1
|
Higashi AY, Saito AC, Higashi T, Furuse K, Furuse M, Chiba H, Kazama JJ. Bicellular Localization of Tricellular Junctional Protein Angulin-3/ILDR2 Allows Detection of Podocyte Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:673-683. [PMID: 38311119 DOI: 10.1016/j.ajpath.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Podocytes serve as part of the renal filtration unit with slit diaphragms. Although the structure of slit diaphragms between two cells is well characterized, how the tricellular contact of podocytes is organized and how it changes in injured podocytes remains unknown. This study focused on a tricellular junction protein, angulin-3, and its localization in healthy podocytes, in developmental stages, and in pathologic conditions, using a newly established monoclonal antibody. Angulin-3 was confined at tricellular junctions of primordial podocytes, then transiently localized at bicellular junctions as foot process interdigitation developed and the intercellular junctions rearranged into slit diaphragm, and eventually distributed in a sparse punctate pattern on the foot processes of adult podocytes. In the rodent podocyte injury models, angulin-3 showed bicellular localization between the foot processes, and the localization turned from punctate to dashed linear pattern along the effaced foot processes with the progression of podocyte injury. Angulin-3 also accumulated between foot processes in a linear pattern in kidney biopsy samples of human nephrotic syndrome. Additionally, the line length of angulin-3 staining signal correlated with risk of relapse under glucocorticoid therapy in patients with minimal change nephrotic syndrome. This study proposes an image program to score the linearity of the accumulation pattern of angulin-3 to evaluate the relapse risk of patients with minimal change nephrotic syndrome.
Collapse
Affiliation(s)
- Atsuko Y Higashi
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Junichiro J Kazama
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
2
|
Endo A, Hirose T, Sato S, Ito H, Takahashi C, Ishikawa R, Kamada A, Oba-Yabana I, Kimura T, Takahashi K, Mori T. Sodium glucose cotransporter 2 inhibitor suppresses renal injury in rats with renal congestion. Hypertens Res 2024; 47:33-45. [PMID: 37749334 PMCID: PMC10766540 DOI: 10.1038/s41440-023-01437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Renal congestion is an issue of cardiorenal syndrome in patients with heart failure. Recent clinical and basic studies suggest a renoprotective potential of sodium-glucose cotransporter (SGLT) 2 inhibitors. However, the effect on renal congestion and its mechanism is not fully understood. Thus, we aimed to clarify the effect of SGLT inhibition in a renal congestion model. Renal congestion was induced in the left kidney of male Sprague-Dawley rats by ligation of the inferior vena cava between the renal veins. The SGLT2 inhibitor tofogliflozin or vehicle was orally administered daily from the day before IVC ligation until two days after surgery. On the third postoperative day, both the right control kidney and the left congested kidney were harvested and analyzed. Kidney weight and water content was increased, and renal injury and fibrosis were observed in the left congested kidney. Kidney weight gain and hydration were improved with tofogliflozin treatment. Additionally, this treatment effectively reduced renal injury and fibrosis, particularly in the renal cortex. SGLT2 expression was observed in the congested kidney, but suppressed in the damaged tubular cells. Molecules associated with inflammation were increased in the congested kidney and reversed by tofogliflozin treatment. Mitochondrial dysfunction provoked by renal congestion was also improved by tofogliflozin treatment. Tofogliflozin protects against renal damage induced by renal congestion. SGLT2 inhibitors could be a candidate strategy for renal impairment associated with heart failure.
Collapse
Affiliation(s)
- Akari Endo
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Shigemitsu Sato
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hiroki Ito
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chika Takahashi
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Risa Ishikawa
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ayaka Kamada
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ikuko Oba-Yabana
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoyoshi Kimura
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
- Division of Integrative Renal Replacement Therapy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| |
Collapse
|
3
|
Matsumoto A, Matsui I, Uchinomiya S, Katsuma Y, Yasuda S, Okushima H, Imai A, Yamamoto T, Ojida A, Inoue K, Isaka Y. Spatiotemporally quantitative in vivo imaging of mitochondrial fatty acid β-oxidation at cellular-level resolution in mice. Am J Physiol Endocrinol Metab 2023; 325:E552-E561. [PMID: 37729022 DOI: 10.1152/ajpendo.00147.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Mitochondrial fatty acid β-oxidation (FAO) plays a key role in energy homeostasis. Several FAO evaluation methods are currently available, but they are not necessarily suitable for capturing the dynamics of FAO in vivo at a cellular-level spatial resolution and seconds-level time resolution. FAOBlue is a coumarin-based probe that undergoes β-oxidation to produce a fluorescent substrate, 7-hydroxycoumarin-3-(N-(2-hydroxyethyl))-carboxamide (7-HC). After confirming that 7-HC could be specifically detected using multiphoton microscopy at excitation/emission wavelength = 820/415-485 nm, wild-type C57BL/6 mice were randomly divided into control, pemafibrate, fasting (24 or 72 h), and etomoxir groups. These mice received a single intravenous injection of FAOBlue. FAO activities in the liver of these mice were visualized using multiphoton microscopy at 4.2 s/frame. These approaches