1
|
Yi J, Jiang C, Xia L. Mediated roles of oxidative stress and kidney function to leukocyte telomere length and prognosis in chronic kidney disease. Ren Fail 2025; 47:2464828. [PMID: 40011224 PMCID: PMC11866651 DOI: 10.1080/0886022x.2025.2464828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Few studies have focused on the correlation between leukocyte telomere length (LTL) and cancer-related mortality or identified potential factors that mediate the relationship between LTL and mortality among chronic kidney disease (CKD) patients. Our study aimed to explore the associations between LTL and all-cause and cause-specific mortality and to identify the underlying mediators. METHODS CKD patients were obtained from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Cox regression analysis and restricted cubic spline analysis were used to explore the associations between LTL and all-cause or specific-cause mortality and their nonlinear connections. Stratified analyses were executed to assess the relationships among the different subgroups. The latent mediated factors were confirmed using mediation analysis. Sensitivity analyses were used to evaluate the robustness of our findings. RESULTS Longer LTL associated with the lower risk of all-cause mortality, cardiovascular disease (CVD) and cancer-related mortality, and U-shaped relationships were detected. Patients younger than 65 years with greater LTL or who had hypertension had better prognoses. Age and history of hypertension were associated with LTL and overall mortality. In addition, estimated glomerular filtration rate (eGFR), albumin, and total bilirubin mediated the association, and the proportions of indirect effects were 7.81%, 3.77%, and 2.50%, respectively. Six sensitivity analyses confirmed the robustness of our findings. CONCLUSIONS This study revealed that LTL was a protective factor for survival among patients with CKD and emphasized the mediating roles of oxidative stress and kidney function.
Collapse
Affiliation(s)
- Jiahong Yi
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Chang Jiang
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Liangping Xia
- Department of VIP Region, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
2
|
Huang X, Huang L, Lu J, Cheng L, Wu D, Li L, Zhang S, Lai X, Xu L. The relationship between telomere length and aging-related diseases. Clin Exp Med 2025; 25:72. [PMID: 40044947 PMCID: PMC11882723 DOI: 10.1007/s10238-025-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
The intensifying global phenomenon of an aging population has spurred a heightened emphasis on studies on aging and disorders associated with aging. Cellular senescence and aging are known to be caused by telomere shortening. Telomere length (TL) has emerged as a biomarker under intense scrutiny, and its widespread use in investigations of diseases tied to advancing age. This review summarizes the current knowledge of the association between telomeres and aging-related diseases, explores the important contribution of dysfunctional telomeres to the development and progression of these diseases, and aims to provide valuable insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuanqi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Leyi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Jiaweng Lu
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lijuan Cheng
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| | - Du Wu
- Hangzhou Wuyunshan Hospital, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Shuting Zhang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Xinyue Lai
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lu Xu
- Hangzhou Normal University School of Nursing, Hangzhou, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
3
|
Murillo Ortiz BO, Ramírez Emiliano J, Romero Vázquez MJ, Amador Medina LF, Martínez Garza S, Ramos Rodríguez EM. Impact of iron chelation with deferasirox on telomere length and oxidative stress in hemodialysis patients: A randomized study. Nefrologia 2025; 45:68-76. [PMID: 39884801 DOI: 10.1016/j.nefroe.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/12/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Recent studies have demonstrated the effectiveness, safety, and tolerability of deferasirox in patients in peritoneal dialysis, however, its effect has not been studied in patients undergoing hemodialysis. OBJECTIVE To investigate the impact of iron chelation on telomere length, oxidative stress, and ferritin levels in patients undergoing hemodialysis. METHODS This is an open-label study, with a control group of patients undergoing hemodialysis, who will receive treatment with deferasirox 15mg/kg/day for 6 months for iron chelation. Telomere length was measured using real-time PCR. Serum ferritin levels and oxidation markers were evaluated. To evaluate the pharmacokinetics and safety of deferasirox, plasma concentrations were analyzed by HPLC. RESULTS Fifty-four patients were included to receive deferasirox, and a control group of 50 patients. Significant differences were observed in serum ferritin levels (p<0.0001), TBARS (thiobarbituric acid reactive substances) (p<0.01). Telomere length had a significant increase after chelation (p<0.001). The serum deferasirox concentration at zero time at 48h was maintained within a range of 2.67-23.78mmol/L. CONCLUSIONS Our results demonstrate that iron chelation in hemodialysis patients significantly reduces ferritin and TBARS, resulting in an increase in telomere length. Deferasirox proves to be beneficial for patients with iron overload undergoing hemodialysis.
Collapse
Affiliation(s)
- Blanca Olivia Murillo Ortiz
- Clinical Epidemiology Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León, Guanajuato, Mexico.
| | - Joel Ramírez Emiliano
- Department of Medical Sciences, Health Sciences Division, University of Guanajuato, León, Guanajuato, Mexico
| | - Marcos Javier Romero Vázquez
- Clinical Epidemiology Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León, Guanajuato, Mexico
| | - Lauro Fabián Amador Medina
- Clinical Epidemiology Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León, Guanajuato, Mexico
| | - Sandra Martínez Garza
- Clinical Epidemiology Research Unit, OOAD Guanajuato, Mexican Institute of Social Security, León, Guanajuato, Mexico
| | - Edna Montserrat Ramos Rodríguez
- Department of Hemodialysis, Hospital General Regional No. 58, Mexican Institute of Social Security, León, Guanajuato, Mexico
| |
Collapse
|
4
|
Sawicki K, Matysiak-Kucharek M, Gorczyca-Siudak D, Kruszewski M, Kurzepa J, Kapka-Skrzypczak L, Dziemidok P. Leukocyte Telomere Length as a Marker of Chronic Complications in Type 2 Diabetes Patients: A Risk Assessment Study. Int J Mol Sci 2024; 26:290. [PMID: 39796144 PMCID: PMC11719939 DOI: 10.3390/ijms26010290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Telomere shortening has been linked to type 2 diabetes (T2D) and its complications. This study aims to determine whether leukocyte telomere length (LTL) could be a useful marker in predicting the onset of complications in patients suffering from T2D. Enrolled study subjects were 147 T2D patients. LTL was measured using a quantitative PCR method. Key subject's demographics and other clinical characteristics were also included. T2D patients with the shortest LTL had higher TC and non-HDL levels, compared to subjects with the longest LTL (p = 0.013). Also, T2D patients suffering from diabetic nephropathy showed significant differences in LDL levels (p = 0.023). While in the group of T2D patients with diabetic retinopathy, significant differences were observed for parameters, such as duration of diabetes (p = 0.043), HbA1c (p = 0.041), TC (p = 0.003), LDL (p = 0.015), Non-HDL (p = 0.004) and TG (p = 0.045). Logistic regression analysis confirmed a significant risk of association of TC and Non-HDL levels with LTL in the 3rd tertile LTL for the crude model adjusted for sex and age, with respective odds ratios of 0.71 (95% CI 0.56-0.91) and 0.73 (95% CI 0.58-0.91). No significant associations were found between LTL in T2D patients and the prevalence of common T2D complications. Nevertheless, a significant association was demonstrated between LTL and some markers of dyslipidemia, including in T2D patients with either diabetic nephropathy or retinopathy. Therefore, analysis of LTL in T2D patients' leukocytes demonstrates a promising potential as a marker in predicting the onset of complications in T2D. This could also help in establishing an effective treatment strategy or even prevent and delay the onset of these severe complications.
