1
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Direct Extracellular Electron Transfer from Escherichia coli through Modified Carbon Nanoparticles. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Kim YJ, Hong H, Yun J, Kim SI, Jung HY, Ryu W. Photosynthetic Nanomaterial Hybrids for Bioelectricity and Renewable Energy Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005919. [PMID: 33236450 DOI: 10.1002/adma.202005919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Harvesting solar energy in the form of electricity from the photosynthesis of plants, algal cells, and bacteria has been researched as the most environment-friendly renewable energy technology in the last decade. The primary challenge has been the engineering of electrochemical interfacing with photosynthetic apparatuses, organelles, or whole cells. However, with the aid of low-dimensional nanomaterials, there have been many advances, including enhanced photon absorption, increased generation of photosynthetic electrons (PEs), and more efficient transfer of PEs to electrodes. These advances have demonstrated the possibility for the technology to advance to a new level. In this article, the fundamentals of photosynthesis are introduced. How PE harvesting systems have improved concerning solar energy absorption, PE production, and PE collection by electrodes is discussed. The review focuses on how different kinds of nanomaterials are applied and function in interfacing with photosynthetic materials for enhanced PE harvesting. Finally, the review analyzes how the performance of PE harvesting and stand-alone systems have evolved so far and its future prospects.
Collapse
Affiliation(s)
- Yong Jae Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Hyeonaug Hong
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - JaeHyoung Yun
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Seon Il Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Ho Yun Jung
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - WonHyoung Ryu
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| |
Collapse
|
4
|
Lee J, Shin H, Kang C, Kim S. Solar Energy Conversion through Thylakoid Membranes Wired by Osmium Redox Polymer and Indium Tin Oxide Nanoparticles. CHEMSUSCHEM 2021; 14:2216-2225. [PMID: 33754497 DOI: 10.1002/cssc.202100288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Indexed: 06/12/2023]
Abstract
For several decades, much attention has been paid to thylakoid membranes (TMs) as photocatalysts for converting solar light to electricity. Despite extensive research, current technology provides only limited photocurrents. Here, a novel method based on TM-composite material was developed for achieving high photocurrent. When a thin film composed of TMs, osmium redox polymer (Os-RP), and indium tin oxide nanoparticles (ITOnp) was formed on a porous graphite surface, appreciable photocurrent as high as 0.5 mA cm-2 was achieved at 0.4 V vs. Ag/AgCl. Each component plays its own role in transferring electrons from TMs to the anode, resulting in sharp drop in photocurrent with missing any component. Optimization between these three components showed 1 : 0.5 : 30 (TM/Os-RP/ITOnp) was the best ratio. Action spectra confirmed that TMs was the origin of photocurrent. It was inferred from blocking experiments using 3-(3,4-dichlorophenyl)-1,1-dimethylurea as an inhibitor that about 41 % of photocurrent was transferred from QA in photosystem II to the electrode via Os-RP and ITOnp. Quantum efficiencies at 430 and 660 nm were 12.2 and 18.5 %, respectively. Turnover frequency for water oxidation depended upon the amount of the composite. A complete cell with Pt/C cathode produced Pmax of 122 μW cm-2 at 758 μA cm-2 under one sun illumination, which is the highest power density to our knowledge. This study opened a possibility of using TMs as photocatalysts for solar energy conversion.
Collapse
Affiliation(s)
- Jinhwan Lee
- Department of Systems Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neudong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Hyosul Shin
- Department of Chemistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk, 54896, Korea
| | - Chan Kang
- Department of Chemistry, Jeonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk, 54896, Korea
| | - Sunghyun Kim
- Department of Systems Biotechnology, Konkuk Institute of Technology, Konkuk University, 120 Neudong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
5
|
Ciornii D, Kölsch A, Zouni A, Lisdat F. A precursor-approach in constructing 3D ITO electrodes for the improved performance of photosystem I-cyt c photobioelectrodes. NANOSCALE 2019; 11:15862-15870. [PMID: 31380869 DOI: 10.1039/c9nr04344f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years the use of photoelectrodes based on conductive metal oxides has become very popular in the field of photovoltaics. The application of 3D electrodes holds great promise since they can integrate large amounts of photoactive proteins. In this study photosystem I (PSI) from the thermophilic cyanobacterium Thermosynechococcus elongatus was immobilized on 3D ITO electrodes and electrically wired via the redox protein cytochrome c (cyt c). The main goal, however, was the investigation of construction parameters of such electrodes for achieving a high performance. For this, ITO electrodes were constructed from liquid precursors resulting in improved transmission compared to previous nanoparticle-based preparation protocols. First, the doping level of Sn was varied for establishing suitable conditions for a fast cyt c electrochemistry on such 3D electrodes. In a second step the pore diameter was varied in order to elucidate optimal conditions. Third, the scalability of the template-based preparation was studied from 3 to 15 layers during spin coating and the subsequent baking step. In the thickness range from 3 to 17 μm no limitation in the protein immobilization and also in the photocurrent generation was found. Consequently, a photocurrent of about 270 μA cm-2 and a turnover number (Te) of 30 e- s-1 at PSI were achieved. Because of the high current flow the withdrawal of electrons at the stromal side of PSI becomes clearly rate limiting. Here improved transport conditions and alternative electron acceptors were studied to overcome this limitation.