could visualize the difference in FAO activities between periportal and pericentral hepatocytes in the control, pemafibrate, and fasting groups. FAO velocity, which was expressed by the maximum slope of the fluorescence intensity curve, was accelerated in the pemafibrate and 72-h fasting groups both in the periportal and the pericentral hepatocytes in comparison with the control group. Our approach revealed differences in the FAO activation mode by the two stimuli, i.e., pemafibrate and fasting, with pemafibrate accelerating the time of first detection of FAO-derived fluorescence. No increase in the fluorescence was observed in etomoxir-pretreated mice, confirming that FAOBlue specifically detected FAO in vivo. Thus, FAOBlue is useful for visualizing in vivo liver FAO dynamics at the single-cell-level spatial resolution and seconds-level time resolution.NEW & NOTEWORTHY Fatty acid β-oxidation (FAO) plays a key role in energy homeostasis. Here, the authors established a strategy for visualizing FAO activity in vivo at the cellular-level spatial resolution and seconds-level time resolution in mice. Quantitative analysis revealed spatiotemporal heterogeneity in hepatic FAO dynamics. Our method is widely applicable because it is simple and uses a multiphoton microscope to observe the FAOBlue-injected mice.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Shohei Uchinomiya
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiichi Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Okushima
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akio Ojida
- Medical Chemistry and Chemical Biology, Department of Medicinal Sciences, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
4
|
Alherz FA, Elekhnawy E, Selim HM, El-Masry TA, El-Kadem AH, Hussein IA, Negm WA. Protective Role of Betulinic Acid against Cisplatin-Induced Nephrotoxicity and Its Antibacterial Potential toward Uropathogenic Bacteria. Pharmaceuticals (Basel) 2023; 16:1180. [PMID: 37631096 PMCID: PMC10458273 DOI: 10.3390/ph16081180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute kidney injury (AKI) is one of the major side effects of cisplatin, a remarkable anticancer agent. Therefore, there is a growing need to find an agent that could mitigate cisplatin-induced nephrotoxicity. Betulinic acid (BA) is a natural compound isolated from Silene succulenta Forssk for the first time, with miraculous biological activities and no reports of its effect on the nephrotoxicity induced by cisplatin. Mice received BA orally with doses of 30 and 50 mg/kg before the intraperitoneal injection of cisplatin. Betulinic acid was found to decrease serum levels of creatinine and tissue levels of NGAL and kidney injury molecule (KIM-1) and improve the histological changes in the kidney. In addition, BA decreased the oxidative stress marker malondialdehyde (MDA), increased superoxide dismutase (SOD) antioxidative activity and suppressed the intensity of IL-1B and NFкB immuno-staining. Interestingly, betulinic acid enhanced autophagy by increasing beclin 1, ATG5, and LC3II and decreasing p62 expressions. Thus, our findings suggest betulinic acid as a potential agent that may protect from acute kidney injury by targeting inflammation, oxidative stress, and autophagy processes. Novel drugs are needed to combat the spreading of multidrug resistance between pathogenic bacteria, especially uropathogenic isolates. So, we elucidated the antibacterial properties of BA on Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis, and Klebsiella pneumoniae. Betulinic acid had minimum inhibitory concentration values (128 to 512 µg/mL). In addition, it adversely affected the membrane integrity of the tested isolates. Accordingly, betulinic acid should be clinically investigated in the future for urinary tract diseases.
Collapse
Affiliation(s)
- Fatemah A Alherz
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hend Mostafa Selim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Aya H El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ismail A Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Yasuda S, Inoue K, Matsui I, Matsumoto A, Katsuma Y, Okushima H, Imai A, Sakaguchi Y, Kaimori JY, Yamamoto R, Mizui M, Isaka Y. Hepatic phosphate uptake and subsequent nerve-mediated phosphaturia are crucial for phosphate homeostasis following portal vein passage of phosphate in rats. Sci Rep 2023; 13:5794. [PMID: 37031318 PMCID: PMC10082792 DOI: 10.1038/s41598-023-32856-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Fibroblast growth factor 23, parathyroid hormone, and 1,25-dihydroxyvitamin D are critical in phosphate homeostasis. Despite these factors' importance, regulators of phosphaturia in the acute postprandial phase remain largely unknown. This study investigated the mechanism of acute phosphate regulation in the postprandial phase in rats. Duodenal administration of radiolabeled phosphate (32P) showed that 32P levels in the inferior vena cava (IVC) blood were lower than those in the portal vein (PV) blood. Serum phosphate concentration transiently increased 5 min after phosphate solution administration through IVC, while it was maintained after the administration through PV. Phosphate administration through both IVC and PV resulted in increased fractional excretion of phosphate (FEPi) at 10 min without elevation of the known circulating factors, but urinary phosphate excretion during the period was 8% of the dose. Experiments using 32P or partial hepatectomy showed that the liver was one of the phosphate reservoirs. The elevation of FEPi and suppression of sodium-phosphate cotransporter 2a in the kidney at 10 min was attenuated in rats with SCH23390, hepatic denervation, or renal denervation, thus indicating that the liver communicated with the kidney via the nervous system to promote phosphaturia. These results revealed previously unknown mechanisms for serum phosphate maintenance.
