1
|
Gkiourtzis N, Stoimeni A, Michou P, Cheirakis K, Moutafi M, Christakopoulos A, Glava A, Panagopoulou P, Tsigaras G, Galli-Tsinopoulou A, Christoforidis A, Tramma D. The NGAL as a prognostic biomarker of kidney injury in children and adolescents with type 1 diabetes mellitus: A systematic review and meta-analysis. J Diabetes Complications 2025; 39:109002. [PMID: 40154163 DOI: 10.1016/j.jdiacomp.2025.109002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025]
Abstract
AIMS A major complication of type 1 diabetes is diabetic kidney disease (DKD). Albuminuria and impaired glomerular filtration rate are the main characteristics of DKD. Neutrophil gelatinase-associated lipocalin (NGAL) levels may rise even in the early stages of DKD, even in patients with normoalbuminuria. We present the first systematic review and meta-analysis examining the prognostic role of NGAL exclusively in pediatric patients with type 1 diabetes. METHODS A search through major databases was carried out until September 24, 2024, investigating the prognostic role of NGAL in kidney injury in pediatric patients with type 1 diabetes. A p < 0.05 was considered statistically significant. A study quality assessment was conducted using the Newcastle-Ottawa Scale. RESULTS The standardized mean difference in urinary NGAL (uNGAL) levels between the type 1 diabetes group and healthy controls was statistically significant (SMD = 0.63, 95%CI [0.36,0.90]). A moderate positive relationship between uNGAL and ACR was identified (r = 0.53, 95 % CI [0.31-0.70]). The uNGAL revealed a high overall diagnostic accuracy (AUC = 0.881). CONCLUSIONS Urinary NGAL appears to be a valuable biomarker for early detection and understanding of DKD in individuals with type 1 diabetes. Future clinical studies should prioritize assessing the accuracy of NGAL in identifying kidney injury in pediatric patients with type 1 diabetes and the association of NGAL with traditional biomarkers in groups with similar characteristics.
Collapse
Affiliation(s)
- Nikolaos Gkiourtzis
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| | - Anastasia Stoimeni
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| | - Panagiota Michou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Konstantinos Cheirakis
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Maria Moutafi
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Aristeidis Christakopoulos
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece; Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Agni Glava
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Paraskevi Panagopoulou
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Georgios Tsigaras
- 1(st) Department of Pediatrics, Hippokratio General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Assimina Galli-Tsinopoulou
- Program of Postgraduate Studies Adolescent Medicine and Adolescent Health Care, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece; 2(nd) Department of Pediatrics, AHEPA University General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Athanasios Christoforidis
- 1(st) Department of Pediatrics, Hippokratio General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| | - Despoina Tramma
- 4(th) Department of Pediatrics, Papageorgiou General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
2
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Peschard VG, Scherzer R, Estrella MM, Sarnak MJ, Ascher SB, Lash J, Bonventre JV, Greenberg JH, Gutierrez OM, Schelling JR, Katz R, Cheung KL, Levitan EB, Schrauben SJ, Cushman M, Ilori TO, Parikh CR, Kimmel PL, Rao PS, Taliercio JJ, Sondheimer J, Shulman R, Coca SG, Chen J, Ramachandran VS, Ix JH, Shlipak MG. Defining Kidney Health Dimensions and Their Associations with Adverse Outcomes in Persons with Diabetes and CKD. Clin J Am Soc Nephrol 2025; 20:665-675. [PMID: 40085155 PMCID: PMC12097179 DOI: 10.2215/cjn.0000000676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Key Points We identified three kidney health dimensions using 17 urine and plasma biomarkers across two cohorts of persons with diabetes and CKD. Worse scores for tubule injury, tubule function, and systemic inflammation/filtration were associated with a higher risk of CKD progression and death. A multibiomarker approach could help capture tubulointerstitial health in persons with diabetes and CKD. Background Individual kidney tubule biomarkers are associated with risks of CKD progression and mortality in persons with diabetes. Integrating multiple kidney biomarkers using a latent variable method of exploratory factor analysis could define distinct dimensions of kidney health and their associations with adverse outcomes. Methods We conducted a factor analysis of 17 candidate urine and plasma biomarkers in 1256 participants with diabetes and eGFR <60 ml/min per 1.73 m2 from the Chronic Renal Insufficiency Cohort (CRIC; N =701) and the REasons for Geographic And Racial Differences in Stroke (REGARDS; N =555) studies. We used Cox proportional hazards models to evaluate the associations of identified factors with CKD progression and mortality, adjusting for baseline clinical risk factors, eGFR, and albuminuria. Results Three factor scores comprising ten biomarkers were identified: systemic inflammation and filtration (plasma TNF receptor-1 and TNF receptor-2, plasma soluble urokinase plasminogen activator receptor, and plasma symmetric dimethylarginine), tubular function (urine EGF, urine asymmetric dimethylarginine, and urine symmetric dimethylarginine), and tubular damage (urine α -1 microglobulin, urine kidney injury molecule-1, and urine monocyte chemoattractant protein-1). In CRIC, there were 244 incident ESKD events, 102 with ≥40% eGFR decline from baseline, and 259 deaths; in REGARDS, there were 121 incident ESKD events and 462 deaths. In CRIC, lower tubular function (hazard ratio per 1-SD, 0.36; 95% confidence interval, 0.25 to 0.52) and higher tubular damage (1.45; 1.18 to 1.78) scores were independently associated with higher CKD progression risk. Associations in REGARDS were weaker but directionally consistent (tubular function score [0.81; 0.47 to 1.39] and tubular damage score [1.12; 0.73 to 1.72]). Higher tubular damage (1.47; 1.15 to 1.87) scores were associated with higher mortality risk in CRIC, but not REGARDS (1.15; 0.96 to 1.38). Higher systemic inflammation and filtration factor scores were associated with higher mortality risk in both cohorts (CRIC: 1.35; 1.07 to 1.71; REGARDS: 1.41; 1.20 to 1.65). Conclusions Three distinct kidney health dimensions were identified, and each associated with CKD progression and/or all-cause mortality in persons with diabetes and CKD.
