1
|
Wu W, Kiat Goh SC, Cai G, Feng S, Zhang B. Digital metabolic activity assay enables fast assessment of 2D materials bactericidal efficiency. Anal Chim Acta 2024; 1285:342007. [PMID: 38057056 DOI: 10.1016/j.aca.2023.342007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The identification and quantification of viable Escherichia coli (E. coli) are important in multiple fields including the development of antimicrobial materials, water quality, food safety and infections diagnosis. However, the standard culture-based methods of viable E. coli detection suffer from long detection times (24 h) and complex operation, leaving the unmet requirement for fast assessing the efficiency of antimicrobial materials, early alerting the contamination of water and food, and immediately treatment of infections. RESULTS We present a digital β-d-glucuronidase (GUS) assay in a self-priming polydimethylsiloxane (PDMS) microfluidic chip for rapid E. coli identification and quantification. The GUS expression in viable bacteria was investigated to develop a fast GUS assay at the single-cell level. Single E. coli were stochastically discretized in picoliter chambers and identified by specific GUS activity. The digital GUS assay enabled identifying E. coli within 3 h and quantifying within 4 h for different E. coli subtypes. The specificity of our method was confirmed by using blended bacteria including E. coli, Bacillus, Shigella and Vibrio. We utilized digital GUS assay to enumerate viable E. coli after incubated with antibacterial materials for assessing the antibacterial efficiency. Moreover, the degassed chip can realize automatic sample distribution without external instruments. SIGNIFICANCE The results demonstrated the functionality and practicability of digital GUS assay for single E. coli identification and quantification. With air-tight packaging, the developed chip has the potential for on-site E. coli analysis and could be deployed for diagnosis of E. coli infections, antimicrobial susceptibility testing, and warning the fecal pollution of water. Digital GUS assay provides a paradigm, examining the activity of metabolic enzyme, for detecting the viable bacteria other than E. coli.
Collapse
Affiliation(s)
- Wenshuai Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Simon Chun Kiat Goh
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gaozhe Cai
- School of Microelectronics, Shanghai University, Shanghai, 200444, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Boran Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
2
|
Poulouxi S, Prodromidis MI. Indirect determination of Escherichia coli based on β-D-glucuronidase activity and the voltammetric oxidation of phenolphthalein at graphite screen-printed electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
3
|
Shafiq M, Anjum S, Hano C, Anjum I, Abbasi BH. An Overview of the Applications of Nanomaterials and Nanodevices in the Food Industry. Foods 2020; 9:E148. [PMID: 32028580 PMCID: PMC7074443 DOI: 10.3390/foods9020148] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
The efficient progress in nanotechnology has transformed many aspects of food science and the food industry with enhanced investment and market share. Recent advances in nanomaterials and nanodevices such as nanosensors, nano-emulsions, nanopesticides or nanocapsules are intended to bring about innovative applications in the food industry. In this review, the current applications of nanotechnology for packaging, processing, and the enhancement of the nutritional value and shelf life of foods are targeted. In addition, the functionality and applicability of food-related nanotechnologies are also highlighted and critically discussed in order to provide an insight into the development and evaluation of the safety of nanotechnology in the food industry.
Collapse
Affiliation(s)
- Mehwish Shafiq
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRA USC1328/Université d’Orléans, 28000 Chartres, France;
| | - Iram Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore 54000, Pakistan; (M.S.); (I.A.)