Collapse
Affiliation(s)
- Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
| | - Daria Gorczyca-Siudak
- Department of Diabetes, Institute of Rural Health, 20-090 Lublin, Poland; (D.G.-S.); (P.D.)
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland; (M.M.-K.); (M.K.); (L.K.-S.)
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Piotr Dziemidok
- Department of Diabetes, Institute of Rural Health, 20-090 Lublin, Poland; (D.G.-S.); (P.D.)
| |
Collapse
|
5
|
Huang Q, An C, Tang S, Leng Y, Zhang Y, Wan B, Han Y, Luo Y, Xie C. Mendelian randomization analysis reveals causal factors behind diabetic nephropathy: evidence, opportunities, and challenges. Front Endocrinol (Lausanne) 2024; 15:1444808. [PMID: 39735650 PMCID: PMC11671268 DOI: 10.3389/fendo.2024.1444808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024] Open
Abstract
Diabetic nephropathy (DN), as the most serious minor vascular complication of diabetes, imposes a significant socioeconomic and medical cost around the world, and its prevention and treatment are a major challenge in the current medical community. Observational studies and randomized controlled trials have revealed protective and risk factors for some DN. However, the conclusions of these researches may be influenced by several types of confounding. Mendelian randomization is a new epidemiological method mainly used to infer the causal relationship between exposure and outcome. Many Mendelian randomization studies have found potential causal relationships between DN and some diseases and lifestyle habits, thus providing valuable data for future mechanistic studies as well as the development and implementation of clinical prevention strategies. As a result, the purpose of this review is to evaluate the published Mendelian randomization study of DN, using the bibliometric research method, analyze the current research status and hot spots, and further summarize the genetic evidence about the potential protection of DN and risk factors to provide new inspiration for the etiology of DN and as a reference for clinical intervention.
Collapse
Affiliation(s)
- Qinchuan Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen An
- Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaowen Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Bin Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yutong Han
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Saraswati S, Martínez P, Serrano R, Mejías D, Graña-Castro O, Álvarez Díaz R, Blasco MA. Renal fibroblasts are involved in fibrogenic changes in kidney fibrosis associated with dysfunctional telomeres. Exp Mol Med 2024; 56:2216-2230. [PMID: 39349834 PMCID: PMC11541748 DOI: 10.1038/s12276-024-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 10/03/2024] Open
Abstract
Tubulointerstitial fibrosis associated with chronic kidney disease (CKD) represents a global health care problem. We previously reported that short and dysfunctional telomeres lead to interstitial renal fibrosis; however, the cell-of-origin of kidney fibrosis associated with telomere dysfunction is currently unknown. We induced telomere dysfunction by deleting the Trf1 gene encoding a telomere-binding factor specifically in renal fibroblasts in both short-term and long-term life-long experiments in mice to identify the role of fibroblasts in renal fibrosis. Short-term Trf1 deletion in renal fibroblasts was not sufficient to trigger kidney fibrosis but was sufficient to induce inflammatory responses, ECM deposition, cell cycle arrest, fibrogenesis, and vascular rarefaction. However, long-term persistent deletion of Trf1 in fibroblasts resulted in kidney fibrosis accompanied by an elevated urinary albumin-to-creatinine ratio (uACR) and a decrease in mouse survival. These cellular responses lead to the macrophage-to-myofibroblast transition (MMT), endothelial-to-mesenchymal transition (EndMT), and partial epithelial-to-mesenchymal transition (EMT), ultimately causing kidney fibrosis at the humane endpoint (HEP) when the deletion of Trf1 in fibroblasts is maintained throughout the lifespan of mice. Our findings contribute to a better understanding of the role of dysfunctional telomeres in the onset of the profibrotic alterations that lead to kidney fibrosis.
Collapse
Affiliation(s)
- Sarita Saraswati
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Rosa Serrano
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Diego Mejías
- Confocal Microscopy Unit, Biotechnology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Advanced Optical Microscopy Unit, UCCTs, Instituto de Salud Carlos III (ISCIII), E-28220, Majadahonda, Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
- Department of Basic Medical Sciences, Institute of Applied Molecular Medicine (IMMA-Nemesio Díez), School of Medicine, San Pablo-CEU University, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Ruth Álvarez Díaz
- Bioinformatics Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group-Fundacion Humanismo y Ciencia, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, E-28029, Spain.
| |
Collapse
|
7
|
Ng GYQ, Hande MP. Use of peptide nucleic acid probe to determine telomere dynamics in improving chromosome analysis in genetic toxicology studies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 897:503773. [PMID: 39054004 DOI: 10.1016/j.mrgentox.2024.503773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Genetic toxicology, strategically located at the intersection of genetics and toxicology, aims to demystify the complex interplay between exogenous agents and our genetic blueprint. Telomeres, the protective termini of chromosomes, play instrumental roles in cellular longevity and genetic stability. Traditionally karyotyping and fluorescence in situ hybridisation (FISH), have been indispensable tools for chromosomal analysis following exposure to genotoxic agents. However, their scope in discerning nuanced molecular dynamics is limited. Peptide Nucleic Acids (PNAs) are synthetic entities that embody characteristics of both proteins and nucleic acids and have emerged as potential game-changers. This perspective report comprehensively examines the vast potential of PNAs in genetic toxicology, with a specific emphasis on telomere research. PNAs' superior resolution and precision make them a favourable choice for genetic toxicological assessments. The integration of PNAs in contemporary analytical workflows heralds a promising evolution in genetic toxicology, potentially revolutionizing diagnostics, prognostics, and therapeutic avenues. In this timely review, we attempted to assess the limitations of current PNA-FISH methodology and recommend refinements.
