1
|
Arul C, Veerapandi G, Sekar C. Selective and simultaneous electrochemical detection of nitrite and nitrate ions using Ag-MOF: Food and water analyses. Food Chem 2025; 484:144457. [PMID: 40286708 DOI: 10.1016/j.foodchem.2025.144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/20/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
We report the synthesis of metal organic framework (MOF) based on Ag and phenylenediamine (C6H4(NH2)2) and its application for detection of both nitrites and nitrates. Ag-MOF modified glassy carbon electrode (GCE) revealed a significantly higher electrocatalytic activity towards selective oxidation of NO2- and reduction of NO3- over wider concentration ranges of 4-4040 μmol/L and 20-4750 μmol/L respectively and the corresponding lowest detection limits have been deduced as 0.045 μmol/L and 12 μmol/L. Interestingly, cyclic voltammetric measurements at Ag-MOF/GCE in phosphate buffer saline (pH 5.0) exhibited both anodic (NO2-) and cathodic (NO3-) peaks indicating the possibility for simultaneous detection of the two nitrogen compounds. Further, the fabricated electrode has been successfully used to determine NO2- and NO3- concentrations in beetroot, spinach, canned chicken and pond water with excellent relative standard deviation (RSD) values and recovery percentages. The results suggest the potential application of the fabricated sensor for food and environmental analyses.
Collapse
Affiliation(s)
- Chelladurai Arul
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India
| | - Ganesan Veerapandi
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India
| | - Chinnathambi Sekar
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu, India.
| |
Collapse
|
2
|
Wang TT, Yuan CC, Lu YK, Chang CW, Kulandaivel S, Yeh YC. Enhanced assessment of water quality for both nitrate and nitrite using engineered E. coli with para-aminobenzoic acid biosynthesis. Anal Chim Acta 2025; 1338:343580. [PMID: 39832852 DOI: 10.1016/j.aca.2024.343580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E. coli to biosynthesize para-aminobenzoic acid (PABA) via the shikimate pathway, replacing conventional sulfonamides in the Griess reaction. This approach significantly reduces environmental impact while maintaining high analytical performance. RESULTS This study introduces a sustainable approach for simultaneously detecting nitrate and nitrite in water using a combination of E. coli strains DH5α and BL21. Metabolically engineered E. coli BL21 produces PABA via the shikimate pathway, replacing synthetic chemicals in the modified Griess reaction. The modified Griess reaction, utilizing PABA, achieved a high sensitivity detection limit of 0.57 μM with excellent selectivity for nitrite over other ions. Recognizing the importance of portability for on-site, real-time water quality assessment, we developed a paper-based detection system utilizing lyophilized cell supernatant. To enhance portability, we developed a paper-based method for detecting nitrite using lyophilized cell supernatant. This approach confirmed successful nitrite detection through a clear colorimetric response, enabling immediate and quantitative analysis of nitrate and nitrite. Validation with real-world water samples yielded a recovery rate of 90-100 %, comparable to the Griess Reagent, confirming the effectiveness and reliability of the proposed sensors for environmental monitoring. By integrating the capabilities of two E. coli strains, this dual-detection system uniquely allows simultaneous quantification of nitrate and nitrite in a single sample, significantly advancing the field of water quality monitoring. SIGNIFICANCE AND NOVELTY This study demonstrates a sustainable, high-sensitivity solution for water quality monitoring by combining microbial metabolic engineering with a portable, paper-based detection platform. The approach meets EPA standards, minimizes environmental impact, and provides a practical tool for field-testing, underscoring the potential of engineered microbes for eco-friendly and effective environmental monitoring.
Collapse
Affiliation(s)
- Tsun-To Wang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Ching Yuan
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Yung-Kang Lu
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chia-Wen Chang
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | | | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
3
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
4
|
Shahmirzaee M, Nagai A. An Appraisal for Providing Charge Transfer (CT) Through Synthetic Porous Frameworks for their Semiconductor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307828. [PMID: 38368249 DOI: 10.1002/smll.202307828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Indexed: 02/19/2024]
Abstract
In recent years, there has been considerable focus on the development of charge transfer (CT) complex formation as a means to modify the band gaps of organic materials. In particular, CT complexes alternate layers of aromatic molecules with donor (D) and acceptor (A) properties to provide inherent electrical conductivity. In particular, the synthetic porous frameworks as attractive D-A components have been extensively studied in recent years in comparison to existing D-A materials. Therefore, in this work, the synthetic porous frameworks are classified into conjugated microporous polymers (CMPs), covalent organic frameworks (COFs), and metal-organic frameworks (MOFs) and compare high-quality materials for CT in semiconductors. This work updates the overview of the above porous frameworks for CT, starting with their early history regarding their semiconductor applications, and lists CT concepts and selected key developments in their CT complexes and CT composites. In addition, the network formation methods and their functionalization are discussed to provide access to a variety of potential applications. Furthermore, several theoretical investigations, efficiency improvement techniques, and a discussion of the electrical conductivity of the porous frameworks are also highlighted. Finally, a perspective of synthetic porous framework studies on CT performance is provided along with some comparisons.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- ENSEMBLE 3 - Centre of Excellence, Warsaw, 01-919, Poland
| |
Collapse
|
5
|
Aoki K, Matsuzawa T, Suetsugu K, Hara M, Nagano S, Nagao Y. Influence of Humidity on Layer-by-Layer Growth and Structure in Coordination Networks. Inorg Chem 2024; 63:6674-6682. [PMID: 38560782 DOI: 10.1021/acs.inorgchem.3c04526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal-organic frameworks (MOFs) are promising materials because of their high designability of pores and functionalities. Especially, MOF thin films and their properties have been investigated toward applications in nanodevices. Typically, MOF thin films are fabricated by using a bottom-up method such as layer-by-layer (LbL) growth in air. Because the water molecules can coordinate and be replaced with organic linkers during synthesis, humidity conditions will be expected to influence the LbL growth processes. In this study, we fabricated MOF thin films composed of Zn2+, tetrakis-(4-carboxyphenyl)-porphyrin (TCPP), and 4,4'-bipyridyl (bpy) at 10 and 40% relative humidity (RH) conditions. Then, we investigated the humidity effects on chemical compositions of TCPP and bpy, periodic structure, orientation, and surface morphology. At high RH, coordination replacement of water with the organic linkers becomes more competitive than that at low RH, resulting in a different TCPP/bpy composition ratio between the two RH conditions. Also, more frequent coordination replacements of water with the organic linkers at high RH led to the formation of phases other than that observed at low RH, loss of growth orientation, and rough surface. The findings clarified the importance of controlling the RH condition during LbL growth to obtain the desired coordination networks.