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
4
|
Bigham T, Dooley JS, Ternan NG, Snelling WJ, Héctor Castelán M, Davis J. Assessing microbial water quality: Electroanalytical approaches to the detection of coliforms. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Wang M, Cui Z, Xue Y, Yan A, Yu X, Song X, Li H. Preparation of Nano‐bismuth with Different Particle Sizes and the Size Dependent Electrochemical Thermodynamics. ELECTROANAL 2019. [DOI: 10.1002/elan.201800870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mengying Wang
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Zixiang Cui
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Yongqiang Xue
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Aijie Yan
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Xing Yu
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Xinru Song
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| | - Hongxing Li
- Department of Applied ChemistryTaiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
6
|
Chen Y, Wang Z, Liu Y, Wang X, Li Y, Ma P, Gu B, Li H. Recent advances in rapid pathogen detection method based on biosensors. Eur J Clin Microbiol Infect Dis 2018; 37:1021-1037. [DOI: 10.1007/s10096-018-3230-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/28/2022]
|
7
|
Kumar V, Guleria P, Mehta SK. Nanosensors for food quality and safety assessment. ENVIRONMENTAL CHEMISTRY LETTERS 2017; 15:165-177. [DOI: 10.1007/s10311-017-0616-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 01/12/2025]
|
8
|
Rossi M, Passeri D, Sinibaldi A, Angjellari M, Tamburri E, Sorbo A, Carata E, Dini L. Nanotechnology for Food Packaging and Food Quality Assessment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:149-204. [PMID: 28427532 DOI: 10.1016/bs.afnr.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials.
Collapse
Affiliation(s)
- Marco Rossi
- SAPIENZA University of Rome, Rome, Italy; Research Center for Nanotechnology Applied to Engineering of SAPIENZA University of Rome (CNIS), Rome, Italy.
| | | | | | | | | | | | | | - Luciana Dini
- University of Salento, Lecce, Italy; CNR-Nanotec, Lecce, Italy
| |
Collapse
|
9
|
Chen H, Huang J, Palaniappan A, Wang Y, Liedberg B, Platt M, Tok AIY. A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst 2016; 141:2335-46. [PMID: 27002177 DOI: 10.1039/c5an02623g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review, recent advances in the development of electronic detection methodologies based on non-antibody recognition elements such as functional liposomes, aptamers and synthetic peptides are discussed. Particularly, we highlight the progress of field effect transistor (FET) sensing platforms where possible as the number of publications on FET-based platforms has increased rapidly. Biosensors involving antibody-antigen interactions have been widely applied in diagnostics and healthcare in virtue of their superior selectivity and sensitivity, which can be attributed to their high binding affinity and extraordinary specificity, respectively. However, antibodies typically suffer from fragile and complicated functional structures, large molecular size and sophisticated preparation approaches (resource-intensive and time-consuming), resulting in limitations such as short shelf-life, insufficient stability and poor reproducibility. Recently, bio-sensing approaches based on synthetic elements have been intensively explored. In contrast to existing reports, this review provides a comprehensive overview of recent advances in the development of biosensors utilizing synthetic recognition elements and a detailed comparison of their assay performances. Therefore, this review would serve as a good summary of the efforts for the development of electronic bio-sensing approaches involving synthetic recognition elements.
Collapse
Affiliation(s)
- Hu Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kumar V, Guleria P, Mehta SK. Nanoparticles to Sense Food Quality. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-48009-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Rochelet M, Solanas S, Betelli L, Chantemesse B, Vienney F, Hartmann A. Rapid amperometric detection of Escherichia coli in wastewater by measuring β-D glucuronidase activity with disposable carbon sensors. Anal Chim Acta 2015; 892:160-6. [PMID: 26388487 DOI: 10.1016/j.aca.2015.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/11/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
An assay on the indirect amperometric quantification of the β-D-Glucuronidase (GLUase) activity was developed for the rapid and specific detection of Escherichia coli (E. coli) in complex environmental samples. The p-aminophenyl β-D-glucopyranoside (PAPG) was selected as an electrochemical substrate for GLUase measurement and the p-aminophenol (PAP) released during the enzymatic hydrolysis was monitored by cyclic voltammetry with disposable carbon screen-printed sensors. The intensity of the measured anodic peak current was proportional to the amount of GLUase, and therefore to the number of E. coli in the tested sample. Once the substrate concentration and pH values optimized, a GLUase detection limit of 10 ng mL(-1) was achieved. Using a procedure involving a filtration step of the bacteria followed by their incubation with the substrate solution containing both the nonionic detergent Triton X-100 as permeabilization agent and the culture media Luria broth to monitor the growth, filtered bacterial cells ranging from 5 × 10(4) to 10(8) UFC/membrane were detected within 3 h. The amperometric assay was applied to the determination of fecal contamination in raw and treated wastewater samples and it was successfully compared with conventional bacterial plating methods and uidA gene quantitative PCR. Owing to its ability to perform measurements in turbid media, the GLUase amperometric method is a reliable tool for the rapid and decentralized quantification of viable but also nonculturable E. coli in complex environmental samples.