Collapse
Affiliation(s)
- Gavin Yong Quan Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Esposito P, Picciotto D, Verzola D, Garibotto G, Parodi EL, Sofia A, Costigliolo F, Gaggero G, Zanetti V, Saio M, Viazzi F. SA-β-Gal in Kidney Tubules as a Predictor of Renal Outcome in Patients with Chronic Kidney Disease. J Clin Med 2024; 13:322. [PMID: 38256456 PMCID: PMC10815985 DOI: 10.3390/jcm13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Cellular senescence has emerged as an important driver of aging and age-related disease in the kidney. The activity of β-galactosidase at pH 6 (SA-β-Gal) is a classic maker of senescence in cellular biology; however, the predictive role of kidney tissue SA-β-Gal on eGFR loss in chronic kidney disease (CKD) is still not understood. We retrospectively studied the expression of SA-β-Gal in kidney biopsies obtained in a cohort [n = 22] of incident patients who were followed up for 3 years as standard of care. SA-β-Gal staining was approximately fourfold higher in the tubular compartment of patients with CKD vs. controls [26.0 ± 9 vs. 7.4 ± 6% positive tubuli in patients vs. controls; p < 0.025]. Tubular expressions of SA-β-Gal, but not proteinuria, at the time of biopsy correlated with eGFR loss at the follow up; moreover, SA-β-Gal expression in more than 30% of kidney tubules was associated with fast progressive kidney disease. In conclusion, our study shows that SA-β-Gal is upregulated in the kidney tubular compartment of adult patients affected by CKD and suggests that tubular SA-β-Gal is associated with accelerated loss of renal function.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Daniela Picciotto
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Emanuele Luigi Parodi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
| | - Antonella Sofia
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Francesca Costigliolo
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Gabriele Gaggero
- UO Anatomia Patologica, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy;
| | - Valentina Zanetti
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Michela Saio
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (V.Z.); (F.V.)
- Division of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, 16142 Genova, Italy; (D.P.); (A.S.); (F.C.); (M.S.)
| |
Collapse
|
9
|
Qi M, Yu J, Ping F, Xu L, Li W, Zhang H, Li Y. Tumor necrosis factor-alpha mediates the negative association between telomere length and kidney dysfunction. Int J Med Sci 2023; 20:1592-1599. [PMID: 37859695 PMCID: PMC10583187 DOI: 10.7150/ijms.87254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
Aim/hypothesis: The relationship between peripheral blood leukocyte telomere length (LTL) and kidney dysfunction, especially in people with hypertension, remains unclear. No clinical study has explored the role of inflammation and oxidative stress in the relationship between LTL and kidney dysfunction. Therefore, we examined the relationship between baseline LTL and albuminuria progression and/or rapid renal function decline in Chinese patients with or without hypertension and investigated whether inflammation and oxidative stress played a mediating role in this relationship. Methods: We conducted a prospective study including 262 patients in a 7-year follow-up period from 2014 to 2021. Data on LTL, inflammation, oxidative markers, renal function, and urine protein levels were assessed. Kidney dysfunction was defined as either albuminuria progression, rapid decline in renal function, or the composite endpoint (albuminuria progression and rapid decline in renal function). Logistic regression and simple mediation models were used for the analysis. Results: In this cohort (mean age, 54.3±9.7 years; follow-up period, 5.9±1.1 years), 42(16.0%), 21(8.0%), and 59(22.5%) patients developed albuminuria progression, rapid eGFR decline, and the composite endpoint of kidney dysfunction, respectively. Logistic regression analysis showed that each standard deviation decrease of baseline LTL and the lower quartile (Q) of baseline LTL were significantly correlated with an increased risk of rapid decline in renal function (OR=1.83 [95% CI 1.07, 3.27] per 1SD, P=0.03; OR=7.57 [95% CI 1.25, 145.88] for Q1 vs. Q4, P for trend=0.031); and the composite endpoint of kidney dysfunction (OR=1.37 [95% CI 0.97, 1.96] per 1SD, borderline positive P=0.072; OR=2.96[95% CI 1.15, 8.2] for Q1 vs. Q4, P for trend=0.036). The mediating analysis showed that tumor necrosis factor (TNF)-a partly mediated the relationship between LTL and rapid decline in renal function (direct effect: β=0.046 95%CI [0.006, 0.090],P=0.02; indirect effect: β=0.013 95%CI [0.003, 0.020]), and the mediating proportion was 22.4%.In subgroup analyses, LTL was inversely associated with rapid decline in renal function or the composite endpoint of kidney dysfunction only in patients with hypertension (OR=49.07[3.72,211.12] vs.1.32[0.69,2.58] per 1SD, P for interaction=0.045;OR=3.10 [1.48, 7.52] vs.1.08[0.92,1.63] per 1SD, P for interaction=0.036). Conclusion: Baseline LTL could independently predict kidney dysfunction at follow-up, especially in participants with hypertension. TNF-a partially mediated the negative association between LTL and kidney dysfunction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuxiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Hill C, Duffy S, Kettyle LM, McGlynn L, Sandholm N, Salem RM, Thompson A, Swan EJ, Kilner J, Rossing P, Shiels PG, Lajer M, Groop PH, Maxwell AP, McKnight AJ. Differential Methylation of Telomere-Related Genes Is Associated with Kidney Disease in Individuals with Type 1 Diabetes. Genes (Basel) 2023; 14:genes14051029. [PMID: 37239390 DOI: 10.3390/genes14051029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) represents a major global health problem. Accelerated ageing is a key feature of DKD and, therefore, characteristics of accelerated ageing may provide useful biomarkers or therapeutic targets. Harnessing multi-omics, features affecting telomere biology and any associated methylome dysregulation in DKD were explored. Genotype data for nuclear genome polymorphisms in telomere-related genes were extracted from genome-wide case-control association data (n = 823 DKD/903 controls; n = 247 end-stage kidney disease (ESKD)/1479 controls). Telomere length was established using quantitative polymerase chain reaction. Quantitative methylation values for 1091 CpG sites in telomere-related genes were extracted from epigenome-wide case-control association data (n = 150 DKD/100 controls). Telomere length was significantly shorter in older age groups (p = 7.6 × 10-6). Telomere length was also significantly reduced (p = 6.6 × 10-5) in DKD versus control individuals, with significance remaining after covariate adjustment (p = 0.028). DKD and ESKD were nominally associated with telomere-related genetic variation, with Mendelian randomisation highlighting no significant association between genetically predicted telomere length and kidney disease. A total of 496 CpG sites in 212 genes reached epigenome-wide significance (p ≤ 10-8) for DKD association, and 412 CpG sites in 193 genes for ESKD. Functional prediction revealed differentially methylated genes were enriched for Wnt signalling involvement. Harnessing previously published RNA-sequencing datasets, potential targets where epigenetic dysregulation may result in altered gene expression were revealed, useful as potential diagnostic and therapeutic targets for intervention.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Laura M Kettyle
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast BT9 7AE, UK
| | - Liane McGlynn
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Rany M Salem
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Thompson
- School of Medicine, The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elizabeth J Swan
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Jill Kilner
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| | - Peter Rossing
- Nordsjaellands Hospital, Hilleroed, Denmark and Health, Aarhus University, 8000 Aarhus, Denmark
- Steno Diabetes Center, 2730 Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Paul G Shiels
- School of Molecular Biosciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Maria Lajer
- Steno Diabetes Center, 2730 Gentofte, Denmark
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Division of Nephrology, Department of Medicine, Helsinki University Central Hospital, 00290 Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen's University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
11
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
12
|
Telomere Attrition in Chronic Kidney Diseases. Antioxidants (Basel) 2023; 12:antiox12030579. [PMID: 36978826 PMCID: PMC10045531 DOI: 10.3390/antiox12030579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Telomeres are dynamic DNA nucleoprotein structures located at the end of chromosomes where they maintain genomic stability. Due to the end replication problem, telomeres shorten with each cell division. Critically short telomeres trigger cellular senescence, which contributes to various degenerative and age-related diseases, including chronic kidney diseases (CKDs). Additionally, other factors such as oxidative stress may also contribute to accelerated telomere shortening. Indeed, telomeres are highly susceptible to oxidative damage due to their high guanine content. Here, we provide a comprehensive review of studies examining telomere length (TL) in CKDs to highlight the association between TL and the development and progression of CKDs in humans. We then focus on studies investigating TL in patients receiving kidney replacement therapy. The mechanisms of the relationship between TL and CKD are not fully understood, but a shorter TL has been associated with decreased kidney function and the progression of nephropathy. Interestingly, telomere lengthening has been observed in some patients in longitudinal studies. Hemodialysis has been shown to accelerate telomere erosion, whereas the uremic milieu is not reversed even in kidney transplantation patients. Overall, this review aims to provide insights into the biological significance of telomere attrition in the pathophysiology of kidney disease, which may contribute to the development of new strategies for the management of patients with CKDs.
