1
|
de Aguiar Pedott V, Della Rocca DG, Weschenfelder SE, Mazur LP, Gomez Gonzalez SY, Andrade CJD, Moreira RFPM. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122638. [PMID: 39342833 DOI: 10.1016/j.jenvman.2024.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The oil industry is facing substantial environmental challenges, especially in managing waste streams such as Oilfield Produced Water (OPW), which represents a significant component of the industrial ecological footprint. Conventional treatment methods often fail to effectively remove dissolved oils and grease compounds, leading to operational difficulties and incomplete remediation. Electrochemical oxidation (EO) has emerged as a promising alternative due to its operational simplicity and ability to degrade pollutants directly and indirectly, which has already been applied in treating several effluents containing organic compounds. The application of EO treatment for OPW is still in an initial stage, due to the intricate nature of this matrix and scattered information about it. This study provides a technological overview of EO technology for OPW treatment, from laboratory scale to the development of large-scale prototypes, identifying design and process parameters that can potentially permit high efficiency, applicability, and commercial deployment. Research in this domain has demonstrated notable rates of removal of recalcitrant pollutants (>90%), utilizing active and non-active electrodes. Electro-generated active species, primarily from chloride, play a pivotal role in the oxidation of organic compounds. However, the highly saline conditions in OPW hinder the complete mineralization of these organics, which can be improved by using non-active anodes and lower salinity levels. The performance of electrodes greatly influences the efficiency and effectiveness of OPW treatment. Various factors must be considered when selecting the electrode material, such as its conductivity, stability, surface area, corrosion resistance, and cost. Additionally, the specific contaminants present in the OPW, and their electrochemical reactivity must be considered to ensure optimal treatment outcomes. Balancing these considerations can be challenging, but it is crucial for achieving successful OPW treatment. Active electrode materials exhibit a high affinity for chloride molecules, generating more active species than non-active materials, which exhibit more significant degradation potential due to the production of hydroxyl radicals. Regarding scale-up, key challenges include low current efficiency, the formation of by-products, electrode deactivation, and limitations in mass transfer. To address these issues, enhanced mass transfer rates and appropriate residence times can be achieved using flow-through mesh anodes and moderate current densities, which have proven to be the optimal configuration for this process.
Collapse
Affiliation(s)
- Victor de Aguiar Pedott
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniela Gier Della Rocca
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luciana Prazeres Mazur
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Sergio Yesid Gomez Gonzalez
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Cristiano José de Andrade
- Laboratory of Mass Transfer and Numerical Simulation of Chemical Systems - LABSIN-LABMASSA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Regina F P M Moreira
- Laboratory of Energy and Environment - LEMA, Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil.
| |
Collapse
|
2
|
Atrashkevich A, Alum A, Stirling R, Abbaszadegan M, Garcia-Segura S. Approaching easy water disinfection for all: Can in situ electrochlorination outperform conventional chlorination under realistic conditions? WATER RESEARCH 2024; 250:121014. [PMID: 38128307 DOI: 10.1016/j.watres.2023.121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Electrochlorination has gained research interest for its potential application as decentralized water treatment. A number of studies have displayed promising efficiency for water disinfection. However, a comprehensive comparison of in situ electrodisinfection to existing disinfection techniques, particularly under realistic water composition and flow rates, still needs additional research efforts. The aim of this study is to evaluate in situ electrochlorination while comparing the treatment with conventional chemical chlorination for point-of-entry decentralized disinfection at the household level. An electrochemical flow cell reactor was operated in a single pass mode considering water flow and water consumption for a household of four family members. Disinfection efficiency assessment of both electrochemical and chemical chlorination was conducted using bacterial and viral surrogates, E. coli and MS2 bacteriophage. Furthermore, a techno-economic analysis was conducted, using the levelized cost of water, to compare two electrochemical chlorination scenarios (i.e., electrical grid energy use, and solar panel powered system) and benchmarked against the baseline treatment of chemical chlorination. The findings revealed increased inactivation efficiency of in situ electrochlorination over conventional chlorination (p-value < 0.05). The synergetic impact of radicals and chlorine, and/or contribution of high chlorine concentration at acidic pH near anode surface were identified as key factors that could enhance disinfection performance of in situ electrochlorination. The techno-economic analysis demonstrated that electrochemical treatment, when operated using renewable energy sources, is not only a more environmentally sustainable approach, but also emerges as a more economically feasible solution for decentralized water treatment application. The results highlight that in situ electrochlorination is a more advanced alternative to decentralized water chlorination. However, further fundamental research on products and by-products formation under various water matrices is required.