Collapse
Affiliation(s)
- Vanessa-Giselle Peschard
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California
| | - Michelle M. Estrella
- Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California
| | - Mark J. Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, Washington
| | - Simon B. Ascher
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California
| | - James Lash
- Division of Nephrology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Joseph V. Bonventre
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Washington
| | - Jason H. Greenberg
- Section of Nephrology, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - Orlando M. Gutierrez
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jeffrey R. Schelling
- Department of Physiology and Biophysics and Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ronit Katz
- Department of Biostatistics, University of Washington School of Public Health, Seattle, Washington
| | - Katharine L. Cheung
- Division of Nephrology, Department of Medicine, Larner College of Medicine, The University of Vermont, Burlington, Vermont
| | - Emily B. Levitan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sarah J. Schrauben
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, Vermont
| | - Titilayo O. Ilori
- Nephrology Division, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Chirag R. Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul L. Kimmel
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Panduranga S. Rao
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jonathan J. Taliercio
- Department of Kidney Medicine; Medical Subspecialty Institute, Cleveland Clinic, Cleveland, Ohio
| | - James Sondheimer
- Division of Nephrology and Hypertension, Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Rachel Shulman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jing Chen
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Joachim H. Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Health Care System, University of California, San Francisco, San Francisco, California
| |
Collapse
Collaborators
Vasan S Ramachandran, Joseph Massaro, Clary Clish, Jeffrey Schelling, Tom Hostetter, Michelle Denburg, Susan Furth, Bradley Warady, Joseph Bonventre, Sushrut Waikar, Gearoid McMahon, Venkata Sabbisetti, Josef Coresh, Morgan Grams, Casey Rebholz, Alison Abraham, Adriene Tin, Jon Klein, Steven Coca, Bart S Ferket, Girish N Nadkarni, Eugene Rhee, Paul L Kimmel, John W Kusek, Robert Nelson, Caroline Fox, Brad Rovin, Andrew S Levey, Lesley A Inker, Meredith Foster, Andrew S Levey, Lesley A Inker, Meredith Foster, Harold I Feldman, Amanda Anderson, Theodore Mifflin, Dawei Xie, Haochang Shou, Shawn Ballard, Krista Whitehead, Kellie Ryan, Chirag Parikh, Vasan S Ramachandran, Joseph Bonventre, Sushrut Waikar, Venkata Sabbisetti, Jennifer Van Eyk, Dawn Chen, Qin Fu, Hermine Brunner, Vivette D'Agati, Jonathan Barasch, Josef Coresh, Casey Rebholz, Alan S Go, Erwin Bottinger, Avelino Teixeira, Ilse Daehn, Mark Molitch, Daniel Batlle, Brad Rovin, Haifeng Wu, Andrew S Levey, Lesley A Inker, Meredith Foster, Chi-Yuan Hsu, Kathleen Liu, Jon Klein, Michael Mauer, Paola Fioretto, Gary Nelsestuen, John H Eckfeldt, Amy Karger, Paola Fioretto, Harold I Feldman, Shawn Ballard, Krista Whitehead, Dawei Xie, Haochang Shou, Xiaoming Zhang, Kellie Ryan, Theodore E Mifflin, Tom Greene, Robert G Nelson, Paul L Kimmel, John W Kusek,
Collapse
|
4
|
Anderson WA, Domingo-Relloso A, Galvez-Fernandez M, Schilling K, Glabonjat RA, Basu A, Nigra AE, Gutierrez OM, Scherzer R, Goldsmith J, Sarnak MJ, Bonventre JV, Kimmel PL, Vasan RS, Ix JH, Shlipak MG, Navas-Acien A. Uranium exposure and kidney tubule biomarkers in the Multi-Ethnic Study of Atherosclerosis (MESA). ENVIRONMENTAL RESEARCH 2025; 271:121060. [PMID: 39922262 PMCID: PMC11959630 DOI: 10.1016/j.envres.2025.121060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Experimental studies indicate that uranium exposure is toxic to the kidney tubules. We evaluated the association of urinary uranium concentrations with biomarkers of tubule cell dysfunction (alpha-1-microglobulin [A1M], uromodulin [UMOD], epidermal growth factor [EGF]), and tubule cell injury (kidney injury molecule-1 [KIM-1], monocyte chemoattractant protein-1 [MCP-1], and chitinase-3-like protein 1 [YKL-40]), as well as with albuminuria and estimated glomerular filtration rate (eGFR) among participants in the Multi-Ethnic Study of Atherosclerosis (MESA). METHODS We conducted a cross-sectional study that included 461 participants selected for the absence of diabetes, chronic kidney disease (CKD), and cardiovascular disease, evaluated with six kidney tubule biomarker measurements. Urinary uranium concentrations were measured using inductively coupled plasma mass spectrometry in spot urine samples. Linear models were used to determine associations of urinary uranium concentrations with each kidney tubule biomarker, calculated by the geometric mean ratio (GMR), after adjustment for participant's urinary creatinine concentrations, age, sex, race/ethnicity, MESA field center, highest level of education completed, cigarette smoking status, alcohol consumption, body mass index (BMI), albuminuria levels, and eGFR. RESULTS Median (interquartile range) urinary uranium concentration was 5.2 (2.9, 10.4) ng/L, and mean (standard deviation) eGFR was 99 (16) mL/min/1.73 m2. The adjusted GMRs (95%CI) of KIM-1 and MCP-1 were 1.11 (1.01, 1.22) and 1.10 (1.01, 1.20), respectively per 7.5 ng/L (interquartile range) higher urinary uranium concentration, while no statistically significant associations were observed for YKL-40, A1M, UMOD, EGF, albuminuria, or eGFR. In flexible dose-response models, the associations were positive and largely linear between urinary uranium concentrations and higher KIM-1 and MCP-1. CONCLUSIONS Among healthy community-living individuals, chronic low-level uranium exposure, as measured in urine, was associated with markers of kidney tubule cell injury. Chronic low-level uranium exposure observed in contemporary US urban centers may adversely affect kidney tubule health and related outcomes.