Collapse
|
13
|
Akinnibosun OA, Maier MC, Eales J, Tomaszewski M, Charchar FJ. Telomere therapy for chronic kidney disease. Epigenomics 2022; 14:1039-1054. [PMID: 36177720 DOI: 10.2217/epi-2022-0073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect almost 10% of individuals worldwide and is one of the leading causes of morbidity and mortality. Renal fibrosis, a central pathway in CKD progression (irrespective of etiology), is associated with shortened or dysfunctional telomeres in animal studies. Telomeres are specialized nucleoprotein structures located at the chromosome end that maintain genomic integrity. The mechanisms of associations between telomere length and CKD have not yet been fully elucidated, however, CKD patients with shorter telomere length may have decreased renal function and a higher mortality rate. A plethora of ongoing research has focused on possible therapeutic applications of telomeres with the overall goal to preserve telomere length as a therapy to treat CKD.
Collapse
Affiliation(s)
| | - Michelle C Maier
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia
| | - James Eales
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK.,Manchester Heart Centre and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Victoria, Australia.,Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Telomere Lengths and Serum Proteasome Concentrations in Patients with Type 1 Diabetes and Different Severities of Diabetic Retinopathy in Latvia and Lithuania. J Clin Med 2022; 11:jcm11102768. [PMID: 35628895 PMCID: PMC9146024 DOI: 10.3390/jcm11102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of the study was to compare telomere lengths and circulating proteasome concentrations in patients with different stages of diabetic retinopathy and type 1 diabetes in Latvia and Lithuania. Methods. Patients with no diabetic retinopathy and with non-proliferative diabetic retinopathy were included in the NDR/NPDR group (n = 187). Patients with proliferative diabetic retinopathy and status post laser-photocoagulation were included int the PDR/LPC group (n = 119). Telomeres were evaluated by real-time quantitative polymerase chain reaction. Proteasome concentration was measured by ELISA. Results. Telomeres were longer in PDR/LPC (ΔCT 0.21 (0.12−0.28)) vs. NDR/NPDR (ΔCT 0.18 (0.1−0.28)), p = 0.036. In NDR/NPDR, telomeres were correlated negatively with age (R = −0.17, p = 0.019), BMI (R = −0.21, p = 0.004), waist/hip ratio (R = −0.21, p = 0.005), total cholesterol (R = −0.18, p = 0.021), and low-density cholesterol (R = −0.20, p = 0.010), and positively with estimated glomerular filtration rate (eGFR) (R = 0.28, p < 0.001). None of the above correlations were observed in PRD/LPC. Proteasome concentrations were lower in PDR/LPC (130 (90−210) ng/mL) vs. NDR/NPDR (150 (100−240) ng/mL), p = 0.024. This correlated negatively with eGFR (R = −0.17, p = 0.025) in the NDR/NPDR group and positively with age (R = 0.23, p = 0.014) and systolic blood pressure (R = 0.20, p = 0.032) in the PRD/LPC group. Telomere lengths did not correlate with proteasome concentrations. Conclusion. Longer telomeres and lower circulating proteasome concentrations are observed in patients with type 1 diabetes and advanced diabetic retinopathy.
Collapse
|
15
|
Cheng F, Luk AO, Wu H, Tam CHT, Lim CKP, Fan B, Jiang G, Carroll L, Yang A, Lau ESH, Ng ACW, Lee HM, Chow E, Kong APS, Keech AC, Joglekar MV, So WY, Hardikar AA, Chan JCN, Jenkins AJ, Ma RCW. Relative leucocyte telomere length is associated with incident end-stage kidney disease and rapid decline of kidney function in type 2 diabetes: analysis from the Hong Kong Diabetes Register. Diabetologia 2022; 65:375-386. [PMID: 34807303 PMCID: PMC8741666 DOI: 10.1007/s00125-021-05613-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/07/2021] [Indexed: 11/09/2022]
Abstract
AIMS/HYPOTHESIS Few large-scale prospective studies have investigated associations between relative leucocyte telomere length (rLTL) and kidney dysfunction in individuals with type 2 diabetes. We examined relationships between rLTL and incident end-stage kidney disease (ESKD) and the slope of eGFR decline in Chinese individuals with type 2 diabetes. METHODS We studied 4085 Chinese individuals with type 2 diabetes observed between 1995 and 2007 in the Hong Kong Diabetes Register with stored baseline DNA and available follow-up data. rLTL was measured using quantitative PCR. ESKD was diagnosed based on the ICD-9 code and eGFR. RESULTS In this cohort (mean ± SD age 54.3 ± 12.6 years) followed up for 14.1 ± 5.3 years, 564 individuals developed incident ESKD and had shorter rLTL at baseline (4.2 ± 1.2 vs 4.7 ± 1.2, p < 0.001) than the non-progressors (n = 3521). On Cox regression analysis, each ∆∆Ct decrease in rLTL was associated with an increased risk of incident ESKD (HR 1.21 [95% CI 1.13, 1.30], p < 0.001); the association remained significant after adjusting for baseline age, sex, HbA1c, lipids, renal function and other risk factors (HR 1.11 [95% CI 1.03, 1.19], p = 0.007). Shorter rLTL at baseline was associated with rapid decline in eGFR (>4% per year) during follow-up (unadjusted OR 1.22 [95% CI 1.15, 1.30], p < 0.001; adjusted OR 1.09 [95% CI 1.01, 1.17], p = 0.024). CONCLUSIONS/INTERPRETATION rLTL is independently associated with incident ESKD and rapid eGFR loss in individuals with type 2 diabetes. Telomere length may be a useful biomarker for the progression of kidney function and ESKD in type 2 diabetes.