Collapse
Affiliation(s)
- Kentaro Aoki
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Toshitaka Matsuzawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Kota Suetsugu
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
6
|
Jagirani MS, Zhou W, Nazir A, Akram MY, Huo P, Yan Y. A Recent Advancement in Food Quality Assessment: Using MOF-Based Sensors: Challenges and Future Aspects. Crit Rev Anal Chem 2024; 55:581-602. [PMID: 38252119 DOI: 10.1080/10408347.2023.2300660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Monitoring food safety is crucial and significantly impacts the ecosystem and human health. To adequately address food safety problems, a collaborative effort needed from government, industry, and consumers. Modern sensing technologies with outstanding performance are needed to meet the growing demands for quick and accurate food safety monitoring. Recently, emerging sensors for regulating food safety have been extensively explored. Along with the development in sensing technology, the metal-organic frameworks (MOF)-based sensors gained more attention due to their excellent sensing, catalytic, and adsorption properties. This review summarizes the current advancements and applications of MOFs-based sensors, including colorimetric, electrochemical, luminescent, surface-enhanced Raman scattering, and electrochemiluminescent sensors. and also focused on the applications of MOF-based sensors for the monitoring of toxins such as heavy metals, pesticide residues, mycotoxins, pathogens, and illegal food additives from food samples. Future trends, as well as current developments in MOF-based materials.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Ahsan Nazir
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Muhammad Yasir Akram
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Yongsheng Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
7
|
Yan M, Johnson EM, Morris AJ. Redox Hopping in Metal-Organic Frameworks through the Lens of the Scholz Model. J Phys Chem Lett 2023; 14:10700-10709. [PMID: 37988693 DOI: 10.1021/acs.jpclett.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Initially proposed by Lovric and Scholz to explain redox reactions in solid-phase voltammetry, the Scholz model's applications have expanded to redox reactions in various materials. As an extension of the Cottrell equation, the Scholz model enabled the quantification of electron hopping and ion diffusion with coefficients, De and Di, respectively. Research utilizing the Scholz model indicated that, in most cases, a huge bottleneck results from the ion diffusion which is slower than electron hopping by orders of magnitude. Therefore, electron and ion motion can be tuned and optimized to increase the charge transport and conductivity through systematic investigations guided by the Scholz model. The strategy may be extended to other solid-state materials in the future, e.g., battery anodes/cathodes. In this Perspective, the applications of the Scholz model in different materials will be discussed. Moreover, the limitations of the Scholz model will also be introduced, and viable solutions to those limitations discussed.
Collapse
Affiliation(s)
- Minliang Yan
- Macromolecule Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eric M Johnson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J Morris
- Macromolecule Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
8
|
Zhang Z, Ogata G, Asai K, Yamamoto T, Einaga Y. Electrochemical Diagnosis of Urinary Tract Infection Using Boron-Doped Diamond Electrodes. ACS Sens 2023; 8:4245-4252. [PMID: 37880948 DOI: 10.1021/acssensors.3c01569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Efficient detection of sodium nitrite in human urine could be used to diagnose urinary tract infections rapidly. Here, we demonstrate a fast and novel method for the selective detection of sodium nitrite in different human urine samples using electrolysis with a bare boron-doped diamond electrode. The measurement is performed without adding any other species, such as enzymes, and uses a simple electrochemical approach with an oxidation step followed by reduction. In the present study, we pay attention to the reduction potential range for the measurement, which is substantially different from many previous literature reports that focus on the oxidation reaction. The determination of added sodium nitrite based on cyclic voltammetry or differential pulse voltammetry is employed for two pooled urine samples and three individual urine matrices. From this, the linear response ranges for sodium nitrite detection are 0.5-10 mg/L (7.2-140 μmol/L) and 10-400 mg/L (140-5800 μmol/L). The results from these urine samples convert well to the calibration curve, with a limit of detection established as 0.82 mg/L (R2 = 0.9914), which is clinically relevant.