Collapse
Affiliation(s)
- Aksana Atrashkevich
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA
| | - Absar Alum
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Water and Environmental Technology Center, Arizona State University, Tempe, AZ 85281, USA
| | - Robert Stirling
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA
| | - Morteza Abbaszadegan
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Water and Environmental Technology Center, Arizona State University, Tempe, AZ 85281, USA
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
3
|
Gimenes Vernasqui L, de Oliveira Santiago Santos G, Isidro J, Oliveira Silva T, de Vasconcelos Lanza MR, Saez C, Gomes Ferreira N, Rodrigo Rodrigo MA. New diamond coatings for a safer electrolytic disinfection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117871-117880. [PMID: 37875760 DOI: 10.1007/s11356-023-30407-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023]
Abstract
In this work, a new coating of boron-doped diamond ultra-nanocrystalline (U-NBDD), tailored to prevent massive formation of perchlorates during disinfection, is evaluated as electrode for the reclaiming of treated secondary wastewater by the electrochemically assisted disinfection process. Results obtained are compared to those obtained by using a standard electrode (STD) that was evaluated as a standard in previous research showing outstanding performance for this application. First tests were carried out to evaluate the chlorine speciation obtained after the electrolysis of synthetic chloride solutions at two different ranges of current densities. Concentrations of hypochlorite obtained using the U-NBDD anode at 25 mA cm-2 were 1.5-fold higher, outperforming STD anode; however, at 300 mA cm-2, an overturn on the behavior of anodes occurs where the amount of hypochlorite produced on STD anode was 1.5-fold higher. Importantly, at low current density the formation of chlorates and perchlorates is null using U-NBDD. Then, the disinfection of the real effluent of the secondary clarifier of a municipal wastewater treatment facility is assessed, where inactivation of Escherichia coli is achieved at low charge applied per volume electrolyzed (0.08 A h L-1) at 25 mA cm-2 using the U-NBDD. These findings demonstrate the appropriateness of the strategy followed in this work to obtain safer electro-disinfection technologies for the reclaiming of treated wastewater.
Collapse
Affiliation(s)
- Laís Gimenes Vernasqui
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Gessica de Oliveira Santiago Santos
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Julia Isidro
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Taynara Oliveira Silva
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos Roberto de Vasconcelos Lanza
- Grupo de Processos Eletroquímicos e Ambientais, GPEA Research Group -São Carlos São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo, 13566-590, Brazil
| | - Cristina Saez
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain
| | - Neidenei Gomes Ferreira
- Laboratório Associado de Sensores E Materiais, Instituto Nacional de Pesquisas Espaciais (INPE), Av. Dos Astronautas, São José Dos Campos, SP, 1758, 12227 010, Brazil
| | - Manuel Andres Rodrigo Rodrigo
- Electrochemical & Environmental Engineering Lab, TEQUIMA Research Group - Edificio Enrique Costa Novella, Campus Universitario S/N, 13071, Ciudad Real, Spain.
| |
Collapse
|
4
|
Hao Y, Ma H, Proietto F, Prestigiacomo C, Peng Fei M, Galia A, Scialdone O. Removal of phenol in water in the presence of NaCl in undivided cells equipped with carbon felt or Ni cathodes: Effect of air pressure. ChemElectroChem 2022. [DOI: 10.1002/celc.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongyong Hao
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria CHINA
| | - Hongrui Ma
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology School of Environmental Science and Engineering CHINA
| | - Federica Proietto
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Claudia Prestigiacomo
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Ma Peng Fei
- Università degli Studi di Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria CHINA
| | - Alessandro Galia
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Onofrio Scialdone
- Università Ingegneria Chimica Gestionale Informatica Meccanica viale delle Scienze 90128 Palermo ITALY
| |
Collapse
|
5
|
Hao Y, Ma H, Proietto F, Galia A, Scialdone O. Electrochemical treatment of wastewater contaminated by organics and containing chlorides: Effect of operative parameters on the abatement of organics and the generation of chlorinated by-products. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Norra GF, Radjenovic J. Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125557. [PMID: 33721781 DOI: 10.1016/j.jhazmat.2021.125557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
A three-dimensional (3D) electrochemical flow-through reactor equipped with GAC packed bed, polarized by the electric field, was evaluated for the removal of persistent organic contaminants from real sewage effluent. The performance of the reactor was investigated for 27 consecutive runs at two anodic current densities, i.e., low current density (LCD) of 15 A m-2, and high current density (HCD) of 100 A m-2. In the HCD experiments, the adsorption ability of saturated GAC was increased, mainly due to the increase in the mesoporosity of GAC. A synergy between electrosorption/adsorption on GAC and electrooxidation was observed in terms of the removal of all target pollutants. DEET presented the highest synergy, ranging from 40% to 57%, followed by iopromide (22-46%), carbamazepine (15-34%) and diatrizoate (4-30%). The addition of GAC decreased the concentrations of toxic chlorate and perchlorate by 2-fold and 10-fold, respectively, due to their electrosorption on GAC. Also, 3D electrochemical system yielded lower concentrations of adsorbable organic iodide (AOI) and adsorbable organic chlorine (AOCl). Thus, addition of low amounts of GAC in electrochemical systems may be a low-cost and simple way of minimizing the formation and final effluent concentrations of toxic halogenated byproducts.