Collapse
Affiliation(s)
- Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Andrea O Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Hongjiang Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Claudia H T Tam
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Cadmon K P Lim
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Guozhi Jiang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Luke Carroll
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Eric S H Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Alex C W Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Heung Man Lee
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Anthony C Keech
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Wing Yee So
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Prince of Wales Hospital, Hong Kong, SAR, China
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China.
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, SAR, China.
- NHMRC Clinical Trial Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- The Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, Prince of Wales Hospital, Hong Kong, SAR, China.
| |
Collapse
|
16
|
Gurung RL, Dorajoo R, M Y, Wang L, Liu S, Liu JJ, Shao YM, Chen Y, Sim X, Ang K, Subramaniam T, Tang WE, Sum CF, Liu JJ, Lim SC. Association of leukocyte telomere length with chronic kidney disease in East Asians with type 2 diabetes: a Mendelian randomization study. Clin Kidney J 2021; 14:2371-2376. [PMID: 34754432 PMCID: PMC8573005 DOI: 10.1093/ckj/sfab067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic kidney disease (CKD) is common among people with type 2 diabetes (T2D), and increases the risk of kidney failure and cardiovascular diseases. Shorter leukocyte telomere length (LTL) is associated with CKD in patients with T2D. We previously reported single-nucleotide polymorphisms (SNPs) associated with LTL in an Asian population. In this study, we elucidated the association of these SNPs with CKD in patients with T2D using the Mendelian randomization (MR) approach. Methods The cross-sectional association of 16 LTL SNPs with CKD, defined as an estimated glomerular filtration rate of <60 mL/min/1.73 m2, was assessed among 4768 (1628 cases and 3140 controls) participants in the Singapore Study of Macro-angiopathy and Micro-vascular Reactivity in T2D and Diabetic Nephropathy cohorts. MR analysis was performed using the random-effect inverse-variance weighted (IVW) method, the weighted median, MR-Egger and Radial MR adjusted for age and sex-stratified by cohorts and ethnicity (Chinese and Malays), then meta-analyzed. Results Genetically determined shorter LTL was associated with increased risk of CKD in patients with T2D (meta-IVW adjusted odds ratio = 1.51, 95% confidence interval 1.12–2.12, P = 0.007, Phet = 0.547). Similar results were obtained following sensitivity analysis. MR-Egger analysis (intercept) suggested no evidence of horizontal pleiotropy (β = 0.010, P = 0.751). Conclusions Our findings suggest that genetically determined LTL is associated with CKD in patients with T2D. Further studies are warranted to elucidate the causal role of telomere length in CKD progression.
Collapse
Affiliation(s)
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yi Ming Shao
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Yuqing Chen
- Saw Swee Hock School of Public Health, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | - Chee Fang Sum
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Jian-Jun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| |
Collapse
|
17
|
Chang X, Gurung RL, Wang L, Jin A, Li Z, Wang R, Beckman KB, Adams-Haduch J, Meah WY, Sim KS, Lim WK, Davila S, Tan P, Teo JX, Yeo KK, M Y, Liu S, Lim SC, Liu J, van Dam RM, Friedlander Y, Koh WP, Yuan JM, Khor CC, Heng CK, Dorajoo R. Low frequency variants associated with leukocyte telomere length in the Singapore Chinese population. Commun Biol 2021; 4:519. [PMID: 33941849 PMCID: PMC8093266 DOI: 10.1038/s42003-021-02056-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/26/2021] [Indexed: 02/02/2023] Open
Abstract
The role of low frequency variants associated with telomere length homeostasis in chronic diseases and mortalities is relatively understudied in the East-Asian population. Here we evaluated low frequency variants, including 1,915,154 Asian specific variants, for leukocyte telomere length (LTL) associations among 25,533 Singapore Chinese samples. Three East Asian specific variants in/near POT1, TERF1 and STN1 genes are associated with LTL (Meta-analysis P 2.49×10-14-6.94×10-10). Rs79314063, a missense variant (p.Asp410His) at POT1, shows effect 5.3 fold higher and independent of a previous common index SNP. TERF1 (rs79617270) and STN1 (rs139620151) are linked to LTL-associated common index SNPs at these loci. Rs79617270 is associated with cancer mortality [HR95%CI = 1.544 (1.173, 2.032), PAdj = 0.018] and 4.76% of the association between the rs79617270 and colon cancer is mediated through LTL. Overall, genetically determined LTL is particularly associated with lung adenocarcinoma [HR95%CI = 1.123 (1.051, 1.201), Padj = 0.007]. Ethnicity-specific low frequency variants may affect LTL homeostasis and associate with certain cancers.
Collapse
Affiliation(s)
- Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Aizhen Jin
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wee Yang Meah
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kar Seng Sim
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore, Singapore
| | - Sonia Davila
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
| | - Khung Keong Yeo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore
- Department of Cardiology, National Heart Centre Singapore, Singapore, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore.
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore, Singapore.
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Deo P, Dhillon VS, Lim WM, Jaunay EL, Donnellan L, Peake B, McCullough C, Fenech M. Advanced glycation end-products accelerate telomere attrition and increase pro-inflammatory mediators in human WIL2-NS cells. Mutagenesis 2021; 35:291-297. [PMID: 32319517 DOI: 10.1093/mutage/geaa012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5-40 mM) or AGE-BSA (200-600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Wai Mun Lim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Emma L Jaunay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Leigh Donnellan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Brock Peake
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Caitlin McCullough
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
19
|
Cheng F, Carroll L, Joglekar MV, Januszewski AS, Wong KK, Hardikar AA, Jenkins AJ, Ma RCW. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol 2021; 9:117-126. [PMID: 33248477 DOI: 10.1016/s2213-8587(20)30365-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Telomeres are regions of repetitive nucleotide sequences at the ends of chromosomes. Telomere length is a marker of DNA damage, which is often considered a biomarker for biological ageing, and has also been linked with cardiovascular disease, diabetes, and cancer. Emerging studies have highlighted the role of genetic and environmental factors, and explored the effect of modulating telomere length. We provide an overview of studies to date on diabetes and telomere length, and compare different methods and assays for evaluating telomere length and telomerase activity. We highlight the limitations of current studies and areas that warrant further research to unravel the link between diabetes and telomere length. The value of adding telomere length to clinical risk factors to improve risk prediction of diabetes and related complications also merits further investigation.