Collapse
Affiliation(s)
- Ziping Zhang
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Genki Ogata
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Kai Asai
- Department of Sensor Development, First Screening Co., Ltd., 1-30-14 Yoyogi, Shibuya 151-0053, Japan
| | - Takashi Yamamoto
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
10
|
A smartphone-adaptable dual-signal readout chemosensor for rapid detection of nitrite in food samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Roy E, Pal S, Kung C, Yu S, Nagar A, Lin C. A Polyaniline‐Supported, Chromium‐Based Metal‐Organic Framework for Electrochemical Sensing of Cadmium(II). ChemistrySelect 2022. [DOI: 10.1002/slct.202203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ekta Roy
- Department of Chemistry Medi-Caps University Indore A.B. Road, Pigdamber, Rau, Indore 45333 India
| | - Souvik Pal
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Sheng‐Sheng Yu
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Achala Nagar
- Department of Chemistry Government Engineering College Jhalawar Jhalawar Rajasthan 326023 India
| | - Chia‐Her Lin
- Department of Chemistry National Taiwan Normal University 11677 No. 88, Sec. 4, Ting-Chow Rd. Taipei Taiwan
| |
Collapse
|
13
|
Chang Y, Lou J, Yang L, Liu M, Xia N, Liu L. Design and Application of Electrochemical Sensors with Metal-Organic Frameworks as the Electrode Materials or Signal Tags. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183248. [PMID: 36145036 PMCID: PMC9506444 DOI: 10.3390/nano12183248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/01/2023]
Abstract
Metal-organic frameworks (MOFs) with fascinating chemical and physical properties have attracted immense interest from researchers regarding the construction of electrochemical sensors. In this work, we review the most recent advancements of MOF-based electrochemical sensors for the detection of electroactive small molecules and biological macromolecules (e.g., DNA, proteins, and enzymes). The types and functions of MOF-based nanomaterials in terms of the design of electrochemical sensors are also discussed. Furthermore, the limitations and challenges of MOF-based electrochemical sensing devices are explored. This work should be invaluable for the development of MOF-based advanced sensing platforms.
Collapse
Affiliation(s)
- Yong Chang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- School of Chemistry and Materials Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Lou
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Luyao Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Miaomiao Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Lin Liu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
14
|
Experimental investigation to check the relation of third order optical nonlinearities of Dawson polyoxometalate-porphyrin hybrids with excited state dynamics by using ultrafast life time decay technique. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Chen B, Li Y, Du Q, Pi X, Wang Y, Sun Y, Wang M, Zhang Y, Chen K, Zhu J. Effective Removal of Tetracycline from Water Using Copper Alginate @ Graphene Oxide with In-Situ Grown MOF-525 Composite: Synthesis, Characterization and Adsorption Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172897. [PMID: 36079938 PMCID: PMC9458214 DOI: 10.3390/nano12172897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 05/19/2023]
Abstract
For nanomaterials, such as GO and MOF-525, aggregation is the main reason limiting their adsorption performance. In this research, Alg-Cu@GO@MOF-525 was successfully synthesized by in-situ growth of MOF-525 on Alg-Cu@GO. By dispersing graphene oxide (GO) with copper alginate (Alg-Cu) with three-dimensional structure, MOF-525 was in-situ grown to reduce aggregation. The measured specific surface area of Alg-Cu@GO@MOF-525 was as high as 807.30 m2·g-1, which is very favorable for adsorption. The synthesized material has affinity for a variety of pollutants, and its adsorption performance is significantly enhanced. In particular, tetracycline (TC) was selected as the target pollutant to study the adsorption behavior. The strong acid environment inhibited the adsorption, and the removal percentage reached 96.6% when pH was neutral. Temperature promoted the adsorption process, and 318 K adsorption performance was the best under experimental conditions. Meanwhile, 54.6% of TC could be removed in 38 min, and the maximum adsorption capacity reached 533 mg·g-1, far higher than that of conventional adsorption materials. Kinetics and isotherms analysis show that the adsorption process accords with Sips model and pseudo-second-order model. Thermodynamic study further shows that the chemisorption is spontaneous and exothermic. In addition, pore-filling, complexation, π-π stack, hydrogen bond and chemisorption are considered to be the causes of adsorption.
Collapse
Affiliation(s)
- Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Correspondence: ; Tel.: +86-532-8595-1842
| | - Qiuju Du
- State Key Laboratory of Bio-Polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuqi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jinke Zhu
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
16
|
A facile and efficient nitrite electrochemical sensor based on N, O co-doped porous graphene film. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Xu J, Shi Y, Xu G, Zhao Q, Hui L, Zhang S, Zhu B, Xu Z, Bian Z. A novel highly specific colorimetric fluorescent probe for the detection of nitrite in aqueous solution. LUMINESCENCE 2022; 37:729-733. [PMID: 35194920 DOI: 10.1002/bio.4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/06/2022]
Abstract
Developing an effective method for the detection of nitrite (NO2 - ions) in natural environment especially environmental waters and soils is very necessary, because it will cause serious damage to human health once excess NO2 - ions enters the human body. Herein, a new colorimetric fluorescent probe NB-NO2 - for determining NO2 - ions was designed, and it possesses good water-solubility and pleasurable selectivity over others common ions for NO2 - ions. The addition of NO2 - ions changed the color of solution from blue to colorless by naked-eye. And through the test and calculation, the detection limit of the probe NB-NO2 - is 129 nM. Based on the above excellent characteristics, the probe NB-NO2 - was successfully used for monitoring NO2 - ions in environmental waters and soils.