Collapse
Affiliation(s)
- Giannis-Florjan Norra
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
7
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138379. [PMID: 32278177 DOI: 10.1016/j.scitotenv.2020.138379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
This work focuses on disinfection of water using electrolysis with boron doped diamond (BDD) coatings and faces this challenge by comparing the performance of two different cells manufactured by CONDIAS GmbH (Izehoe, Germany): CONDIACELL® ECWP and CabECO cells. They are both equipped with diamond electrodes, but the mechanical design is completely different, varying not only by geometry but also by the flow conditions. ECWP is a flow-through cell with perforated electrodes while the CabECO cell is a zero-gap cell with a proton exchange membrane as a solid polymer electrolyte (SPE) separating the anode and cathode. At 0.02 Ah dm-3 both cells attain around 3-5 logs pathogen removal, but design and sizing parameters give an advantage to the CabECO: it can minimize the production of chlorates and perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - D Brackemeyer
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
8
|
Wastewater Reclamation in Major Jordanian Industries: A Viable Component of a Circular Economy. WATER 2020. [DOI: 10.3390/w12051276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Water scarcity remains the major looming challenge that is facing Jordan. Wastewater reclamation is considered as an alternative source of fresh water in semi-arid areas with water shortage or increased consumption. In the present study, the current status of wastewater reclamation and reuse in Jordan was analyzed considering 30 wastewater treatment plants (WWTPs). The assessment was based on the WWWTPs’ treatment processes in Jordan, the flowrates scale, and the effluents’ average total dissolved solid (TDS) contents. Accordingly, 60% of the WWTPs in Jordan used activated sludge as a treatment technology; 30 WWTPs were small scale (<1 × 104 m3/day); and a total of 17.932 million m3 treated wastewater had low TDS (<1000 ppm) that generally can be used in industries with relatively minimal cost of treatment. Moreover, the analysis classified the 26 million m3 groundwater abstraction by major industries in Jordanian governorates. The results showed that the reclaimed wastewater can fully offset the industrial demand of fresh water in Amman, Zarqa, and Aqaba governorates. Hence, the environmental assessment showed positive impacts of reclaimed wastewater reuse scenario in terms of water depletion (saving of 72.55 million m3 groundwater per year) and climate change (17.683 million kg CO2Eq reduction). The energy recovery assessment in the small- and medium-scale WWTPs (<10 × 104 m3/day) revealed that generation of electricity by anaerobic sludge digestion equates potentially to an offset of 0.11–0.53 kWh/m3. Finally, several barriers and prospects were put forth to help the stakeholders when considering entering into an agreement to supply and/or reuse reclaimed water.