Collapse
Affiliation(s)
- Feifei Cheng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Luke Carroll
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia
| | - Mugdha V Joglekar
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Kwun Kiu Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anandwardhan A Hardikar
- NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
| | - Alicia J Jenkins
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Laboratory for Molecular Epidemiology in Diabetes, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Chinese University of Hong Kong-Shanghai Jiao Tong University Joint Research Centre in Diabetes Genomics and Precision Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; NHMRC Clinical Trial Centre, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
20
|
Wang Y, Wang Y, Yang M, Ma X. Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 2021; 135:111191. [PMID: 33418306 DOI: 10.1016/j.biopha.2020.111191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing major public health problem worldwide. And CKD shares numerous phenotypic similarities with kidney as well as systemic ageing. Cellular senescence is mainly characterized by a stable cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Herein, the regulations and the internal mechanisms of cellular senescence will be discussed. Meanwhile, efforts are made to give a comprehensive overview of the recent advances of the implication of cellular senescence in CKD. To date, numerous studies have focused on the effects of ageing risk factors in kidney and thereby trying to interrupt the kidney ageing processes with senolytics. Interestingly, some of them showed enormous clinical application potentials. Therefore, senotherapeutics can be applied as novel potential strategies for the treatment of CKD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ming Yang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
21
|
Gurung RL, M Y, Moh AMC, Dorajoo R, Liu S, Liu JJ, Shabbir A, So JBY, Tan CH, Cheng AKS, Lim SC. Correlation of Telomere Length in Adipose Tissue and Leukocytes and its Association with Postsurgical Weight Loss. Obesity (Silver Spring) 2020; 28:2424-2430. [PMID: 33230966 DOI: 10.1002/oby.23017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The aim of this study was to determine the relationship between telomere length (TL) in subcutaneous adipose tissue (SAT), visceral adipose tissues (VAT), and leukocytes, as well as to examine the associations of TL in these tissues with postsurgical weight loss in Asians with severe obesity. METHODS Presurgery TL was measured in leukocytes, SAT, and VAT of 91 patients who underwent weight loss surgery. Correlation between TL in multiple tissues was assessed using Pearson correlation. The association of presurgery TL and postsurgical weight loss at 6 or 12 months, expressed as a percentage of weight loss, was determined using linear regression in 70 patients. RESULTS Telomeres were longer in VAT compared with those in leukocytes and SAT (P < 0.001) but were highly correlated between tissues. The strongest correlation was observed between TL in VAT and leukocytes (r = 0.739, P = 6.22 × 10-17 ). Compared with individuals in the highest tertile, those in the lowest tertile of VAT TL showed greater weight loss (β = 6.23, SE = 3.10, P = 0.044) independent of age, sex, ethnicity, types of surgery, diabetes condition, preoperative BMI, and follow-up period. CONCLUSIONS Among patients with severe obesity, TL in leukocytes and adipose tissue was highly correlated. However, there was variability in the association of TL in these tissues with weight loss after surgery.
Collapse
Affiliation(s)
- Resham L Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Yishun, Singapore
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Yishun, Singapore
| | | | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Yishun, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Yishun, Singapore
| | - Asim Shabbir
- Department of General Surgery, National University Hospital, Singapore
| | - Jimmy Bok Yan So
- Department of General Surgery, National University Hospital, Singapore
| | - Chun Hai Tan
- Department of General Surgery, Khoo Teck Puat Hospital, Yishun, Singapore
| | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Yishun, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore
- Saw Swee Hock School of Public Heath, Singapore
| |
Collapse
|
22
|
Dorajoo R, Chang X, Gurung RL, Li Z, Wang L, Wang R, Beckman KB, Adams-Haduch J, M Y, Liu S, Meah WY, Sim KS, Lim SC, Friedlander Y, Liu J, van Dam RM, Yuan JM, Koh WP, Khor CC, Heng CK. Loci for human leukocyte telomere length in the Singaporean Chinese population and trans-ethnic genetic studies. Nat Commun 2019; 10:2491. [PMID: 31171785 PMCID: PMC6554354 DOI: 10.1038/s41467-019-10443-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
Genetic factors underlying leukocyte telomere length (LTL) may provide insights into telomere homeostasis, with direct links to disease susceptibility. Genetic evaluation of 23,096 Singaporean Chinese samples identifies 10 genome-wide loci (P < 5 × 10-8). Several of these contain candidate genes (TINF2, PARP1, TERF1, ATM and POT1) with potential roles in telomere biology and DNA repair mechanisms. Meta-analyses with additional 37,505 European individuals reveals six more genome-wide loci, including associations at MPHOSPH6, NKX2-3 and TYMS. We demonstrate that longer LTL associates with protection against respiratory disease mortality [HR = 0.854(0.804-0.906), P = 1.88 × 10-7] in the Singaporean Chinese samples. We further show that the LTL reducing SNP rs7253490 associates with respiratory infections (P = 7.44 × 10-4) although this effect may not be strongly mediated through LTL. Our data expands on the genetic basis of LTL and may indicate on a potential role of LTL in immune competence.
Collapse
Affiliation(s)
- Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Xuling Chang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore
| | - Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Zheng Li
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Ling Wang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
| | - Wee Yang Meah
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Kar Seng Sim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore, 768828, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, 12272, Israel
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
- Health Systems and Services Research, Duke-NUS Medical School Singapore, Singapore, 169857, Singapore
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore.
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, 169856, Singapore.