Collapse
Affiliation(s)
- Jing Xu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Yanfeng Shi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Gongwei Xu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Qinrui Zhao
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Li Hui
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Shuo Zhang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| | - Zhen Bian
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan, China
| |
Collapse
|
18
|
Ndebele N, Mgidlana S, nyokong T. Electrochemical Detection of Nitrite Using an Asymmetrically Substituted Cobalt Phthalocyanine Conjugated to Metal Tungstate Nanoparticles. ELECTROANAL 2022. [DOI: 10.1002/elan.202100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Ye W, Yang W. Exploring metal-organic frameworks in electrochemistry by a bibliometric analysis. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01270-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Liu X, Zhang T, Li X, Ai S, Zhou S. Non-enzymatic electrochemical sensor based on AuNPs/Cu-N-C composite for efficient nitrite sensing in sausage sample. NEW J CHEM 2022. [DOI: 10.1039/d2nj01640k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen-doped carbon materials have attracted enormous attention in the detection fields for the high catalytic activity. Herein, Cu-N-C materials were synthesized by template method and used for constructing non-enzymatic electrochemical...
Collapse
|
22
|
Ficca VC, Santoro C, Marsili E, da Silva Freitas W, Serov A, Atanassov P, Mecheri B. Sensing nitrite by iron-nitrogen-carbon oxygen reduction electrocatalyst. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol 2021; 189:802-818. [PMID: 34418419 PMCID: PMC8372478 DOI: 10.1016/j.ijbiomac.2021.08.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 disease has put life of people in stress worldwide from many aspects. Since the virus has mutated in absolutely short period of time the challenge to find a suitable vaccine has become harder. Infection to COVID-19, especially at severe life threatening states is highly dependent on the strength of the host immune system. This system is partially dependent on the balance between oxidative stress and antioxidant. Besides, this virus still has unknown mechanism of action companied by a probable commune period. From another hand, some reactive oxygen species (ROS) levels can be helpful on the state determination of the disease. Thus it could be possible to use modern bioanalytical techniques for their detection and determination, which could indicate the disease state at the golden time window since they have the potential to show whether specific DNA, RNA, enzymes and proteins are affected. This also could be used as a preclude study or a reliable pathway to define the best optimized time of cure beside effective medical actions. Herein, some ROS and their relation with SARS-CoV-2 virus have been considered. In addition, modern bioelectroanalytical techniques on this approach from quantitative and qualitative points of view have been reviewed.
Collapse
Affiliation(s)
- Mehrnaz Ebrahimi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Aazami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
24
|
Abstract
Metal-organic frameworks (MOFs) have attracted great attention for their applications in chemical sensors mainly due to their high porosity resulting in high density of spatially accessible active sites, which can interact with the aimed analyte. Among various MOFs, frameworks constructed from group 4 metal-based (e.g., zirconium, titanium, hafnium, and cerium) MOFs, have become especially of interest for the sensors requiring the operations in aqueous media owing to their remarkable chemical stability in water. Research efforts have been made to utilize these group 4 metal-based MOFs in chemosensors such as luminescent sensors, colorimetric sensors, electrochemical sensors, and resistive sensors for a range of analytes since 2013. Though several studies in this subfield have been published especially over the past 3–5 years, some challenges and concerns are still there and sometimes they might be overlooked. In this review, we aim to highlight the recent progress in the use of group 4 metal-based MOFs in chemical sensors, and focus on the challenges, potential concerns, and opportunities in future studies regarding the developments of such chemically robust MOFs for sensing applications.
Collapse
|
25
|
Xu J, Shi Y, Yang S, Yang J, Zhang X, Xu L, Bian Z, Xu Z, Zhu B. Highly selective colorimetric fluorescent probe for detecting nitrite in aqueous solution. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
27
|
Huang H, Chen Y, Chen Z, Chen J, Hu Y, Zhu JJ. Electrochemical sensor based on Ce-MOF/carbon nanotube composite for the simultaneous discrimination of hydroquinone and catechol. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125895. [PMID: 34492833 DOI: 10.1016/j.jhazmat.2021.125895] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 05/15/2023]
Abstract
Ce-MOF/CNTs nanocomposites were prepared by a simple method and post-treated with NaOH/H2O2 mixed solution. The morphology and structure of the treated samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that the post treatment induces the Ce-MOF morphological changing from rod-like structure into particles, which are covered on the surface of CNTs. XPS demonstrates that there are two-valence (TV) of Ce3+/Ce4+ in the post-treated Ce-MOF/CNTs (TV) composite. The electrochemical behaviors of nanocomposite were also investigated on electrochemical work station. By utilization of the good electrical conductivity of CNT, the two-valence of Ce and the high surface area of MOF, the nanocomposites were used to fabricate the electrochemical sensor for the simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CC). Compared to the Ce-MOF/CNTs/GCE, the post-treated Ce-MOF (TV)/CNTs/GCE exhibited two well-defined peaks for the electrochemical oxidation of HQ and CC. The linear ranges responding to HQ and CC are 10~100 μM and 5~50 μM respectively.
