1
|
Zhigalenok Y, Tazhibayeva A, Kokhmetova S, Starodubtseva A, Kan T, Isbergenova D, Malchik F. Hexavalent chromium at the crossroads of science, environment and public health. RSC Adv 2025; 15:21439-21464. [PMID: 40567474 PMCID: PMC12188526 DOI: 10.1039/d5ra03104d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
Hexavalent chromium (Cr(vi)) contamination represents one of the most persistent and complex environmental challenges of our time. This comprehensive review synthesizes current knowledge across toxicology, environmental geochemistry, analytical chemistry, and remediation technologies to reveal fundamental disconnects between scientific understanding and practical solutions. While research has elucidated molecular mechanisms of Cr(vi) toxicity with remarkable precision - from cellular entry through oxidative damage cascades to genomic instability - this knowledge has not translated into proportionally effective environmental remediation strategies. The analysis reveals that chromium contamination is more complex and persistent than traditionally acknowledged. The reversible nature of chromium redox transformations creates dynamic contamination cycles that resist conventional treatment approaches. Emerging evidence challenges the traditional safe Cr(iii) versus toxic Cr(vi) paradigm, suggesting all chromium forms may pose health risks under certain conditions. Critical assessment of current remediation technologies demonstrates that while laboratory studies consistently report high removal efficiencies, these approaches fail to address the vast scale of existing environmental contamination. Most critically, conventional methods focus on transferring chromium between phases rather than implementing circular economy principles that enable recovery and reuse of this valuable element. The review concludes that to address the chromium crisis, it is necessary to move beyond conventional wastewater treatment and adopt prevention-focused strategies that emphasize circular economy principles. Future solutions must prioritize contamination prevention, closed-loop industrial systems, and long-term management rather than pursuit of complete remediation. Only through such realistic assessment and integrated action can we hope to minimize the ongoing impacts of this persistent environmental challenge.
Collapse
Affiliation(s)
| | | | | | | | - Tatyana Kan
- Al-Farabi Kazakh National University Almaty 050040 Kazakhstan
| | | | - Fyodor Malchik
- Al-Farabi Kazakh National University Almaty 050040 Kazakhstan
| |
Collapse
|
2
|
He JY, Bi HX, Liu YQ, Guo MS, An WT, Ma YY, Han ZG. Bridging Component Strategy in Phosphomolybdate-Based Sensors for Electrochemical Determination of Trace Cr(VI). Inorg Chem 2024; 63:842-851. [PMID: 38100035 DOI: 10.1021/acs.inorgchem.3c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Rapid and sensitive electrochemical determination of trace carcinogenic Cr(VI) pollutants remains an urgent and important task, which requires the development of active sensing materials. Herein, four cases of reduced phosphomolybdates with formulas of the (H2bib)3[Zn(H2PO4)]2{Mn[P4Mo6O31H7]2}·6H2O (1), (H2bib)2[Na(H2O)]2[Mn(H2O)]2{Mn[P4Mo6O31H6]2}·5H2O (2), (H2bib)3[Mo2(μ2-O)2(H2O)4]2{Ni[P4Mo6O31H2]2}·4H2O (3), and (H2bib)2{Ni[P4Mo6O31H9]2}·9H2O (4) (bib = 4,4'-bis(1-imidazolyl)-biphenyl) were hydrothermally synthesized under the guidance of a bridging component strategy, which function as effective electrochemical sensors to detect trace Cr(VI). The difference of hybrids 1-4 is in the inorganic moiety, in which the reduced phosphomolybdates {M[P4MoV6O31]2} (M{P4Mo6}2) exhibited different arrangements bridged by different cationic components ({Zn(H2PO4)} subunit for 1, [Mn2(H2O)2]4+ dimer for 2, and [MoV2(μ2-O)2(H2O)4]6+ for 3). As a result, hybrids 1 and 3 display noticeable Cr(VI) detection activity with low detection limits of 14.3 nM (1.48 ppb) for 1 and 6.61 nM (0.69 ppb) for 3 and high sensitivities of 97.3 and 95.3 μA·mM-1, respectively, which are much beyond the World Health Organization's detection threshold (0.05 ppm) and superior to those of the contrast samples (inorganic Mn{P4Mo6}2 salt and hybrid 4), even the most reported noble-metal catalysts. This work supplies a prospective pathway to build effective electrochemical sensors based on phosphomolybdates for environmental pollutant treatment.