Collapse
Affiliation(s)
- William A Anderson
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anirban Basu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Orlando M Gutierrez
- Department of Medicine and Epidemiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System, and Department of Medicine, University of California, San Francisco, CA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA, USA
| | - Joseph V Bonventre
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ramachandran S Vasan
- University of Texas School of Public Health and University of Texas Health Sciences Center, San Antonio, TX, USA; Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, and Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Healthcare System, and Department of Medicine, University of California, San Francisco, CA, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
5
|
Xiong L, Wu C, Chen S, Zhang Y, Wang L, Li Y, Li G. Proteomics analysis reveals age-related proteins in the urine of chronic kidney disease patients. Front Med (Lausanne) 2025; 11:1506134. [PMID: 39835101 PMCID: PMC11743183 DOI: 10.3389/fmed.2024.1506134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Chronic kidney disease (CKD) is closely linked to the aging process, making the identification of protein biomarkers that reflect aging in specific organs and tissues crucial for a deeper understanding of this phenomenon. This study aimed to identify potential aging-related proteins present in the urine of CKD patients. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis, we identified a total of 1,712 proteins in the urine samples from both healthy controls and CKD patients in our discovery cohort. Among the 845 proteins that overlapped, we found that 161 proteins were associated with aging. By applying a threshold of p < 0.05 and |log2 (fold change) | > 1.5, we classified 114 proteins as differentially expressed proteins (DEPs). The analyzes conducted using the Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes revealed that DEPs were significantly enriched in several clusters related to aging. In the validation cohort, we demonstrated that patients with CKD exhibited lower urinary levels of L-selectin (SELL), uromodulin (UMOD), and epidermal growth factor (EGF). Additionally, a significant negative correlation was found between age and EGF levels. The estimated glomerular filtration rate (eGFR) showed a significant positive correlation with SELL, UMOD, and EGF, while 24-h proteinuria showed a significant negative correlation with both UMOD and EGF. Furthermore, both UMOD and EGF were significantly negatively correlated with tubulointerstitial fibrosis, and EGF was significantly negatively correlated with glomerulosclerosis. In conclusion, this study emphasizes the promise of LC-MS/MS-based urine proteomics analysis in identifying aging-related protein markers. Specifically, SELL, UMOD, and EGF have been recognized as promising indicators of aging in patients with CKD.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Changwei Wu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Sipei Chen
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Yong Zhang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wang
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| | - Guisen Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu, China
| |
Collapse
|
6
|
Alias AHD, Shafie MH. Star anise (Illicium verum Hook. F.) polysaccharides: Potential therapeutic management for obesity, hypertension, and diabetes. Food Chem 2024; 460:140533. [PMID: 39053285 DOI: 10.1016/j.foodchem.2024.140533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
This study explores the extraction of polysaccharides from star anise (Illicium verum Hook. f.) with its anti-obesity, antihypertensive, antidiabetic, and antioxidant properties. The aim is to optimize the extraction conditions of star anise polysaccharides (SAP) utilizing propane alcohols-based deep eutectic solvents and microwave-assisted methods. The optimized conditions resulted in an extraction yield of 5.14%. The characteristics of acidic pectin-like SAP, including high viscosity (44.86 mPa s), high oil-holding capacity (14.39%), a high degree of esterification (72.53%), gel-like properties, highly amorphous, a high galacturonic acid concentration, and a highly branching size polysaccharide structure, significantly contribute to their potent inhibition of pancreatic lipase (86.67%), angiotensin-converting enzyme (73.47%), and α-glucosidase (82.33%) activities as well as to their antioxidant properties of azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, 34.94%) and ferric ion reducing antioxidant power (FRAP, 0.56 mM FeSO4). Therefore, SAP could be used as a potential therapeutic agent for obesity, hypertension, and diabetes mellitus management.