Collapse
Affiliation(s)
- Haiping Huang
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China.
| | - Yanan Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Zhongzhen Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Jinglin Chen
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Yongmei Hu
- School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
28
|
Cassani MC, Castagnoli R, Gambassi F, Nanni D, Ragazzini I, Masciocchi N, Boanini E, Ballarin B. A Cu(II)-MOF Based on a Propargyl Carbamate-Functionalized Isophthalate Ligand as Nitrite Electrochemical Sensor. SENSORS (BASEL, SWITZERLAND) 2021; 21:4922. [PMID: 34300663 PMCID: PMC8309846 DOI: 10.3390/s21144922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
This paper investigates the electrochemical properties of a new Cu(II)-based metal-organic framework (MOF). Noted as Cu-YBDC, it is built upon a linker containing the propargyl carbamate functionality and immobilized on a glassy carbon electrode by drop-casting (GC/Cu-YBDC). Afterward, GC/Cu-YBDC was treated with HAuCl4 and the direct electro-deposition of Au nanoparticles was carried at 0.05 V for 600 s (GC/Au/Cu-YBDC). The performance of both electrodes towards nitrite oxidation was tested and it was found that GC/Au/Cu-YBDC exhibited a better electrocatalytic behavior toward the oxidation of nitrite than GC/Cu-YBDC with enhanced catalytic currents and a reduced nitrite overpotential from 1.20 to 0.90 V. Additionally GC/Au/Cu-YBDC showed a low limit of detection (5.0 μM), an ultrafast response time (<2 s), and a wide linear range of up to 8 mM in neutral pH.
Collapse
Affiliation(s)
- Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Riccardo Castagnoli
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Francesca Gambassi
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Daniele Nanni
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Ilaria Ragazzini
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| | - Norberto Masciocchi
- Department of Science and High Technology & To.Sca.Lab., University of Insubria, Via Valleggio 11, I-22100 Como, Italy;
| | - Elisa Boanini
- Department of Chemistry “Giacomo Ciamician”, Bologna University, Via Selmi 2, I-40126 Bologna, Italy;
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, Bologna University, Via Risorgimento 4, I-40136 Bologna, Italy; (R.C.); (F.G.); (D.N.); (I.R.)
| |
Collapse
|
29
|
Chavan PP, Sapner VS, Sathe BR. Enhanced Electrochemical NO
2
−
Oxidation Reactions on Biomolecule Functionalised Graphene Oxide. ChemistrySelect 2021. [DOI: 10.1002/slct.202100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Parag P. Chavan
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Vijay S. Sapner
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| | - Bhaskar R. Sathe
- Department of Chemistry Dr Babasaheb Ambedkar Marathwada University Aurangabad 431004 Maharashtra India
| |
Collapse
|
30
|
Ultrasonic synthesis of bismuth-organic framework intercalated carbon nanofibers: A dual electrocatalyst for trace-level monitoring of nitro hazards. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Cheng W, Tang X, Zhang Y, Wu D, Yang W. Applications of metal-organic framework (MOF)-based sensors for food safety: Enhancing mechanisms and recent advances. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Ling PH, Zang XN, Qian CH, Gao F. A metal-organic framework with multienzyme activity as a biosensing platform for real-time electrochemical detection of nitric oxide and hydrogen peroxide. Analyst 2021; 146:2609-2616. [PMID: 33720222 DOI: 10.1039/d1an00142f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Metal-Organic Framework (MOFs) with large surface area, exposed active site, excellent catalytic performance and high chemical stability has been used as an artificial enzyme and designed for nonenzymatic electrochemical sensors. Here, a strategy of using an enhanced electrochemical sensing platform for the detection of nitic oxide (NO) and hydrogen peroxide (H2O2) was designed via a nano-metalloporphyrinic metal-organic framework (NporMOF(Fe)) as an electrode material. By taking advantage of the small size, high surface area and exposed Fe active site, the obtained NporMOF(Fe) displays excellent electrocatalytic activity toward NO and H2O2. The NporMOF(Fe) modified electrode shows high sensing ability toward the in situ generated NO in NO2- containing phosphate buffer (PB) solution with a wide linear detection range of 5 μM to 200 μM and a very low detection limit of 1.3 μM. Moreover, NporMOF(Fe) exhibits high electrocatalytic activity toward the reduction of H2O2 and the practical detection of H2O2 released from HeLa cells. Furthermore, the NporMOF(Fe) modified electrode shows excellent selectivity toward the detection of NO and H2O2 in the presence of other physiologically important analytes. This method shows excellent biosensing performance, implying the universal applicability of MOFs-based artificial nanozymes for biosensors and the potential application for third generation biosensors.