Collapse
|
9
|
Effect of homogeneous Fenton combined with electron transfer on the fate of inorganic chlorinated species in synthetic and reclaimed municipal wastewater. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113756] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Electrochemical Oxidation/Disinfection of Urine Wastewaters with Different Anode Materials. MATERIALS 2019; 12:ma12081254. [PMID: 30995773 PMCID: PMC6515285 DOI: 10.3390/ma12081254] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 11/26/2022]
Abstract
In the present work, electrochemical technology was used simultaneously for the deactivation of microorganisms and the destruction of micro-pollutants contained in synthetic urine wastewaters. Microorganisms (E. coli) were added to synthetic urine wastewaters to mimic secondary treated sewage wastewaters. Different anode materials were employed including boron-doped diamond (BDD), dimensionally stable anode (DSA: IrO2 and RuO2) and platinum (Pt). The results showed that for the different anode materials, a complete deactivation of E. coli microorganisms at low applied electric charge (1.34 Ah dm−3) was obtained. The complete deactivation of microorganisms in wastewater seems to be directly related to active chlorine and oxygen species electrochemically produced at the surface of the anode material. Complete depletion of COD and TOC can be attained during electrolyses with BDD anode after the consumption of specific electric charges of 4.0 and 8.0 Ah dm−3, respectively. Higher specific electric charges (>25 Ah dm−3) were consumed to removal completely COD and about 75% of TOC during electrolyses with DSA anodes (IrO2 and RuO2). However, the electrolysis using Pt anode can partially remove and even after the consumption of high specific electric charges (>40 Ah dm−3) COD and TOC did not exceed 50 and 25%, respectively. Active chlorine species including hypochlorite ions and chloramines formed during electrolysis contribute not only to deactivate microorganisms but also to degrade organics compounds. High conversion yields of organic nitrogen into nitrates and ammonium were achieved during electrolysis BDD and DSA anodes. The results have confirmed that BDD anode is more efficient than with IrO2, RuO2 and Pt electrodes in terms of COD and TOC removals. However, higher amounts of perchlorates were measured at the end of the electrolysis using BDD anode.
Collapse
|
12
|
Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Isidro J, Llanos J, Sáez C, Brackemeyer D, Cañizares P, Matthee T, Rodrigo MA. Can CabECO ® technology be used for the disinfection of highly faecal-polluted surface water? CHEMOSPHERE 2018; 209:346-352. [PMID: 29935463 DOI: 10.1016/j.chemosphere.2018.06.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
In this work, the disinfection of highly faecal-polluted surface water was studied using a new electrochemical cell (CabECO® cell, manufactured by CONDIAS) specifically designed to produce ozone in water with very low conductivity. The disinfection tests were carried out in a discontinuous mode to evaluate the influence of the electrode current charge passed. The effect of the current density was also studied in order to optimize the disinfection conditions and to simultaneously prevent the formation of undesirable by-products (chlorates and perchlorates) during the electrolysis. The results demonstrate that this technology is robust and efficient, and it can suitably disinfect water. During electrolysis, the chloride contained in the water was oxidized to hypochlorite, and this compound was combined with ammonia to form chloramines. Both hypochlorite and chloramines (formed by the well-known break point reaction) promoted persistent disinfection and seemed to be mainly responsible for the disinfection attained during the electrochemical process. Chlorate and perchlorate could also be produced, although the low concentrations of chloride in the tested water made them irrelevant. The removal of the total organic carbon under the applied operating conditions was not very efficient (although it reached 50% in 2 h) and the production of trihalomethanes was very low, below 100 ppb for all tests.
Collapse
Affiliation(s)
- Julia Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Enrique Costa Novella Building, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Javier Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Enrique Costa Novella Building, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Enrique Costa Novella Building, Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | | | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Enrique Costa Novella Building, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | | | - Manuel A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Enrique Costa Novella Building, Campus Universitario s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
14
|
Isidro J, Llanos J, Sáez C, Lobato J, Cañizares P, Rodrigo MA. Pre-disinfection columns to improve the performance of the direct electro-disinfection of highly faecal-polluted surface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:135-140. [PMID: 29807263 DOI: 10.1016/j.jenvman.2018.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 05/03/2023]
Abstract
This work presents the design and evaluation of a new concept of pre-disinfection treatment that is especially suited for highly polluted surface water and is based on the combination of coagulation-flocculation, lamellar sedimentation and filtration into a single-column unit, in which the interconnection between treatments is an important part of the overall process. The new system, the so-called PREDICO (PRE-DIsinfection Column) system, was built with low-cost consumables from hardware stores (in order to promote in-house construction of the system in poor countries) and was tested with a mixture of 20% raw wastewater and 80% surface water (in order to simulate an extremely bad situation). The results confirmed that the PREDICO system helps to avoid fouling in later electro-disinfection processes and attains a remarkable degree of disinfection (3-4 log units), which supplements the removal of pathogens attained by the electrolytic cell (more than 4 log units). The most important sizing parameters for the PREDICO system are the surface loading rate (SLR) and the hydraulic residence time (HRT); SLR values under 20 cm min-1 and HRT values over 13.6 min in the PREDICO system are suitable to warrant efficient performance of the system.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| |