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
- Khoo Teck Puat - National University Children's Medical Institute, National University Health System, Singapore, 119074, Singapore.
| |
Collapse
|
23
|
Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ, Maxwell AP. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces for the Heritability Puzzle. Front Genet 2019; 10:453. [PMID: 31214239 PMCID: PMC6554557 DOI: 10.3389/fgene.2019.00453] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is a major global health problem with an increasing prevalence partly driven by aging population structure. Both genomic and environmental factors contribute to this complex heterogeneous disease. CKD heritability is estimated to be high (30-75%). Genome-wide association studies (GWAS) and GWAS meta-analyses have identified several genetic loci associated with CKD, including variants in UMOD, SHROOM3, solute carriers, and E3 ubiquitin ligases. However, these genetic markers do not account for all the susceptibility to CKD, and the causal pathways remain incompletely understood; other factors must be contributing to the missing heritability. Less investigated biological factors such as telomere length; mitochondrial proteins, encoded by nuclear genes or specific mitochondrial DNA (mtDNA) encoded genes; structural variants, such as copy number variants (CNVs), insertions, deletions, inversions and translocations are poorly covered and may explain some of the missing heritability. The sex chromosomes, often excluded from GWAS studies, may also help explain gender imbalances in CKD. In this review, we outline recent findings on molecular biomarkers for CKD (telomeres, CNVs, mtDNA variants, sex chromosomes) that typically have received less attention than gene polymorphisms. Shorter telomere length has been associated with renal dysfunction and CKD progression, however, most publications report small numbers of subjects with conflicting findings. CNVs have been linked to congenital anomalies of the kidney and urinary tract, posterior urethral valves, nephronophthisis and immunoglobulin A nephropathy. Information on mtDNA biomarkers for CKD comes primarily from case reports, therefore the data are scarce and diverse. The most consistent finding is the A3243G mutation in the MT-TL1 gene, mainly associated with focal segmental glomerulosclerosis. Only one GWAS has found associations between X-chromosome and renal function (rs12845465 and rs5987107). No loci in the Y-chromosome have reached genome-wide significance. In conclusion, despite the efforts to find the genetic basis of CKD, it remains challenging to explain all of the heritability with currently available methods and datasets. Although additional biomarkers have been investigated in less common suspects such as telomeres, CNVs, mtDNA and sex chromosomes, hidden heritability in CKD remains elusive, and more comprehensive approaches, particularly through the integration of multiple -"omics" data, are needed.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Kerry Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Ryan Skelly
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Laura Jane Smyth
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
| | - Alexander Peter Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Queen’s University of Belfast, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital, Belfast, United Kingdom
| |
Collapse
|
24
|
Cao D, Zhao M, Wan C, Zhang Q, Tang T, Liu J, Shao Q, Yang B, He J, Jiang C. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR-126/Akt-p53-p21 pathways. Int Urol Nephrol 2019; 51:1071-1078. [PMID: 31089945 DOI: 10.1007/s11255-019-02165-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/30/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects and possible mechanism of tea polyphenols (TPs) on the senescence of human glomerular mesangial cells (HGMCs) under high glucose conditions. METHODS HGMCs were divided into the normal group (NG, 5.5 mmol/L glucose), mannitol group (MNT, 5.5 mmol/L glucose and 24.5 mmol/L mannitol), TP group (TP, 30 mmol/L glucose and 5 μg/mL TP) and high-dose D-glucose group (HG, 30 mmol/L glucose). The effects of TP on the cell morphology of HGMCs; the percentage of cells positive for senescence-associated β-galactosidase (SA-β-gal); the ratio of G1 phase of cell cycle; telomere length; and the expression of p-Akt, p53, p21 and Rb proteins of the Akt-p53-p21 signaling pathway and the expression miR-126 were examined. RESULTS High glucose led to premature senescence of HGMCs, as evident from the increase in the percentage of SA-β-gal-positive cells, decrease in telomere length, cell cycle arrest at G1 phase,decrease in the expression of miR-126 and p-Akt and increase in the expression of p53, p21 and Rb proteins in the HG group. In contrast, in the TP group, these effects of high glucose treatment were abrogated and this indicates that TP had a protective effect on HGMCs. CONCLUSIONS High glucose induces the senescence of HGMCs in vitro via the miR-126 and Akt-p53-p21 signaling pathways. TP can delay the high glucose-induced senescence of HGMCs by regulating the activity of these signaling pathways. Thus, the polyphenols present in tea may have potential for the treatment of diabetic nephropathies associated with premature senescence.
Collapse
Affiliation(s)
- Dongwei Cao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.,Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Cheng Wan
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tianfeng Tang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jing Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bo Yang
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinsong He
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
25
|
Zeng JB, Liu HB, Ping F, Li W, Li YX. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J Diabetes Complications 2019; 33:363-367. [PMID: 30857946 DOI: 10.1016/j.jdiacomp.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Many studies demonstrated a close relationship between type 2 diabetes mellitus (T2DM) and leukocyte telomere length (LTL). However, how the LTL changes in T2DM and what are the potential causal factors in it, particularly in patients during a long period treatment, have not been studied. Here we performed a longitudinal observation of LTL in trained T2DM patients during a 6-year follow-up and evaluated the possible risk factors that were associated with LTL alteration. METHODS Seventy-six patients with T2DM were enrolled in this 6-year longitudinal study. The enrolled patients had no severe complication and had never received insulin therapy by the time. Patients were scheduled to visit once every one or two months and their medication changes were recorded. The LTL at the time when patients were enrolled was used as baseline, which was compared with the LTL at 6 year. Multivariable linear regression and exact logistic regression model were adopted to identify independent predictors of telomere length change and telomere length shortening, respectively. RESULTS Sixty-four patients were successfully followed up. Although mean LTL decreased after 6 years, 30% (19/64) of patients demonstrated LTL lengthening and 70% (45/64) of patients demonstrated LTL shortening. Among them, 18 Patients received insulin treatment during the 6 years. Of these 18 patients, 16 patients showed decreased LTL and only two showed increased LTL. Linear regression analysis demonstrated that change in telomere length during the 6 years was associated inversely with insulin use (β-coefficients: -0.587, 95% CI: -0.198, -0.085, P < 0.001). Exact logistic regression analysis showed insulin use (OR: 17.355, 95% CI: 2.659, 35.627, P = 0.013) and LDL-C(OR: 3.493, 95% CI: 1.559, 10.063, P = 0.007)were independent predicts of telomere length shortening. CONCLUSIONS LTL may increase as well as decrease in T2DM who received antidiabetic treatment. Insulin use may accelerate telomere attrition. Insulin use and LDL-C can predict telomere shortening.