Collapse
Affiliation(s)
- Seiichi Yasuda
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - Ayumi Matsumoto
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Katsuma
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroki Okushima
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsuhiro Imai
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Sakaguchi
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Jun-Ya Kaimori
- Department of Inter-Organ Communication Research in Kidney Disease, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Ryohei Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Health Promotion and Regulation, Department of Health Promotion Medicine, Osaka University Graduate School of Medicine, 1-17 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
- Health and Counseling Center, Osaka University, 1-17 Machikaneyamacho, Toyonaka, Osaka, 560-0043, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Imai K, Ishimoto T, Doke T, Tsuboi T, Watanabe Y, Katsushima K, Suzuki M, Oishi H, Furuhashi K, Ito Y, Kondo Y, Maruyama S. Long non-coding RNA lnc-CHAF1B-3 promotes renal interstitial fibrosis by regulating EMT-related genes in renal proximal tubular cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:139-150. [PMID: 36700051 PMCID: PMC9841231 DOI: 10.1016/j.omtn.2022.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological manifestation of chronic kidney diseases. Epithelial-mesenchymal transition (EMT) of tubular epithelial cells is considered a major cause of RIF. Although long non-coding RNAs (lncRNAs) are reportedly involved in various pathophysiological processes, the roles and underlying molecular mechanisms of lncRNAs in the progression of RIF are poorly understood. In this study, we investigated the function of lncRNAs in RIF. Microarray assays showed that expression of the lncRNA lnc-CHAF1B-3 (also called claudin 14 antisense RNA 1) was significantly upregulated in human renal proximal tubular cells by both transforming growth factor-β1 (TGF-β1) and hypoxic stimulation, accompanied with increased expression of EMT-related genes. Knockdown of lnc-CHAF1B-3 significantly suppressed TGF-β1-induced upregulated expression of collagen type I alpha 1, cadherin-2, plasminogen activator inhibitor-1, snail family transcriptional repressor I (SNAI1) and SNAI2. Quantitative reverse transcriptase PCR analyses of paraffin-embedded kidney biopsy samples from IgA nephropathy patients revealed lnc-CHAF1B-3 expression was correlated positively with urinary protein levels and correlated negatively with estimated glomerular filtration rate. In situ hybridization demonstrated that lnc-CHAF1B-3 is expressed only in proximal tubules. These findings suggest lnc-CHAF1B-3 affects the progression of RIF by regulating EMT-related signaling. Thus, lnc-CHAF1B-3 is a potential target in the treatment of RIF.
Collapse
Affiliation(s)
- Kentaro Imai
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuji Ishimoto
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan,Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan,Corresponding author: Takuji Ishimoto, Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan.
| | - Tomohito Doke
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toshiki Tsuboi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yu Watanabe
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Keisuke Katsushima
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Miho Suzuki
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideto Oishi
- Department of Nephrology, Komaki City Hospital, Komaki, Aichi, 485-8520, Japan
| | - Kazuhiro Furuhashi
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| | - Yutaka Kondo
- Department of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
7
|
Siegerist F, Drenic V, Koppe TM, Telli N, Endlich N. Super-Resolution Microscopy: A Technique to Revolutionize Research and Diagnosis of Glomerulopathies. GLOMERULAR DISEASES 2022; 3:19-28. [PMID: 36816428 PMCID: PMC9936760 DOI: 10.1159/000528713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Background For decades, knowledge about glomerular (patho)physiology has been tightly linked with advances in microscopic imaging technology. For example, the invention of electron microscopy was required to hypothesize about the mode of glomerular filtration barrier function. Summary Super-resolution techniques, defined as fluorescence microscopy approaches that surpass the optical resolution limit of around 200 nm, have been made available to the scientific community. Several of these different techniques are currently in use in glomerular research. Using three-dimensional structured illumination microscopy, the exact morphology of the podocyte filtration slit can be morphometrically analyzed and quantitatively compared across samples originating from animal models or human biopsies. Key Messages Several quantitative image analysis approaches and their potential influence on glomerular research and diagnostics are discussed. By improving not only optical resolution but also information content and turnaround time, super-resolution microscopy has the potential to expand the diagnosis of glomerular disease. Soon, these approaches could be introduced into glomerular disease diagnosis.
Collapse
Affiliation(s)
- Florian Siegerist
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Thor-Magnus Koppe
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Nicole Endlich
- Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany,NIPOKA GmbH, Greifswald, Germany,*Nicole Endlich,
| |
Collapse
|