Collapse
|
15
|
Zaidi SZJ, Harito C, Walsh FC, Ponce de León C. Decolourisation of reactive black-5 at an RVC substrate decorated with PbO2/TiO2 nanosheets prepared by anodic electrodeposition. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-3992-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Cotillas S, Cañizares L, Muñoz M, Sáez C, Cañizares P, Rodrigo MA. Is it really important the addition of salts for the electrolysis of soil washing effluents? Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ding J, Zhao QL, Jiang JQ, Wei LL, Wang K, Zhang YS, Hou WZ, Yu H. Electrochemical disinfection and removal of ammonia nitrogen for the reclamation of wastewater treatment plant effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5152-5158. [PMID: 27068905 DOI: 10.1007/s11356-016-6618-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Residual ammonia and pathogenic microorganisms restrict the reclamation and reuse of wastewater treatment plant (WWTP) effluent. An electrochemical system was developed for the simultaneous removal of ammonia and disinfection of actual WWTP effluent. The performance of the electrochemical process on synthetic wastewater at different chloride ion concentrations was also investigated. Results demonstrated that the optimal chloride concentration for ammonia and Escherichia coli (E. coli) removal was 250 mg/L. Successful disinfection of E. coli in actual effluent was achieved at 0.072 Ah/L, but the inverse S-type inactivation curve indicated that there was a competitive consumption of strong oxidants and chloramines working as another disinfectant. A higher electric charge (0.58 Ah/L) was required to simultaneously reduce E. coli and ammonia to levels that meet the reclamation requirements for WWTP effluent. At this electric charge, no trihalomethane, chlorate, or perchlorate in the system was observed, indicating the biological safety of this process. These results demonstrate the potential of this electrochemical process as a tertiary wastewater treatment process for WWTP effluent reclamation purposes.
Collapse
Affiliation(s)
- Jing Ding
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Qing-Liang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jun-Qiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Liang-Liang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Yun-Shu Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei-Zhu Hou
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
18
|
Cotillas S, Llanos J, Castro-Ríos K, Taborda-Ocampo G, Rodrigo MA, Cañizares P. Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes. CHEMOSPHERE 2016; 163:562-568. [PMID: 27570213 DOI: 10.1016/j.chemosphere.2016.08.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 05/03/2023]
Abstract
This work focuses on the disinfection actual urban wastewater by the combination of ultrasound (US) irradiation and electrodisinfection with Dimensionally Stable Anodes (DSA). First, the inactivation of Escherichia coli (E. coli) during the sonochemical disinfection was studied at increasing ultrasound power. Results showed that it was not possible to achieve a complete disinfection, even at the highest US power (200 W) dosed by the experimental device used. Next, the electrodisinfection with DSA anodes at different current densities was studied, finding that it was necessary a minimum current density of 11.46 A m(-2) to reach the complete disinfection. Finally, an integrated sonoelectrodisinfection process was studied. Results showed a synergistic effect when coupling US irradiation with DSA electrodisinfection, with a synergy coefficient higher than 200% of the disinfection rate attained for the highest US power applied. In this process, hypochlorite and chloramines were identified as the main reagents for the disinfection process (neither chlorate nor perchlorate were detected), and the presence of trihalomethanes was far below acceptable values. Confirming this synergistic effect with DSA anodes opens the door to novel efficient disinfection processes, limiting the occurrence of hazardous disinfection by-products.
Collapse
Affiliation(s)
- Salvador Cotillas
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Javier Llanos
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - Katherin Castro-Ríos
- Chemical Department, Faculty of Natural Sciences, University of Caldas, A.A. 265 Manizales, Colombia
| | - Gonzalo Taborda-Ocampo
- Chemical Department, Faculty of Natural Sciences, University of Caldas, A.A. 265 Manizales, Colombia
| | - Manuel A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
19
|
Martín de Vidales MJ, Cotillas S, Perez-Serrano JF, Llanos J, Sáez C, Cañizares P, Rodrigo MA. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:19713-22. [PMID: 27406224 DOI: 10.1007/s11356-016-7189-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/05/2016] [Indexed: 05/03/2023]
Abstract
This work focuses on the scale-up of electrochemical and photoelectrochemical oxidation processes with diamond anodes for the removal of organic pollutants and disinfection of treated urban wastewater, two of the most important parameters for the reclaiming of wastewater. The removal of organics was studied with actual biologically treated urban wastewater intensified with 100 mg dm(-3) of caffeine, added as a trace organic pollutant. The disinfection was also studied with biologically treated urban wastewater, and Escherichia coli was used to monitor the efficiency of the process. Results obtained with a single DiaCell® 101 were compared with those obtained with a single-stack DiaCell® 1001 and with a pilot plant made up of five of these stacks. Results obtained demonstrate that scale-up is not a simple but a very complex process, in which not only the electrode and the irradiation dose are important but also mass transfer conditions. Enhanced mass transport conditions have a determining and very positive effect on the removal of organics and a negative effect on the disinfection. Likewise, ultraviolet (UV) irradiation affects in a different way in the different setups used, having a great influence on the removal of complex organics and on the speciation of oxidants produced during disinfection. This works helps to understand the key differences observed in the scale-up, and it is a first approach for future works focused on the real application of conductive diamond electrochemical oxidation.