Collapse
Affiliation(s)
- Ping-Hua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiao-Na Zang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Cai-Hua Qian
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
33
|
Zhang W, Ge CY, Jin L, Yoon S, Kim W, Xu GR, Jang H. Nickel nanoparticles incorporated Co, N co-doped carbon polyhedron derived from core-shell ZIF-8@ZIF-67 for electrochemical sensing of nitrite. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Chen J, Zhu Y, Kaskel S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew Chem Int Ed Engl 2021; 60:5010-5035. [PMID: 31989749 PMCID: PMC7984248 DOI: 10.1002/anie.201909880] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/04/2019] [Indexed: 12/21/2022]
Abstract
Porphyrins and porphyrin derivatives have been widely explored for various applications owing to their excellent photophysical and electrochemical properties. However, inherent shortcomings, such as instability and self-quenching under physiological conditions, limit their biomedical applications. In recent years, metal-organic frameworks (MOFs) have received increasing attention. The construction of porphyrin-based MOFs by introducing porphyrin molecules into MOFs or using porphyrins as organic linkers to form MOFs can combine the unique features of porphyrins and MOFs as well as overcome the limitations of porphyrins. This Review summarizes important synthesis strategies for porphyrin-based MOFs including porphyrin@MOFs, porphyrinic MOFs, and composite porphyrinic MOFs, and highlights recent achievements and progress in the development of porphyrin-based MOFs for biomedical applications in tumor therapy and biosensing. Finally, the challenges and prospects presented by this class of emerging materials for biomedical applications are discussed.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050China
- School of Materials Science and EngineeringUniversity of Shanghai for Science and Technology516 Jungong RoadShanghai200093China
- Hubei Key Laboratory of Processing and Application of Catalytic MaterialsCollege of Chemical EngineeringHuanggang Normal UniversityHuanggangHubei438000China
| | - Stefan Kaskel
- Professur für Anorganische Chemie IFachrichtung Chemie und LebensmittelchemieTechnische Universität DresdenBergstrasse 66Dresden01062Germany
| |
Collapse
|
35
|
Zhang X, Wasson MC, Shayan M, Berdichevsky EK, Ricardo-Noordberg J, Singh Z, Papazyan EK, Castro AJ, Marino P, Ajoyan Z, Chen Z, Islamoglu T, Howarth AJ, Liu Y, Majewski MB, Katz MJ, Mondloch JE, Farha OK. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord Chem Rev 2021; 429:213615. [PMID: 33678810 PMCID: PMC7932473 DOI: 10.1016/j.ccr.2020.213615] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Mohsen Shayan
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Ellan K. Berdichevsky
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Edgar K. Papazyan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Anthony J. Castro
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Paola Marino
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zvart Ajoyan
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
| | - Ashlee J. Howarth
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, United States
| | - Marek B. Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke St. W., Montréal, Québec, H4B 1R6, Canada
| | - Michael J. Katz
- Department of Chemistry, Memorial University of Newfoundland, 230 Elizabeth Avenue, St. John’s, Newfoundland and Labrador, A1C 5S7, Canada
| | - Joseph E. Mondloch
- Department of Chemistry, University of Wisconsin-Stevens Point, 2100 Main Street, Stevens Point, WI 54481, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
36
|
Crystallographic and (spectro)electrochemical characterizations of cobalt(II) 10-phenyl-5,15-di-p-tolylporphyrin. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Ding Q, Cao L, Liu M, Lin H, Yang DP. Au nanoparticle-loaded eggshell for electrochemical detection of nitrite. RSC Adv 2021; 11:4112-4117. [PMID: 35424357 PMCID: PMC8694358 DOI: 10.1039/d0ra09892b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022] Open
Abstract
Eggshell is an extremely large source of domestic waste and has a huge scientific research potential because of its unique porous hierarchical structure. By converting eggshell waste into valuable functional materials, it can be recycled in many fields. Herein, we envisioned an economical and environmentally friendly conversion method for synthesizing Au nanoparticle loaded eggshell nanocomposites (defined as Au/CaCO3 nanocomposites) for the detection of trace amounts of nitrite in oolong tea. Compared with bare electrodes, the prepared Au/CaCO3 nanocomposite-based electrodes have obvious electrochemical enhancement behavior. A wide linear response range of 0.01 to 1.00 mM and a relatively low detection limit of 11.55 nM have been obtained in this study. The "turning waste into treasure" transformation strategy not only provides a practical and low-cost method for comprehensive utilization of eggshells as valuable functional materials, but also provides a new approach for sensitive detection of pollutants.
Collapse
Affiliation(s)
- Qi Ding
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Liping Cao
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Minghuan Liu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou Fujian 362000 China
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| |
Collapse
|
38
|
Yang L, Wang F, Zhao J, Kong X, Lu K, Yang M, Zhang J, Sun Z, You J. A facile dual-function fluorescent probe for detection of phosgene and nitrite and its applications in portable chemosensor analysis and food analysis. Talanta 2021; 221:121477. [PMID: 33076090 DOI: 10.1016/j.talanta.2020.121477] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Due to the potential threats of phosgene and nitrite to public health and safety, in this work, we first proposed the application of a facile dual-function fluorescent probe 2-(1H-Benzimidazol-2-yl)Aniline (BMA) for the detection of phosgene and nitrite in different solvent environments. BMA had fast response (1 min), high selectivity and sensitivity (the limit of detection was 1.27 nM) to phosgene in CH3CN solution (containing 10% DMSO), which manifested as a ratiometric fluorescent mode from 416 nm to 480 nm. The response of BMA to nitrite in HCl solution (pH = 1, containing 10% CH3CN) was also highly selective and sensitive (the limit of detection was 60.63 nM), which shown as a turn-off fluorescent mode at 485 nm. In addition, two portable chemosensors (BMA-loaded TLC plates and test strips) had also been successfully manufactured for the detection of phosgene in the gas phase and nitrite in solution, which displayed good responses. Most importantly, BMA had also been successfully used for detection of nitrite in food samples, and a good recovery (88.5%-107.2%) was obtained by adding standard sodium nitrite.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Feng Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Jie Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Xiaojian Kong
- School of Chemical New Material Engineering, Shandong Polytechnic College, Jining, 272027, China
| | - Ke Lu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Mian Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Jin Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China
| | - Zhiwei Sun
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China.