Collapse
Affiliation(s)
- Abu Hurairah Darwisy Alias
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, University Innovation Incubator Building, SAINS@USM Campus, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia..
| |
Collapse
|
7
|
Postalcioglu M, Katz R, Ascher SB, Hall T, Garimella PS, Hallan SI, Ix JH, Shlipak MG. Associations of Urine Epidermal Growth Factor With Kidney and Cardiovascular Outcomes in Individuals With CKD in SPRINT. Kidney Int Rep 2024; 9:3167-3176. [PMID: 39534189 PMCID: PMC11551059 DOI: 10.1016/j.ekir.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Urine epidermal growth factor (uEGF) has been found to be inversely associated with kidney function loss, whereas its associations with cardiovascular disease (CVD) and mortality have not been studied. Methods We measured baseline uEGF levels among 2346 Systolic Blood Pressure Intervention Trial (SPRINT) participants with an estimated glomerular filtration rate (eGFR) < 60 ml/min per 1.73 m2. A linear mixed-effects model was used to investigate the associations of uEGF with the annual eGFR change; Cox proportional hazards regression models were used to analyze its associations with the ≥30% eGFR decline, CVD, and all-cause mortality outcomes. To account for the competing risk of death, the Fine and Gray method was utilized for acute kidney injury (AKI) and end-stage kidney disease (ESKD) outcomes. Results At baseline, the study participants had mean age of 73 ± 9 years, mean eGFR of 46 ± 11 ml/min per 1.73 m2, and median urine albumin-to-creatinine ratio (UACR) of 15 mg/g (interquartile range: 7-49). In the multivariable-adjusted analysis including baseline urine albumin and eGFR, each 50% lower uEGF concentration was associated with 0.74% (95% confidence interval [CI]: 0.29-1.19) per year faster decline in eGFR and 1.17 times higher risk of ≥30% eGFR decline (95% CI: 1.00-1.36). Lower uEGF concentrations were found to be associated with increased risks of ESKD, AKI, CVD, and all-cause mortality; however, these associations did not reach statistical significance when the models were controlled for baseline urine albumin and eGFR. Conclusion Among hypertensive adults with chronic kidney disease (CKD), lower baseline uEGF concentration was associated with faster eGFR decline independent of baseline albuminuria and eGFR; but not with ESKD, AKI, CVD, and all-cause mortality.