Collapse
Affiliation(s)
- María J Martín de Vidales
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - José F Perez-Serrano
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - Javier Llanos
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technology, Universidad de Castilla-La Mancha, Edificio E. Costa, Campus Universitario s/n 13071, Ciudad Real, Spain.
| |
Collapse
|
20
|
Electrochemical degradation of Acid Blue 113 dye using TiO 2 -nanotubes decorated with PbO 2 as anode. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Dos Santos EV, Sáez C, Martínez-Huitle CA, Cañizares P, Rodrigo MA. Removal of oxyfluorfen from ex-situ soil washing fluids using electrolysis with diamond anodes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 171:260-266. [PMID: 26846982 DOI: 10.1016/j.jenvman.2016.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
In this research, firstly, the treatment of soil spiked with oxyfluorfen was studied using a surfactant-aided soil-washing (SASW) process. After that, the electrochemical treatment of the washing liquid using boron doped diamond (BDD) anodes was performed. Results clearly demonstrate that SASW is a very efficient approach in the treatment of soil, removing the pesticide completely by using dosages below 5 g of sodium dodecyl sulfate (SDS) per Kg of soil. After that, complete mineralization of organic matter (oxyflourfen, SDS and by-products) was attained (100% of total organic carbon and chemical oxygen demand removals) when the washing liquids were electrolyzed using BDD anodes, but the removal rate depends on the size of the particles in solution. Electrolysis of soil washing fluids occurs via the reduction in size of micelles until their complete depletion. Lower concentrations of intermediates are produced (sulfate, chlorine, 4-(trifluoromethyl)-phenol and ortho-nitrophenol) during BDD-electrolyzes. Finally, it is important to indicate that, sulfate (coming from SDS) and chlorine (coming from oxyfluorfen) ions play an important role during the electrochemical organic matter removal.
Collapse
Affiliation(s)
- Elisama Vieira Dos Santos
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova CEP 59078-970, Natal, RN, Brazil
| | - Cristina Sáez
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | | | - Pablo Cañizares
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel Andres Rodrigo
- Department of Chemical Engineering, Universidad de Castilla - La Mancha, Enrique Costa Building, Campus Universitario s/n, 13071, Ciudad Real, Spain
| |
Collapse
|
22
|
Lyu S, Chen W, Zhang W, Fan Y, Jiao W. Wastewater reclamation and reuse in China: Opportunities and challenges. J Environ Sci (China) 2016; 39:86-96. [PMID: 26899648 DOI: 10.1016/j.jes.2015.11.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
The growing water stress both in terms of water scarcity and quality deterioration promotes the development of reclaimed water as a new water resource use. This paper reviewed wastewater reuse practices in China, and the opportunities and challenges of expanding reclaimed water use were analyzed. Rapid urbanization with the increasing of water demand and wastewater discharge provides an opportunity for wastewater reuse. The vast amount of wastewater discharge and low reclaimed water production mean that wastewater reuse still has a great potential in China. Many environmental and economic benefits and successful reclamation technologies also provide opportunities for wastewater reuse. In addition, the overall strategy in China is also encouraging for wastewater reuse. In the beginning stage of wastewater reclamation and reuse, there are many significant challenges to expand wastewater reuse in China including slow pace in adopting urban wastewater reuse programs, the establishment of integrated water resources management framework and guidelines for wastewater reuse programs, incoherent water quality requirements, the limited commercial development of reclaimed water and the strengthening of public awareness and cooperation among stakeholders.
