach for sustained drug release. J Appl Polym Sci 2019. [DOI: 10.1002/app.47658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Gizem Daban
- Bioengineering Division, Graduate School of Science and EngineeringHacettepe University, 06800 Ankara Turkey
| | - Cem Bayram
- Advanced Technologies Application and Research CenterHacettepe University, 06800 Ankara Turkey
| | - Betül Bozdoğan
- Chemistry Department, Faculty of Science and LettersAksaray University, 68100 Aksaray Turkey
| | - Emir Baki Denkbaş
- Bioengineering Division, Graduate School of Science and EngineeringHacettepe University, 06800 Ankara Turkey
- Biomedical Engineering Department, Faculty of EngineeringBaşkent University, 06530 Bağlıca, Ankara Turkey
| |
Collapse
|
6
|
Chung HR, Vakil M, Munroe M, Parikh A, Meador BM, Wu PT, Jeong JH, Woods JA, Wilund KR, Boppart MD. The Impact of Exercise on Statin-Associated Skeletal Muscle Myopathy. PLoS One 2016; 11:e0168065. [PMID: 27936249 PMCID: PMC5148116 DOI: 10.1371/journal.pone.0168065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/23/2016] [Indexed: 01/07/2023] Open
Abstract
HMG-CoA reductase inhibitors (statins) are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/-) mice. Mice either received daily injections of saline or simvastatin (20 mg/kg) while: 1) remaining sedentary (Sed), 2) engaging in daily exercise for two weeks (novel, Nov), or 3) engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct) (2x3 design, n = 60). Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p<0.05). Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p<0.05). Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p<0.05), and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov) increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct) does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training.
Collapse
Affiliation(s)
- Hae R. Chung
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mayand Vakil
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Michael Munroe
- Molecular Muscle Physiology Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alay Parikh
- Molecular Muscle Physiology Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Benjamin M. Meador
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Pei T. Wu
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jin H. Jeong
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jeffrey A. Woods
- Exercise Immunology Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Kenneth R. Wilund
- Renal and Cardiovascular Disease Research Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Marni D. Boppart
- Molecular Muscle Physiology Laboratory, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Mylonaki I, Strano F, Deglise S, Allémann E, Alonso F, Corpataux JM, Dubuis C, Haefliger JA, Jordan O, Saucy F, Delie F. Perivascular sustained release of atorvastatin from a hydrogel-microparticle delivery system decreases intimal hyperplasia. J Control Release 2016; 232:93-102. [DOI: 10.1016/j.jconrel.2016.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/26/2022]
|
8
|
Janardhanan R, Yang B, Vohra P, Roy B, Withers S, Bhattacharya S, Mandrekar J, Kong H, Leof EB, Mukhopadhyay D, Misra S. Simvastatin reduces venous stenosis formation in a murine hemodialysis vascular access model. Kidney Int 2013; 84:338-52. [PMID: 23636169 PMCID: PMC3731558 DOI: 10.1038/ki.2013.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 12/26/2022]
Abstract
Venous neointimal hyperplasia (VNH) is responsible for hemodialysis vascular access malfunction. Here we tested whether VNH formation occurs, in part, due to vascular endothelial growth factor-A (VEGF-A) and matrix metalloproteinase (MMP)-9 gene expression causing adventitial fibroblast transdifferentiation to myofibroblasts (α-SMA-positive cells). These cells have increased proliferative and migratory capacity leading to VNH formation. Simvastatin was used to decrease VEGF-A and MMP-9 gene expression in our murine arteriovenous fistula model created by connecting the right carotid artery to the ipsilateral jugular vein. Compared to fistulae of vehicle-treated mice, the fistulae of simvastatin-treated mice had the expected decrease in VEGF-A and MMP-9 but also showed a significant reduction in MMP-2 expression with a significant decrease in VNH and a significant increase in the mean lumen vessel area. There was an increase in terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, and decreases in α-SMA density, cell proliferation, and HIF-1α and hypoxyprobe staining. This latter result prompted us to determine the effect of simvastatin on fibroblasts subjected to hypoxia in vitro. Simvastatin-treated fibroblasts had a significant decrease in myofibroblast production along with decreased cellular proliferation, migration, and MMP-9 activity but increased caspase 3 activity suggesting increased apoptosis. Thus, simvastatin results in a significant reduction in VNH, with increase in mean lumen vessel area by decreasing VEGF-A/MMP-9 pathway activity.
Collapse
Affiliation(s)
- Rajiv Janardhanan
- Department of Radiology, Vascular and Interventional Radiology Translational Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Piechota-Polanczyk A, Demyanets S, Nykonenko O, Huk I, Mittlboeck M, Domenig CM, Neumayer C, Wojta J, Nanobachvili J, Klinger M. Decreased tissue levels of cyclophilin A, a cyclosporine a target and phospho-ERK1/2 in simvastatin patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2013; 45:682-8. [PMID: 23558220 DOI: 10.1016/j.ejvs.2013.02.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/21/2013] [Indexed: 01/27/2023]
Abstract
BACKGROUND Cyclophilin A (CyPA), a cyclosporine A-binding protein, influences abdominal aortic aneurysm (AAA) formation and the ERK1/2 signalling pathway in animal and in vitro studies. Statins decrease CyPA in smooth muscle cells although their influence on CyPA in human AAA is unknown. MATERIAL AND METHODS The study was performed on AAA wall-tissue samples obtained from 30 simvastatin-treated and 15 non-statin patients (2:1 case to control). The patients were matched by age, sex and AAA diameter. We investigated the gene expression of CyPA, its receptor extracellular matrix metalloproteinase inducer (EMMPRIN) by real-time RT-PCR. CyPA and EMMPRIN protein level and phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) were measured by Western blot. RESULTS The AAA wall tissue from simvastatin-treated patients had significantly lower CyPA gene expression and protein levels (P = 0.0018, P = 0.0083, respectively). Furthermore, phosphorylation of ERK1 and ERK2 was markedly suppressed in the simvastatin group (P = 0.0002, P = 0.0027, respectively). However, simvastatin did not influence EMMPRIN gene and protein expression. CONCLUSION Simvastatin-treated patients with AAA exert lower CyPA messenger RNA (mRNA), as well as CyPA intracellular protein levels and a decreased amount of phospho-ERK1/2. Thus, the interference with signalling pathways leading to CyPA formation and ERK1/2 activation reveals a new anti-inflammatory role of statins in AAA.
Collapse
Affiliation(s)
- A Piechota-Polanczyk
- Department of Cardiovascular Physiology, Chair of Experimental and Clinical Physiology, Medical University of Łódź, Łódź, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|