Collapse
Affiliation(s)
- Merve Postalcioglu
- Kidney Health Research Collaborative, Veterans Affairs San Francisco Healthcare System and University of California San Francisco, San Francisco, California, USA
| | - Ronit Katz
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Simon B. Ascher
- Kidney Health Research Collaborative, Veterans Affairs San Francisco Healthcare System and University of California San Francisco, San Francisco, California, USA
- Division of Hospital Medicine, Department of Medicine, University of California Davis, Sacramento, California, USA
| | - Trenton Hall
- Kidney Health Research Collaborative, Veterans Affairs San Francisco Healthcare System and University of California San Francisco, San Francisco, California, USA
| | - Pranav S. Garimella
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
| | - Stein I. Hallan
- Department of Nephrology, St Olav's Hospital and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joachim H. Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, California, USA
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, Veterans Affairs San Francisco Healthcare System and University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Postalcioglu M, Scherzer R, Ix JH, Jacobs DR, Lewis CE, Vaigankar S, Estrella MM, Gutierrez OM, Shlipak MG. Urine Epidermal Growth Factor and Kidney Function Decline in Middle-Aged Adults. Kidney Med 2024; 6:100846. [PMID: 38966683 PMCID: PMC11222796 DOI: 10.1016/j.xkme.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Rationale & Objective The diagnosis and prognostication of chronic kidney disease (CKD) largely rely on glomerular measures that may not reflect tubular damage. We investigated the associations of urine kidney tubule biomarkers with estimated glomerular filtration rate (eGFR) change among middle-aged adults, when chronic diseases typically emerge. Study Design An observational cohort study. Setting & Participants A total of 1,145 participants of the Coronary Artery Risk Development in Young Adults (CARDIA) study without CKD, hypertension, or cardiovascular disease at the year 20 visit. Exposures Seven different biomarkers of tubular health: urine epidermal growth factor (EGF), alpha-1-microglobulin (α1m), interleukin-18, kidney injury molecule-1, monocyte chemoattractant protein-1, uromodulin, and chitinase-3-like protein 1. Outcomes Ten-year eGFR change and incident reduced eGFR (new onset of eGFR < 60 mL/min/1.73 m2). Analytical Approach We examined associations of tubular health biomarkers with 10-year eGFR change and incident reduced eGFR with linear mixed models and interval-censored proportional hazards regression models, respectively. Both minimally and fully adjusted models were controlled for urine creatinine levels. Results The mean age of participants was 44.8 ± 3.7 years, with 39% African American and 56% female. The average 10-year change in eGFR was -18.6 mL/min/1.73 m2 (95% CI, -19.4 to -17.8). In contrast to the other tubular biomarkers, which showed conflicting results, EGF demonstrated strong, consistent associations with both kidney outcomes. Each 1-standard deviation (SD) higher EGF was associated with a 2.37 mL/min/1.73 m2 (95% CI, 0.64-4.10) smaller 10-year decrease in eGFR and a 42% (95% CI, 4%-64%) lower risk of incident reduced eGFR in the fully adjusted model. Limitations Observational design, measurements of eGFR were done only at 5-year intervals during follow-up. Conclusions In middle-aged, community-dwelling adults without hypertension, cardiovascular disease or CKD, higher urine EGF concentrations are associated with slower eGFR decline, whereas other kidney tubule biomarkers lacked a consistent association with kidney function decline.
Collapse
Affiliation(s)
- Merve Postalcioglu
- Division of Nephrology, Department of Medicine, University of California, San Francisco, CA
- Kidney Health Research Collaborative, San Francisco VA Health Care System & University of California, San Francisco, CA
| | - Rebecca Scherzer
- Kidney Health Research Collaborative, San Francisco VA Health Care System & University of California, San Francisco, CA
- Department of Medicine, San Francisco VA Medical Center, San Francisco, CA
| | - Joachim H. Ix
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, San Diego, CA
- Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Cora E. Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sucheta Vaigankar
- Department of Medicine, University of California San Diego, San Diego, CA
| | - Michelle M. Estrella
- Kidney Health Research Collaborative, San Francisco VA Health Care System & University of California, San Francisco, CA
- Division of Nephrology, Department of Medicine, San Francisco VA Medical Center, San Francisco, CA
| | - Orlando M. Gutierrez
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Michael G. Shlipak
- Kidney Health Research Collaborative, San Francisco VA Health Care System & University of California, San Francisco, CA
- Department of Medicine, San Francisco VA Medical Center, San Francisco, CA
- Department Epidemiology and Biostatistics, University of California, San Francisco, CA
| |
Collapse
|
9
|
Makhammajanov Z, Kabayeva A, Auganova D, Tarlykov P, Bukasov R, Turebekov D, Kanbay M, Molnar MZ, Kovesdy CP, Abidi SH, Gaipov A. Candidate protein biomarkers in chronic kidney disease: a proteomics study. Sci Rep 2024; 14:14014. [PMID: 38890379 PMCID: PMC11189417 DOI: 10.1038/s41598-024-64833-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Proteinuria poses a substantial risk for the progression of chronic kidney disease (CKD) and its related complications. Kidneys excrete hundreds of individual proteins, some with a potential impact on CKD progression or as a marker of the disease. However, the available data on specific urinary proteins and their relationship with CKD severity remain limited. Therefore, we aimed to investigate the urinary proteome and its association with kidney function in CKD patients and healthy controls. The proteomic analysis of urine samples showed CKD stage-specific differences in the number of detected proteins and the exponentially modified protein abundance index for total protein (p = 0.007). Notably, specific urinary proteins such as B2MG, FETUA, VTDB, and AMBP exhibited robust negative associations with kidney function in CKD patients compared to controls. Also, A1AG2, CD44, CD59, CERU, KNG1, LV39, OSTP, RNAS1, SH3L3, and UROM proteins showed positive associations with kidney function in the entire cohort, while LV39, A1BG, and CERU consistently displayed positive associations in patients compared to controls. This study suggests that specific urinary proteins, which were found to be negatively or positively associated with the kidney function of CKD patients, can serve as markers of dysfunctional or functional kidneys, respectively.