Collapse
Affiliation(s)
- Sidan Lyu
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Weiping Chen
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Weiling Zhang
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yupeng Fan
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wentao Jiao
- State Key Laboratory for Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
23
|
Lin Z, Yao W, Wang Y, Yu G, Deng S, Huang J, Wang B. Perchlorate formation during the electro-peroxone treatment of chloride-containing water: Effects of operational parameters and control strategies. WATER RESEARCH 2016; 88:691-702. [PMID: 26580085 DOI: 10.1016/j.watres.2015.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/26/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the degradation of clofibric acid and formation of perchlorate during the electro-peroxone (E-peroxone) treatment of chloride-containing (26.1-100 mg L(-1)) water (Na2SO4 electrolytes and secondary effluents). The E-peroxone process involves sparging O2 and O3 gas mixture into an electrolysis reactor where a carbon-based cathode is used to electrochemically convert the sparged O2 to H2O2. The electro-generated H2O2 then reacts with sparged O3 to produce OH, which can rapidly oxidize pollutants in the bulk solution. When boron-doped diamond (BDD) electrodes were used as the anode, perchlorate concentrations increased significantly from undetectable levels to ∼15-174 mg L(-1) in the different water samples as the applied current density was increased from 4 to 32 mA cm(-2). In contrast, no ClO4(-) was detected when Pt/Ti anodes were used in the E-peroxone process operated under similar reaction conditions. In addition, when sufficient O3 was sparged to maximize OH production from its peroxone reaction with electro-generated H2O2, the E-peroxone process with Pt/Ti anodes achieved comparable clofibric acid degradation and total organic carbon (TOC) removal yields as that with BDD anodes, but did not generate detectable ClO4(-). These results indicate that by optimizing operational parameters and using Pt/Ti anodes, the E-peroxone process can achieve the goal of both fast pollutant degradation and ClO4(-) prevention during the treatment of chloride-containing wastewater.
Collapse
Affiliation(s)
- Zhirong Lin
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Weikun Yao
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yujue Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Shubo Deng
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Fernandes A, Santos D, Pacheco MJ, Ciríaco L, Simões R, Gomes AC, Lopes A. Electrochemical treatment of cork boiling wastewater with a boron-doped diamond anode. ENVIRONMENTAL TECHNOLOGY 2015; 36:26-35. [PMID: 25409580 DOI: 10.1080/09593330.2014.934743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Anodic oxidation at a boron-doped diamond anode of cork boiling wastewater was successfully used for mineralization and biodegradability enhancement required for effluent discharge or subsequent biological treatment, respectively. The influence of the applied current density (30-70 mA/cm2) and the background electrolyte concentration (0-1.5 g/L Na2SO4) on the performance of the electrochemical oxidation was investigated. The supporting electrolyte was required to achieve conductivities that enabled anodic oxidation at the highest current intensities applied. The results indicated that pollutant removal increased with the applied current density, and after 8 h, reductions greater than 90% were achieved for COD, dissolved organic carbon, total phenols and colour. The biodegradability enhancement was from 0.13 to 0.59 and from 0.23 to 0.72 for the BOD/COD ratios with BOD of 5 and 20 days' incubation period, respectively. The tests without added electrolyte were performed at lower applied electrical charges (15 mA/cm2 or 30 V) with good organic load removal (up to 80%). For an applied current density of 30 mA/cm2, there was a minimum of electric conductivity of 1.9 mS/cm (corresponding to 0.75 g/L of Na2SO4), which minimized the specific energy consumption.
Collapse
Affiliation(s)
- Annabel Fernandes
- a UMTP and Department of Chemistry , University of Beira Interior , 6201-001 Covilhã , Portugal
| | | | | | | | | | | | | |
Collapse
|
25
|
Barrera-Díaz CE, Frontana-Uribe BA, Roa-Morales G, Bilyeu BW. Reduction of pollutants and disinfection of industrial wastewater by an integrated system of copper electrocoagulation and electrochemically generated hydrogen peroxide. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2015; 50:406-413. [PMID: 25723067 DOI: 10.1080/10934529.2015.987547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was to evaluate the effect of copper electrocoagulation and hydrogen peroxide on COD, color, turbidity, and bacterial activity in a mixed industry wastewater. The integrated system of copper electrocoagulation and hydrogen peroxide is effective at reducing the organic and bacterial content of industrial wastewater. The copper electrocoagulation alone reduces COD by 56% in 30 min at pH 2.8, but the combined system reduces COD by 78%, biochemical oxygen demand (BOD5) by 81%, and color by 97% under the same conditions. Colloidal particles are flocculated effectively, as shown by the reduction of zeta potential and the 84% reduction in turbidity and 99% reduction in total solids. Additionally, the total coliforms, fecal coliforms, and bacteria are all reduced by 99%. The integrated system is effective and practical for the reduction of both organic and bacterial content in industrial wastewater.