| | - Jinmao You
- Key Laboratory of Life-Organic Analysis of Shandong Province, Qufu Normal University, Qufu, 273165, China; Key Laboratory of Tibetan Medicine Research & Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, 810001, China.
| |
Collapse
|
39
|
Mahmoud AM, Mahnashi MH, El-Wekil MM. Indirect differential pulse voltammetric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode: Application to different water samples. Talanta 2021; 221:121562. [PMID: 33076114 DOI: 10.1016/j.talanta.2020.121562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/09/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Carbon paste electrode (CPE) modified with porous copper based metal organic framework (Cu-MOF) nanocomposite is described for analysis of cyanide (CN-) for the first time. The electrochemical performance of the proposed electrode was investigated by differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The Cu-MOF nanocomposite was characterized using scanning electron microscope (SEM), N2-adsorption-desorption isotherms, powder X-ray powder diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Under optimal conditions of measurements, the anodic peak (Ipa) decreases linearly in the range of 1.87-25 μM with LOD of 0.60 μM (at S/N = 3). The Cu-MOF/CPE showed good selectivity towards CN- measurement with no significant interference in pH 7.0 using 0.25 M KCl to increase the medium conductivity and to stabilize the analyte and prevents its volatility. Moreover, the method was successfully applied for determination of CN- in different environmental water samples.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudia Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
40
|
Chang TE, Chuang CH, Kung CW. An iridium-decorated metal–organic framework for electrocatalytic oxidation of nitrite. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2020.106899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
41
|
Chen J, Zhu Y, Kaskel S. Porphyrin‐basierte Metall‐organische Gerüste für biomedizinische Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
- School of Materials Science and Engineering University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences 1295 Dingxi Road Shanghai 200050 China
- School of Materials Science and Engineering University of Shanghai for Science and Technology 516 Jungong Road Shanghai 200093 China
- Hubei Key Laboratory of Processing and Application of Catalytic Materials College of Chemical Engineering Huanggang Normal University Huanggang Hubei 438000 China
| | - Stefan Kaskel
- Professur für Anorganische Chemie I Fachrichtung Chemie und Lebensmittelchemie Technische Universität Dresden Bergstraße 66 Dresden 01062 Deutschland
| |
Collapse
|
42
|
Suma BP, Pandurangappa M. Hydrothermal Synthesis of Zr‐Amino Terephthalate and its Composite with MWCNTs as a Novel Electrode Material in Nitrite Quantification. ELECTROANAL 2020. [DOI: 10.1002/elan.202060091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- B. P. Suma
- Department of Chemistry Bangalore University, Jnanabharathi Bengaluru 560 056 India
| | - M. Pandurangappa
- Department of Chemistry Bengaluru City University Bengaluru 560 001 India
| |
Collapse
|
43
|
Aziz A, Shah SS, Kashem A. Preparation and Utilization of Jute-Derived Carbon: A Short Review. CHEM REC 2020; 20:1074-1098. [PMID: 32794376 DOI: 10.1002/tcr.202000071] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Indexed: 12/20/2022]
Abstract
This article summarizes the preparation and applications of carbon derived from jute sticks and fibers that are low-cost, widely available, renewable, and environmentally friendly. Both the fibers and sticks are considered ideal candidates of carbon preparation because they are composed of cellulose, hemicelluloses, and lignin, and contain negligible ash content. Various carbon preparation methods including simple pyrolysis, pyrolysis with chemical and physical activations are discussed. The impacts of several parameters including types of activating agents, impregnation ratio, and temperature on their morphology, surface area, pore size, crystallinity, and surface functional groups are also emphasized. Various treatments to endow functionalization for increasing the practical applicability, such as chemical, physical, and physico-chemical methods, are discussed. In addition, applications of jute-derived carbon in various practical areas, including energy storage, water treatment, and sensors, are also highlighted in this report. Due to the porous fine structure and a large specific surface area, the jute-derived carbon could be considered as a powerful candidate material for various industrial applications. Finally, possible future prospects of jute-derived carbon for various applications are pointed out.