Collapse
Affiliation(s)
| | - Assem Kabayeva
- Department of Internal Medicine, Astana Medical University, Astana, Kazakhstan
| | - Dana Auganova
- Department of Proteomics and Mass Spectroscopy, National Center for Biotechnology, Astana, Kazakhstan
| | - Pavel Tarlykov
- Department of Proteomics and Mass Spectroscopy, National Center for Biotechnology, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Duman Turebekov
- Department of Internal Medicine, Astana Medical University, Astana, Kazakhstan
| | - Mehmet Kanbay
- Division of Nephrology, Department of Internal Medicine, Koc University, Istanbul, Turkey
| | - Miklos Z Molnar
- Division of Nephrology & Hypertension, Department of Internal Medicine, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT, USA
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Syed Hani Abidi
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
- Clinical Academic Department of Internal Medicine, University Medical Center, Astana, Kazakhstan.
| |
Collapse
|
10
|
Blazevic N, Rogic D, Pelajic S, Miler M, Glavcic G, Ratkajec V, Vrkljan N, Bakula D, Hrabar D, Pavic T. YKL-40 as a biomarker in various inflammatory diseases: A review. Biochem Med (Zagreb) 2024; 34:010502. [PMID: 38125621 PMCID: PMC10731731 DOI: 10.11613/bm.2024.010502] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/04/2023] [Indexed: 12/23/2023] Open
Abstract
YKL-40 or Chitinase-3-Like Protein 1 (CHI3L1) is a highly conserved glycoprotein that binds heparin and chitin in a non-enzymatic manner. It is a member of the chitinase protein family 18, subfamily A, and unlike true chitinases, YKL-40 is a chitinase-like protein without enzymatic activity for chitin. Although its accurate function is yet unknown, the pattern of its expression in the normal and disease states suggests its possible engagement in apoptosis, inflammation and remodeling or degradation of the extracellular matrix. During an inflammatory response, YKL-40 is involved in a complicated interaction between host and bacteria, both promoting and attenuating immune response and potentially being served as an autoantigen in a vicious circle of autoimmunity. Based on its pathophysiology and mechanism of action, the aim of this review was to summarize research on the growing role of YKL-40 as a persuasive biomarker for inflammatory diseases' early diagnosis, prediction and follow-up (e.g., cardiovascular, gastrointestinal, endocrinological, immunological, musculoskeletal, neurological, respiratory, urinary, infectious) with detailed structural and functional background of YKL-40.
Collapse
Affiliation(s)
- Nina Blazevic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Stipe Pelajic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Marijana Miler
- Department of Clinical Chemistry, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Goran Glavcic
- Department of Surgery, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Valentina Ratkajec
- Department of Gastroenterology, General Hospital Virovitica, Virovitica, Croatia
| | - Nikolina Vrkljan
- Department of Internal Medicine, Intensive Care Unit, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Dejan Bakula
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Davor Hrabar
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Tajana Pavic
- Department of Gastroenterology and Hepatology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| |
Collapse
|
11
|
Noel S, Parikh CR. Kidney functional reserve helps early detection of subclinical chronic kidney disease. Am J Physiol Renal Physiol 2023; 325:F885-F887. [PMID: 37943940 DOI: 10.1152/ajprenal.00327.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023] Open
Affiliation(s)
- Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Lanktree MB, Perrot N, Smyth A, Chong M, Narula S, Shanmuganathan M, Kroezen Z, Britz-Mckibbin P, Berger M, Krepinsky JC, Pigeyre M, Yusuf S, Paré G. A novel multi-ancestry proteome-wide Mendelian randomization study implicates extracellular proteins, tubular cells, and fibroblasts in estimated glomerular filtration rate regulation. Kidney Int 2023; 104:1170-1184. [PMID: 37774922 DOI: 10.1016/j.kint.2023.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Estimated glomerular filtration rate (eGFR) impacts the concentration of plasma biomarkers confounding biomarker association studies of eGFR with reverse causation. To identify biomarkers causally associated with eGFR, we performed a proteome-wide Mendelian randomization study. Genetic variants nearby biomarker coding genes were tested for association with plasma concentration of 1,161 biomarkers in a multi-ancestry sample of 12,066 participants from the Prospective Urban and Rural Epidemiological (PURE) study. Using two-sample Mendelian randomization, individual variants' effects on biomarker concentration were correlated with their effects on eGFR and kidney traits from published genome-wide association studies (GWAS). Genetically altered concentrations of 22 biomarkers were associated with eGFR above a Bonferroni-corrected significance threshold. Five biomarkers were previously identified by GWAS (UMOD, FGF5, LGALS7, NINJ1, COL18A1). Nine biomarkers were within 1 Mb of the lead GWAS variant but the gene for the biomarker was unidentified as the candidate for the GWAS signal (INHBC, TNFRSF11A, TCN2, PXN1, PRTN3, PSMD9, TFPI, ITGB6, CA3). Single-cell transcriptomic data indicated the 22 biomarkers are expressed in kidney tubules, collecting duct, fibroblasts, and immune cells. Pathway analysis showed significant enrichment of identified biomarkers in the extracellular kidney parenchyma. Thus, using genetic regulators of biomarker concentration via proteome-wide Mendelian randomization, we identified 22 biomarkers that appear to causally impact eGFR in either a beneficial or adverse manner. The current study provides rationale for novel therapeutic targets for eGFR and emphasized a role for extracellular proteins produced by tubular cells and fibroblasts for impacting eGFR.