Collapse
Affiliation(s)
- Carlos E Barrera-Díaz
- a Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM , Toluca , Estado de México , México
| | | | | | | |
Collapse
|
26
|
Garcia-Segura S, Keller J, Brillas E, Radjenovic J. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:551-557. [PMID: 25464295 DOI: 10.1016/j.jhazmat.2014.10.003] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/03/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl(-) ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl2/HClO/ClO(-)), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO(-) species led to the production of ClO3(-) and ClO4(-) ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.
Collapse
Affiliation(s)
- Sergi Garcia-Segura
- Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072, Australia; Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Jürg Keller
- Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072, Australia
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Jelena Radjenovic
- Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072, Australia.
| |
Collapse
|
27
|
|
28
|
Chaplin BP. Critical review of electrochemical advanced oxidation processes for water treatment applications. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1182-203. [PMID: 24549240 DOI: 10.1039/c3em00679d] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH˙) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4(-) and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment.
Collapse
Affiliation(s)
- Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Ave., Chicago, IL 60607, USA.
| |
Collapse
|
29
|
Llanos J, Cotillas S, Cañizares P, Rodrigo MA. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. WATER RESEARCH 2014; 53:329-338. [PMID: 24531029 DOI: 10.1016/j.watres.2014.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
This work presents an integrated electrodisinfection/electrocoagulation (ED-EC) process for urban wastewater reuse that employs iron bipolar electrodes. Boron doped diamond (BDD) was used as the anode and stainless steel (SS) as the cathode. A perforated iron plate was introduced between the anode and cathode to function as a bipolar electrode. This ED-EC combined cell makes it possible to conduct the simultaneous removal of microbiological content and elimination of turbidity from urban wastewater. The results show that current densities greater than or equal to 6.70 A m(-2) enable complete disinfection of the effluent and the removal of more than 90% of its initial turbidity. Hypochlorite and chloramines formed during the ED-EC process were found to be the main compounds responsible for the disinfection process. Furthermore, a cell configuration of cathode (inlet)-anode (outlet) improves the process performance by enhancing turbidity removal. Finally, the influence of the bipolar electrode material (iron or aluminium) was assessed. The results indicate that the efficiency of the electrodisinfection process depends mainly on the anodic material and is not influenced by the material of the bipolar electrode. In contrast, the removal of turbidity is more efficient when using iron as a bipolar electrode, especially at low current densities, due to the formation of a passive layer on the aluminium that hinders the dissolution of the bipolar electrode.
Collapse
Affiliation(s)
- Javier Llanos
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - Salvador Cotillas
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
30
|
Norton-Brandão D, Scherrenberg SM, van Lier JB. Reclamation of used urban waters for irrigation purposes--a review of treatment technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 122:85-98. [PMID: 23562951 DOI: 10.1016/j.jenvman.2013.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 06/02/2023]
Abstract
The worldwide fresh water scarcity is increasing the demand for non-conventional water resources. Despite the technology being available for application of treated wastewater in irrigation, the use of effluent in agriculture is not being properly managed in the majority of cases. Industrial countries, where financial resources are available but restricted, face difficulties in some cases related to the lack of a complete definition of irrigation water quality standards, as well as to the lack of monitoring components that determine if the effluent is suitable for such use. The present paper presents a critical review on urban reclamation technologies for irrigation. The technologies are presented by the four most important parameters for irrigation water quality: salinity, pathogens, nutrients and heavy metals. An overview is given of the current, on-going evaluation of different reclamation technologies for irrigation.
Collapse
Affiliation(s)
- Diana Norton-Brandão
- Department of Water Management, Delft University of Technology, Delft, The Netherlands.
| | | | | |
Collapse
|
31
|
Cotillas S, Llanos J, Cañizares P, Mateo S, Rodrigo MA. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation. WATER RESEARCH 2013; 47:1741-50. [PMID: 23351433 DOI: 10.1016/j.watres.2012.12.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 05/21/2023]
Abstract
In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent.
Collapse
Affiliation(s)
- Salvador Cotillas
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | | | | | | | | |
Collapse
|
32
|
Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode. Electrochem commun 2012. [DOI: 10.1016/j.elecom.2012.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|