Collapse
Affiliation(s)
- Murielle Rochelet
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France.
| | - Sébastien Solanas
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Laetitia Betelli
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Benoît Chantemesse
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Fabienne Vienney
- Université Bourgogne Franche-Comté, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| | - Alain Hartmann
- INRA, UMR1347 Agroécologie, 17 Rue Sully, 21000 Dijon, France
| |
Collapse
|
12
|
Riman D, Avgeropoulos A, Hrbac J, Prodromidis MI. Sparked-bismuth oxide screen-printed electrodes for the determination of riboflavin in the sub-nanomolar range in non-deoxygenated solutions. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.03.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kim T, Han JI. Fast detection and quantification of Escherichia coli using the base principle of the microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 130:267-275. [PMID: 24095789 DOI: 10.1016/j.jenvman.2013.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 08/21/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
Escherichia coli is an important microbial indicator of fecal contamination, making accurate quantitative detection of E. coli a key to ensuring public health. In this study, a microbial fuel cell (MFC) was used as a detection unit of an E. coli sensor, and specific enzymes expressed in E. coli, such as β-D-galactosidase (GAL) and β-D-glucuronidase (GUS), were exploited as biological detection elements. As substrates, 4-aminophenyl-β-D-galactopyranoside (4-APGal) were used for GAL detection, whereas 8-hydroxyquinoline glucuronide (8-HQG) and 4-nitrophenyl β-D-glucuronide (PNPG) were used for GUS detection. Once these substrates were hydrolyzed by GAL or GUS, they became electrochemically active products, which were, in turn, oxidized on the anode of the MFC reactor. The power output of the MFC reactor increased sharply when E. coli in the reactor reached the critical concentration. Accordingly, the time required to reach the highest voltage output was recorded as a detection time (DT), and a negative linear relationship was established between DT and the logarithm of the initial concentration of E. coli in the samples studied. The DTs of laboratory samples were 140 min and 560 min for initial concentrations of 1.9 × 10(7) CFU/mL and 42 CFU/mL at 44.5 °C. Moreover, the DTs for GUS assays were further shortened by induction with methyl β-D-glucuronide sodium salt (MetGlu). The quantitative relationship between DTs and initial E. coli concentrations established from replicate laboratory sample assays allowed estimation of the E. coli concentration in environmental samples, but with approximately 100 min of lag time. The lag time was also observed with E. coli samples that were prepared by starving cells in a laboratory.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
14
|
|
15
|
Guzsvány V, Nakajima H, Soh N, Nakano K, Švancara I, Vytřas K, Bjelica L, Imato T. Anodic Stripping Voltammetry Combined with Sequential Injection Analysis for Measurements of Trace Metal Ions with Bismuth- and Antimony Film Electrodes under Comparable Conditions. ELECTROANAL 2011. [DOI: 10.1002/elan.201000683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Metters JP, Kadara RO, Banks CE. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 2011; 136:1067-76. [DOI: 10.1039/c0an00894j] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Xiong CH, Luo HQ, Li NB. A stannum/bismuth/poly(p-aminobenzene sulfonic acid) film electrode for measurement of Cd(II) using square wave anodic stripping voltammetry. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Direct Electroanalysis of p-Nitrophenol (PNP) in Estuarine and Surface Waters by a High Sensitive Type C/p-NiTSPc Coating Carbon Fiber Microelectrode (CFME). ELECTROANAL 2010. [DOI: 10.1002/elan.201000384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Švancara I, Prior C, Hočevar S, Wang J. A Decade with Bismuth-Based Electrodes in Electroanalysis. ELECTROANAL 2010. [DOI: 10.1002/elan.200970017] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Anik Ü, Çubukçu M, Çevik S, Timur S. Usage of Bismuth Film Electrode as Biosensor Transducer for Alkaline Phosphatase Assay. ELECTROANAL 2010. [DOI: 10.1002/elan.200900447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Mata D, Bejarano D, Botero M, Lozano P, Constantí M, Katakis I. Screen-printed integrated microsystem for the electrochemical detection of pathogens. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2009.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Khairy M, Kadara R, Kampouris D, Banks C. Disposable Bismuth Oxide Screen Printed Electrodes for the Sensing of Zinc in Seawater. ELECTROANAL 2010. [DOI: 10.1002/elan.200900519] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Valdés MG, Valdés González AC, García Calzón JA, Díaz-García ME. Analytical nanotechnology for food analysis. Mikrochim Acta 2009. [DOI: 10.1007/s00604-009-0165-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
24
|
Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.10.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Zhang X, Guo Q, Cui D. Recent advances in nanotechnology applied to biosensors. SENSORS (BASEL, SWITZERLAND) 2009; 9:1033-53. [PMID: 22399954 PMCID: PMC3280846 DOI: 10.3390/s90201033] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/15/2009] [Accepted: 01/16/2009] [Indexed: 12/29/2022]
Abstract
In recent years there has been great progress the application of nanomaterials in biosensors. The importance of these to the fundamental development of biosensors has been recognized. In particular, nanomaterials such as gold nanoparticles, carbon nanotubes, magnetic nanoparticles and quantum dots have been being actively investigated for their applications in biosensors, which have become a new interdisciplinary frontier between biological detection and material science. Here we review some of the main advances in this field over the past few years, explore the application prospects, and discuss the issues, approaches, and challenges, with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.
Collapse
Affiliation(s)
- Xueqing Zhang
- Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China; E-Mails: (X. Z.); (G. Q)
| | - Qin Guo
- Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China; E-Mails: (X. Z.); (G. Q)
| | - Daxiang Cui
- Department of Bio-Nano Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, National Key Laboratory of Micro /Nano Fabrication Technology, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China; E-Mails: (X. Z.); (G. Q)
| |
Collapse
|
26
|
Nunes L, Faria R. The Influence of the Electrodeposition Conditions on the Electroanalytical Performance of the Bismuth Film Electrode for Lead Determination. ELECTROANAL 2008. [DOI: 10.1002/elan.200804293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Majid E, Male KB, Luong JHT. Boron doped diamond biosensor for detection of Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7691-7695. [PMID: 18698792 DOI: 10.1021/jf8013958] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
o-Nitrophenol, released from o-nitrophenyl-beta-D-galactopyranose as catalyzed by beta-galactosidase, a tetramer of Escherichia coli, has been exploited for the detection of E. coli contamination in foodstuffs. This reaction was detected using a boron doped diamond electrode poised at +0.93 V, without any surface modification. The enzyme was effectively induced by isopropyl-beta-D-thiogalacto-pyranoside with the maximum enzyme activity observed with sodium dodecyl sulfate at 50 degrees C. A biphasic calibration plot was observed: 4 x 10(4) to 2 x 10(5) cells/mL and 2 x 10(5) to 6 x 10(6) cells/mL for the first and second region, respectively. The detection limit was 4 x 10(4) cells/mL with a total analysis time of <1.5 h. Electrode fouling was easily overcome by approximately 40 rapid CV scans, and the method was applicable for detecting E. coli in artificially spiked samples of beef, pork, chicken, milk, and tap water.