Collapse
Affiliation(s)
- Matthew B Lanktree
- Population Health Research Institute, Hamilton, Ontario, Canada; Division of Nephrology, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Nicolas Perrot
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Andrew Smyth
- Population Health Research Institute, Hamilton, Ontario, Canada; HRB Clinical Research Facility Galway, University of Galway, Galway, Ireland
| | - Michael Chong
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sukrit Narula
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Meera Shanmuganathan
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zachary Kroezen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Philip Britz-Mckibbin
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Mario Berger
- Bayer AG, Pharmaceuticals Research & Development, Pharma Research Center, Wuppertal, Germany
| | - Joan C Krepinsky
- Division of Nephrology, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Salim Yusuf
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Dong Z, Chen F, Peng S, Liu X, Liu X, Guo L, Wang E, Chen X. Identification of the key immune-related genes and immune cell infiltration changes in renal interstitial fibrosis. Front Endocrinol (Lausanne) 2023; 14:1207444. [PMID: 38027143 PMCID: PMC10663291 DOI: 10.3389/fendo.2023.1207444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Chronic kidney disease (CKD) is the third-leading cause of premature mortality worldwide. It is characterized by rapid deterioration due to renal interstitial fibrosis (RIF) via excessive inflammatory infiltration. The aim of this study was to discover key immune-related genes (IRGs) to provide valuable insights and therapeutic targets for RIF in CKD. Materials and methods We screened differentially expressed genes (DEGs) between RIF samples from CKD patients and healthy controls from a public database. Least absolute shrinkage and selection operator regression analysis and receiver operating characteristic curve analysis were applied to identify significant key biomarkers. The single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm was used to analyze the infiltration of immune cells between the RIF and control samples. The correlation between biomarkers and immune cell composition was assessed. Results A total of 928 DEGs between CKD and control samples from six microarray datasets were found, 17 overlapping immune-correlated DEGs were identified by integration with the ImmPort database, and six IRGs were finally identified in the model: apolipoprotein H (APOH), epidermal growth factor (EGF), lactotransferrin (LTF), lysozyme (LYZ), phospholipid transfer protein (PLTP), and secretory leukocyte peptidase inhibitor (SLPI). Two additional datasets and in vivo experiments indicated that the expression levels of APOH and EGF in the fibrosis group were significantly lower than those in the control group, while the expression levels of LTF, LYZ, PLTP, and SLPI were higher (all P < 0.05). These IRGs also showed a significant correlation with renal function impairment. Moreover, four upregulated IRGs were positively associated with various T cell populations, which were enriched in RIF tissues, whereas two downregulated IRGs had opposite results. Several signaling pathways, such as the "T cell receptor signaling pathway" and "positive regulation of NF-κB signaling pathway", were discovered to be associated not only with immune cell infiltration, but also with the expression levels of six IRGs. Conclusion In summary, six IRGs were identified as key biomarkers for RIF, and exhibited a strong correlation with various T cells and with the NF-κB signaling pathway. All these IRGs and their signaling pathways may evolve as valuable therapeutic targets for RIF in CKD.
Collapse
Affiliation(s)
- Zhitao Dong
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangzhi Chen
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongfei Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingyang Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhe Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - E. Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Klinkhammer BM, Boor P. Kidney fibrosis: Emerging diagnostic and therapeutic strategies. Mol Aspects Med 2023; 93:101206. [PMID: 37541106 DOI: 10.1016/j.mam.2023.101206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
An increasing number of patients worldwide suffers from chronic kidney disease (CKD). CKD is accompanied by kidney fibrosis, which affects all compartments of the kidney, i.e., the glomeruli, tubulointerstitium, and vasculature. Fibrosis is the best predictor of progression of kidney diseases. Currently, there is no specific anti-fibrotic therapy for kidney patients and invasive renal biopsy remains the only option for specific detection and quantification of kidney fibrosis. Here we review emerging diagnostic approaches and potential therapeutic options for fibrosis. We discuss how translational research could help to establish fibrosis-specific endpoints for clinical trials, leading to improved patient stratification and potentially companion diagnostics, and facilitating and optimizing development of novel anti-fibrotic therapies for kidney patients.