Collapse
Affiliation(s)
- Dmitri Ciornii
- Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University Wildau, 15745 Wildau, Hochschulring 1, Germany.
| | | | | | | |
Collapse
|
6
|
Liu Y, Daye J, Jenson D, Fong S. Evaluating the efficiency of a photoelectrochemical electrode constructed with photosystem II-enriched thylakoid membrane fragments. Bioelectrochemistry 2018; 124:22-27. [PMID: 29990598 DOI: 10.1016/j.bioelechem.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 01/14/2023]
Abstract
The photoelectrochemical electrode has been intensively studied in recent years as a means of generating electricity from light through the use of intact thylakoid membranes or highly purified photosystem II. PSII-enriched thylakoid membrane fragments (PSII-BBY), also have the potential to construct the photoelectrochemical anode. In this study, we examined the feasibility of utilizing PSII-BBY preparations to construct a relatively inexpensive photoelectrochemical anode with a comparable current density and a reasonable stability. Intact thylakoid membrane based photoelectrochemical electrode was also constructed to compare with the PSII-BBY based photoelectrochemical electrode with respect to the protein activity and current density. In addition, the practicability of replacing the popular gold nanoparticle modified gold slide with multi-walled carbon nanotube modified indium tin oxide coated slides was tested. In order to understand the surface change during slide surface modification, an atomic force microscope (AFM) was used to image the topography of the slide. Above all, we observed a current density of 20.44 ± 1.58 μA/cm2 when PSII-BBY was used to construct the photoelectrochemical anode. Moreover, the PSII-BBY based photoelectrochemical anode showed high stability over time with the current decreasing at a rate of 0.78%/h.
Collapse
Affiliation(s)
- Yang Liu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States
| | - John Daye
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States
| | - David Jenson
- Department of Chemistry, Virginia Commonwealth University, United States
| | - Stephen Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, United States.
| |
Collapse
|
7
|
Kang N, Lee J, Kim S. Photocurrent Generation from Immobilized Anabaena variabilis
on the Carbon Soot-coated Electrode with an Aid of Thionin. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nahye Kang
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | - Jinhwan Lee
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| | - Sunghyun Kim
- Department of Bioscience and Biotechnology; Konkuk University; Seoul 05029 South Korea
| |
Collapse
|
8
|
Longatte G, Rappaport F, Wollman FA, Guille-Collignon M, Lemaître F. Electrochemical Harvesting of Photosynthetic Electrons from Unicellular Algae Population at the Preparative Scale by Using 2,6-dichlorobenzoquinone. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
Hybrid bio-photo-electro-chemical cells for solar water splitting. Nat Commun 2016; 7:12552. [PMID: 27550091 PMCID: PMC4996976 DOI: 10.1038/ncomms12552] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 07/12/2016] [Indexed: 11/21/2022] Open
Abstract
Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here we show how the photocatalytic activity of thylakoid membranes leads to overall water splitting in a bio-photo-electro-chemical (BPEC) cell via a simple process. Thylakoids extracted from spinach are introduced into a BPEC cell containing buffer solution with ferricyanide. Upon solar-simulated illumination, water oxidation takes place and electrons are shuttled by the ferri/ferrocyanide redox couple from the thylakoids to a transparent electrode serving as the anode, yielding a photocurrent density of 0.5 mA cm−2. Hydrogen evolution occurs at the cathode at a bias as low as 0.8 V. A tandem cell comprising the BPEC cell and a Si photovoltaic module achieves overall water splitting with solar to hydrogen efficiency of 0.3%. These results demonstrate the promise of combining natural photosynthetic membranes and man-made photovoltaic cells in order to convert solar power into hydrogen fuel. Photoelectrochemical water splitting uses solar power to decompose water to hydrogen and oxygen. Here, the authors integrate thylakoid membranes extracted from spinach into a bio-photo-electro-chemical cell capable of overall water splitting without the need for any sacrificial reagents.
Collapse
|