Collapse
Affiliation(s)
- Ehsan Majid
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | |
Collapse
|
28
|
Du D, Ye X, Zhang J, liu D. Cathodic electrochemical analysis of methyl parathion at bismuth-film-modified glassy carbon electrode. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2008.01.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Tesařová E, Heras A, Colina Á, Ruiz V, Švancara I, Vytřas K, López-Palacios J. A spectroelectrochemical approach to the electrodeposition of bismuth film electrodes and their use in stripping analysis. Anal Chim Acta 2008; 608:140-6. [DOI: 10.1016/j.aca.2007.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/30/2007] [Accepted: 12/14/2007] [Indexed: 10/22/2022]
|
30
|
Mariscal A, Carnero-Varo M, Gutierrez-Bedmar M, Garcia-Rodriguez A, Fernandez-Crehuet J. A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm. Appl Microbiol Biotechnol 2007; 77:233-40. [PMID: 17786432 DOI: 10.1007/s00253-007-1137-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 11/27/2022]
Abstract
In this study, a versatile method was developed to assess biocide efficacy against Escherichia coli biofilm growth on carriers made of five different materials. The glucuronidase activity of live E. coli on a fluorogenic substrate (4-methylumbellyferyl-beta-D-glucuronide, MUG) was used as a viability test. Fluorescence emissions from cellular suspensions of E. coli in the test range displayed a linear response with a MUG concentration of 10 microg ml(-1). A glucuronidase activity curve with cellular suspensions of E. coli calculated as colony-forming units per milliliter showed a good correlation (0.9487 and 0.917 for 1 and 18 h of incubation, respectively), with counts obtained from biofilm containing this organism; E. coli cultures in suspension were used as standard. Three agents commonly used as disinfectants, sodium hypochlorite, hydrogen peroxide, and ethanol, were tested at use concentrations and at one-half and decimal dilutions. At decimal dilutions, ethanol at 70% proved to be the least active disinfectant on E. coli biofilm. Unlike other methods, our method permits the testing of disinfectant efficacy against biofilm growth on different materials. In preliminary assays, glass, polyvinyl chloride, polypropylene, polycarbonate, and silicon were tested. Because they gave the lowest E. coli counts after 24 and 48 h, glass and polypropylene were the two materials to which biofilm adhered least strongly.
Collapse
Affiliation(s)
- Alberto Mariscal
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Malaga, Avenida Louis Pasteur 12, Malaga, Spain.
| | | | | | | | | |
Collapse
|
31
|
Timur S, Anik U. α-Glucosidase based bismuth film electrode for inhibitor detection. Anal Chim Acta 2007; 598:143-6. [PMID: 17693318 DOI: 10.1016/j.aca.2007.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 07/02/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
A biosensing system based on alpha-glucosidase (AG) activity was developed by using bismuth film modified glassy carbon electrode (BiFE). AG enzyme was immobilized on the BiFE by means of gelatin membrane and the activity was measured by the following of liberated 4-nitrophenol from the 4-nitrophenyl-alpha-D-glucopyranoside (PNPGP) which is the synthetic substrate of the enzyme at the working potential of -950 mV. The proposed system was used as an AG based biosensing system. Experimental data showed that the response current of 4-nitrophenol obtained at the BiFE was linear in concentration range between 0.033 and 0.33 mM of PNPGP. Before examining the analytical characteristics, pH optimization of the AG-biosensor was also performed. Furthermore, the proposed method was applied to analyze two different AG inhibitors (Amaryl and Acorbose) which are important in Noninsulin-dependent diabetes mellitus (NIDDM).
Collapse
Affiliation(s)
- Suna Timur
- Ege University, Faculty of Science, Biochemistry Department, Bornova 35100, Izmir, Turkiye.
| | | |
Collapse
|