Collapse
Affiliation(s)
- Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Abul Kashem
- Mizushori System Co., 61-1 Ikehanacho, Kitaku, Nagoya, Japan
| |
Collapse
|
44
|
Chang YS, Li JH, Chen YC, Ho WH, Song YD, Kung CW. Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
45
|
Sensitive and selective nitrite assay based on fluorescent gold nanoclusters and Fe2+/Fe3+ redox reaction. Food Chem 2020; 317:126456. [DOI: 10.1016/j.foodchem.2020.126456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/20/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
|
46
|
Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
48
|
Cao L, Kang ZW, Ding Q, Zhang X, Lin H, Lin M, Yang DP. Rapid pyrolysis of Cu 2+-polluted eggshell membrane into a functional Cu 2+-Cu +/biochar for ultrasensitive electrochemical detection of nitrite in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138008. [PMID: 32203798 DOI: 10.1016/j.scitotenv.2020.138008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 05/28/2023]
Abstract
Bioremediation is one of efficient methods to solve the issues of water or soil contaminated by metal ions. However, the harvested biowaste is often troublesome to handle owing to the second pollution. Herein, the waste eggshell membrane was used to adsorb Cu2+ in wastewater, which was then converted into biochar containing copper ions (Cu2+-Cu+/Biochar) via a rapid pyrolysis. By integrating the collective advantages of eggshell membrane and Cu2+-Cu+, such as superior electrical conductivity, enlarged electrochemically active surface area, unique three-dimensional porous network characteristics, and fast charge transport, the Cu2+-Cu+/Biochar system can be used as a self-supporting sensor for detection of nitrite (NO2-). The sensor demonstrated superior electrochemical sensing abilities accompanied by a broad linear range (1-300 μM), ultralow detection limit (0.63 μM), and high sensitivity (30.0 μA·mM-1·cm-2). In addition, the fabricated electrochemical sensor has excellent stability, good reproducibility, and strong anti-interference performance. More importantly, the sensor has a high recovery rate when it is used to detect nitrite in tap water, mineral water, and sausage, indicating the feasibility of using this sensor in practical applications. This study provides a green and sustainable approach for simultaneous treatment of biomass waste eggshell membrane, remedy of heavy metals, and electrochemical detection of nitrite.
Collapse
Affiliation(s)
- Liping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Ze-Wen Kang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Qi Ding
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Xiaohui Zhang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Mengshi Lin
- Food Science Program, Division of Food System & Bioengineering, University of Missouri, Columbia, MO 65211-5160, USA
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| |
Collapse
|
49
|
Arul P, Gowthaman NSK, John SA, Lim HN. Ultrasonic Assisted Synthesis of Size-Controlled Cu-Metal-Organic Framework Decorated Graphene Oxide Composite: Sustainable Electrocatalyst for the Trace-Level Determination of Nitrite in Environmental Water Samples. ACS OMEGA 2020; 5:14242-14253. [PMID: 32596560 PMCID: PMC7315415 DOI: 10.1021/acsomega.9b03829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Excess levels of nitrite ion in drinking water interact with amine functionalized compounds to form carcinogenic nitrosamines, which cause stomach cancer. Thus, it is indispensable to develop a simple protocol to detect nitrite. In this paper, a Cu-metal-organic framework (Cu-MOF) with graphene oxide (GO) composite was synthesized by ultrasonication followed by solvothermal method and then fabricated on a glassy carbon (GC) electrode for the sensitive and selective determination of nitrite contamination. The SEM image of the synthesized Cu-MOF showed colloidosome-like structure with an average size of 8 μm. Interestingly, the Cu-MOF-GO composite synthesized by ultrasonic irradiation followed by solvothermal process produce controlled size of 3 μm colloidosome-like structure. This was attributed to the formation of an exfoliated sheet-like structure of GO by ultrasonication in addition to the obvious influence of GO providing the oxygen functional groups as a nucleation node for size-controlled growth. On the other hand, the composite prepared without ultrasonication exhibited 6.6 μm size agglomerated colloidosome-like structures, indicating the crucial role of ultrasonication for the formation of size-controlled composites. XPS results confirmed the presence of Cu(II) in the as-synthesized Cu-MOF-GO based on the binding energies at 935.5 eV for Cu 2p3/2 and 955.4 eV for Cu 2p1/2. The electrochemical impedance studies in [Fe(CN)6]3-/4- redox couple at the composite fabricated electrode exhibited more facile electron transfer than that with Cu-MOF and GO modified electrodes, which helped to utilize Cu-MOF-GO for trace level determination of nitrite in environmental effluent samples. The Cu-MOF-GO fabricated electrode offered a superior sensitive platform for nitrite determination than the Cu-MOF and GO modified electrodes demonstrating oxidation at less positive potential with enhanced oxidation current. The present sensor detects nitrite in the concentration range of 1 × 10-8 to 1 × 10-4 M with the lowest limit of detection (LOD) of 1.47 nM (S/N = 3). Finally, the present Cu-MOF-GO electrode was successfully exploited for nitrite ion determination in lake and dye contaminated water samples.
Collapse
Affiliation(s)
- P. Arul
- Centre
for Nanoscience and Nanotechnology, Department of Chemistry The Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302 Tamil Nadu, India
| | - N. S. K. Gowthaman
- Materials
Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
| | - S. Abraham John
- Centre
for Nanoscience and Nanotechnology, Department of Chemistry The Gandhigram Rural Institute, Gandhigram, Dindigul, 624 302 Tamil Nadu, India
| | - Hong Ngee Lim
- Materials
Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia
- Department
of Chemistry, Faculty of Science, Universiti
Putra Malaysia, UPM Serdang, 43400 Selangor Malaysia
| |
Collapse
|
50
|
Chuang C, Kung C. Metal−Organic Frameworks toward Electrochemical Sensors: Challenges and Opportunities. ELECTROANAL 2020. [DOI: 10.1002/elan.202060111] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng‐Hsun Chuang
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City Taiwan
| |
Collapse
|