Collapse
Affiliation(s)
- Jing-Bo Zeng
- Department of Endocrinology, Fuxing Hospital, the Eighth Clinical Medical College, Capital Medical University, Beijing, China
| | - Hai-Bin Liu
- Department of Basic Physiology, The Health School Affiliated to Capital Medical University, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Wei Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Yu-Xiu Li
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
26
|
Gurung RL, M Y, Liu S, Liu JJ, Chan SM, Moh MC, Ang K, Tang WE, Sum CF, Tavintharan S, Lim SC. Ethnic disparities in relationships of obesity indices with telomere length in Asians with type 2 diabetes. J Diabetes 2019; 11:386-393. [PMID: 30281200 DOI: 10.1111/1753-0407.12864] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity and shorter telomeres increase the risk for diabetes complications and mortality. However, the relationship between obesity and telomere length in diverse Asian populations with type 2 diabetes (T2D) is not well understood. This study examined the association of baseline and changes in obesity indices with telomere length in multiethnic Asian populations with T2D. METHODS Leukocyte telomere length (LTL) was measured by quantitative polymerase chain reaction in the SMART2D cohort (n = 1431 at baseline, n = 1039 after 3.2 years median follow-up). Associations between obesity indices and LTL were assessed by linear regression. RESULTS Compared with Chinese, LTL was longer in Malays (P < 0.0001) and similar in Indians. Cross-sectionally, body mass index (BMI)-adjusted (residual) visceral fat area (VFA; β = -0.004, P = 0.006), and waist-to-hip ratio (β = -1.95, P = 0.030) were significantly associated with LTL in Chinese but not in Malays and Indians. Changes in BMI (r = -0.080; P = 0.053) and VFA (r = -0.126; P = 0.002) were inversely correlated with changes in LTL only in Chinese. Furthermore, in Chinese, 1-SD incremental changes in BMI (β = -0.070; P = 0.040) and VFA (β = -0.088, P = 0.028) were significantly associated with larger telomere attrition, independent of age, sex, diabetes condition, baseline LTL, obesity, and inflammation markers. CONCLUSIONS Three-year changes in BMI and VFA were associated with telomere dynamics in Chinese but not in Malays and Indians with T2D. Reducing obesity may reduce the risk of diabetes complications associated with shorter LTL in the Chinese population.
Collapse
Affiliation(s)
| | - Yiamunaa M
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Si Min Chan
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Mei Chung Moh
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Keven Ang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | | | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
- Diabetes Centre, Khoo Teck Puat Hospital, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
27
|
Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci 2018; 8:brainsci8100188. [PMID: 30340343 PMCID: PMC6210638 DOI: 10.3390/brainsci8100188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is a severe, chronic mental disorder characterized by delusions and hallucinations. Several evidences support the link of schizophrenia with accelerated telomeres shortening and accelerated aging. Thus, schizophrenia patients show higher mortality compared to age-matched healthy donors. The etiology of schizophrenia is multifactorial, involving genetic and environmental factors. Telomere erosion has been shown to be accelerated by different factors including environmental factors such as cigarette smoking and chronic alcohol consumption or by psychosocial stress such as childhood maltreatment. In humans, telomere studies have mainly relied on measurements of leukocyte telomere length and it is generally accepted that individuals with short leukocyte telomere length are considered biologically older than those with longer ones. A dysregulation of both innate and adaptive immune systems has been described in schizophrenia patients and other mental diseases supporting the contribution of the immune system to disease symptoms. Thus, it has been suggested that abnormal immune activation with high pro-inflammatory cytokine production in response to still undefined environmental agents such as herpesviruses infections can be involved in the pathogenesis and pathophysiology of schizophrenia. It has been proposed that chronic inflammation and oxidative stress are involved in the course of schizophrenia illness, early onset of cardiovascular disease, accelerated aging, and premature mortality in schizophrenia. Prenatal or neonatal exposures to neurotropic pathogens such as Cytomegalovirus or Toxoplasma gondii have been proposed as environmental risk factors for schizophrenia in individuals with a risk genetic background. Thus, pro-inflammatory cytokines and microglia activation, together with genetic vulnerability, are considered etiological factors for schizophrenia, and support that inflammation status is involved in the course of illness in schizophrenia.
Collapse
Affiliation(s)
- Corona Solana
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Diana Pereira
- Centro Hospitalar Psiquiatrico de Lisboa, 1700-063 Lisboa, Portugal.
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Caceres, Spain.
| |
Collapse
|
28
|
Piplani S, Alemao NN, Prabhu M, Ambar S, Chugh Y, Chugh SK. Correlation of the telomere length with type 2 diabetes mellitus in patients with ischemic heart disease. Indian Heart J 2018; 70 Suppl 3:S173-S176. [PMID: 30595252 PMCID: PMC6310747 DOI: 10.1016/j.ihj.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022] Open
Abstract
Objective The study aimed to explore the relationship of the telomere length with type 2 diabetes mellitus (DM) among patients with ischemic heart disease (IHD). Method This 2-year cross-sectional study included 130 male patients diagnosed with IHD through echocardiography and coronary angiography, wherein consecutive IHD patients with type 2 DM (65) and without type 2 DM (65) were selected. Baseline characteristics including age, gender, body mass index, and blood pressure were recorded. Laboratory investigations such as random blood sugar (RBS), fasting lipid profile, serum creatinine, and serum urea levels were measured. Quantitative real-time polymerase chain reaction was used for the measurement of the telomere length. The logistic regression analysis was used to predict the relationship of the telomere length with age and type 2 DM among patients with IHD. Results All the patients in the study were men, and most of them (diabetics = 22; nondiabetics = 20) were aged between 56 and 65 years. Age (p = 0.003), telomere length (p < 0.001), RBS (p < 0.001), serum creatinine (p < 0013), and serum urea (p < 0.04) were significantly higher in the diabetic subset than in the nondiabetic subset. No significant relationship was observed between age and the telomere length (p = 0.813); however, the mean telomere length was significantly high among the patients with type 2 DM than those without type 2 DM (p = 0.005). The logistic regression analysis showed that the telomere shortening (p = 0.00019) and RBS (p < 0.0001) were the significant risk factors for type 2 DM in patients with IHD. Conclusion The telomere shortening was significantly correlated with type 2 DM among the patients with IHD. However, multicentric studies with larger samples are required to validate the current observation.
Collapse
Affiliation(s)
- Shobhit Piplani
- Intern, K.L.E. University's Dr. Prabhakar Kore Hospital and Medical Research Center, Belagavi 590003, Karnataka, India.
| | - Nadezdha Niyarah Alemao
- Intern, K.L.E. University's Dr. Prabhakar Kore Hospital and Medical Research Center, Belagavi 590003, Karnataka, India.
| | - Madhav Prabhu
- Department of General Medicine, K.L.E. University's Dr. Prabhakar Kore Hospital and Medical Research Center, Belagavi 590003, Karnataka, India.
| | - Sameer Ambar
- Department of Cardiology, K.L.E. University's Dr. Prabhakar Kore Hospital and Medical Research Center, Belagavi 590003, Karnataka, India.
| | - Yashasvi Chugh
- Department of Cardiology, Mount Sinai St. Luke's and West Hospitals, New York, United States.
| | - Sanjay Kumar Chugh
- Department of Cardiology, Jaipur National University Institute of Medical Sciences and Research Center, Jaipur 303012, Rajasthan, India.
| |
Collapse
|