Collapse
Affiliation(s)
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University Hospital, Aachen, Germany; Division of Nephrology and Immunology, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
15
|
Yang M, Lopez LN, Brewer M, Delgado R, Menshikh A, Clouthier K, Zhu Y, Vanichapol T, Yang H, Harris R, Gewin L, Brooks C, Davidson A, de Caestecker MP. Inhibition of Retinoic Acid Signaling in Proximal Tubular Epithelial cells Protects against Acute Kidney Injury by Enhancing Kim-1-dependent Efferocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545113. [PMID: 37398101 PMCID: PMC10312711 DOI: 10.1101/2023.06.15.545113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development, but in the adult kidney is restricted to occasional collecting duct epithelial cells. We now show there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI), and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protects against experimental AKI but is associated with increased expression of the PTEC injury marker, Kim-1. However, Kim-1 is also expressed by de-differentiated, proliferating PTECs, and protects against injury by increasing apoptotic cell clearance, or efferocytosis. We show that the protective effect of inhibiting PTEC RAR signaling is mediated by increased Kim-1 dependent efferocytosis, and that this is associated with de-differentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate a novel functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI. Graphical abstract
Collapse
|
16
|
Schlosser P, Grams ME, Rhee EP. Proteomics: Progress and Promise of High-Throughput Proteomics in Chronic Kidney Disease. Mol Cell Proteomics 2023; 22:100550. [PMID: 37076045 PMCID: PMC10326701 DOI: 10.1016/j.mcpro.2023.100550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/21/2023] Open
Abstract
Current proteomic tools permit the high-throughput analysis of the blood proteome in large cohorts, including those enriched for chronic kidney disease (CKD) or its risk factors. To date, these studies have identified numerous proteins associated with cross-sectional measures of kidney function, as well as with the longitudinal risk of CKD progression. Representative signals that have emerged from the literature include an association between levels of testican-2 and favorable kidney prognosis and an association between levels of TNFRSF1A and TNFRSF1B and worse kidney prognosis. For these and other associations, however, understanding whether the proteins play a causal role in kidney disease pathogenesis remains a fundamental challenge, especially given the strong impact that kidney function can have on blood protein levels. Prior to investing in dedicated animal models or randomized trials, methods that leverage the availability of genotyping in epidemiologic cohorts-including Mendelian randomization, colocalization analyses, and proteome-wide association studies-can add evidence for causal inference in CKD proteomics research. In addition, integration of large-scale blood proteome analyses with urine and tissue proteomics, as well as improved assessment of posttranslational protein modifications (e.g., carbamylation), represent important future directions. Taken together, these approaches seek to translate progress in large-scale proteomic profiling into the promise of improved diagnostic tools and therapeutic target identification in kidney disease.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | - Morgan E Grams
- Division of Precision Medicine, Department of Medicine, New York University, New York, New York, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Jung K, Lee T, Kim J, Sung E, Song I. Interleukin-10 Protects against Ureteral Obstruction-Induced Kidney Fibrosis by Suppressing Endoplasmic Reticulum Stress and Apoptosis. Int J Mol Sci 2022; 23:ijms231810702. [PMID: 36142626 PMCID: PMC9504377 DOI: 10.3390/ijms231810702] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/03/2022] Open
Abstract
Fibrosis is a common final pathway of chronic kidney disease, which is a major incurable disease. Although fibrosis has an irreversible pathophysiology, the molecular and cellular mechanisms responsible remain unclear and no specific treatment is available to halt the progress of renal fibrosis. Thus, an improved understanding of the cellular mechanism involved and a novel therapeutic approach are urgently required for end-stage renal disease (ESRD). We investigated the role played by interleukin-10 (IL-10, a potent anti-inflammatory cytokine) in kidney fibrosis and the mechanisms involved using IL-10−/− mice and TCMK-1 cells (mouse kidney tubular epithelial cell line). Endoplasmic reticulum stress (ERS), apoptosis, and fibrosis in IL-10−/− mice were more severe than in IL-10+/+ mice after unilateral ureteral obstruction (UUO). The 4-Phenylbutyrate (an ERS inhibitor) treatment induced dramatic reductions in ERS, apoptosis, and fibrosis-associated factors in the renal tissues of IL-10−/− mice, compared to wild-type controls after UUO. On the other hand, in cultured TCMK-1 cells, the ERS inducers (tunicamycin, thapsigargin, or brefeldin A) enhanced the expressions of proapoptotic and profibrotic factors, though these effects were mitigated by IL-10. These results were supported by the observation that IL-10 siRNA transfection aggravated tunicamycin-induced CHOP and a-SMA expressions in TCMK-1 cells. We conclude that the anti-fibrotic effects of IL-10 were attributable to the inhibition of ERS-mediated apoptosis and believe that the results of this study improve the understanding of the cellular mechanism responsible for fibrosis and aid in the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kyongjin Jung
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
- Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| | - Taejin Lee
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| | - Jooyoung Kim
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| | - Eongi Sung
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| | - Inhwan Song
- Department of Anatomy, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Korea
| |
Collapse
|
18
|
Shankar M, Goldstein SL. Kidney Disease Complexity Manifested: One Biomarker Size Does Not Fit All. Kidney Int Rep 2022; 7:1458-1460. [PMID: 35816655 PMCID: PMC9263414 DOI: 10.1016/j.ekir.2022.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mythri Shankar
- Department of Internal Medicine, Institute of Nephro-Urology, Bengaluru, India
| | - Stuart L. Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|