Collapse
Affiliation(s)
- Jing-Yan He
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Hao-Xue Bi
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yu-Qing Liu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Meng-Si Guo
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Wen-Ting An
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China
| |
Collapse
|
3
|
Lu W, Ma L, Ke S, Zhang R, Zhu W, Qin L, Wu S. Unbiased and Signal-Weakening Photoelectrochemical Hexavalent Chromium Sensing via a CuO Film Photocathode. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091479. [PMID: 37177024 PMCID: PMC10180409 DOI: 10.3390/nano13091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Photoelectrochemical (PEC) sensors show great potential for the detection of heavy metal ions because of their low background noise, high sensitivity, and ease of integration. However, the detection limit is relatively high for hexavalent chromium (Cr(VI)) monitoring in addition to the requirement of an external bias. Herein, a CuO film is readily synthesized as the photoactive material via reactive sputtering and thermal annealing in the construction of a PEC sensing photocathode for Cr(VI) monitoring. A different mechanism (i.e., Signal-Weakening PEC sensing) is confirmed by examining the electrochemical impedance and photocurrent response of different CuO film photoelectrodes prepared with the same conditions in contact with various solutions containing concentration-varying Cr(VI) for different durations. The detection of Cr(VI) is successfully achieved with the Signal-Weakening PEC response; a drop of photocathode signal with an increasing Cr(VI) concentration from the steric hindrance effect of the in situ formed Cr(OH)3 precipitates. The photocurrent of the optimized CuO film photocathode linearly declines as the concentration of Cr(VI) increases from 0.08 to 20 µM, with a detection limit down to 2.8 nM (Signal/Noise = 3) and a fitted sensitivity of 4.22 µA·μM-1. Moreover, this proposed sensing route shows operation simplicity, satisfactory selectivity, and reproducibility.
Collapse
Affiliation(s)
- Wenxiang Lu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Lu Ma
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Shengchen Ke
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Rouxi Zhang
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Weijian Zhu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Linling Qin
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Shaolong Wu
- School of Optoelectronic Science and Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
4
|
Singh S, Kumar Naik TSS, Chauhan V, Shehata N, Kaur H, Dhanjal DS, Marcelino LA, Bhati S, Subramanian S, Singh J, Ramamurthy PC. Ecological effects, remediation, distribution, and sensing techniques of chromium. CHEMOSPHERE 2022; 307:135804. [PMID: 35932914 DOI: 10.1016/j.chemosphere.2022.135804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Chromium is detected in most ecosystems due to the increased anthropogenic activities in addition to that developed from natural pollution. Chromium contamination in the food chain results due to its persistent and non-degradable nature. The release of chromium in the ecosystem accretes and thereafter impacts different life forms, including humans, aquatic and terrestrial organisms. Leaching of chromium into the ground and surface water triggers several health ailments, such as dermatitis, eczematous skin, allergic reactions, mucous and skin membrane ulcerations, allergic asthmatic reactions, bronchial carcinoma and gastroenteritis. Physiological and biological treatments for the removal of chromium have been discussed in depth in the present communication. Adsorption and biological treatment methods are proven to be alternatives to chemical removal techniques in terms of cost-effectiveness and low sludge formation. Chromium sensing is an alternative approach for regular monitoring of chromium in different water bodies. This review intended to explore different classes of sensors for chromium monitoring. However, the spectrochemical methods are more sensitive in chromium ions sensing than electrochemical methods. Future study should focus on miniaturization for portability and on-site measurements without requiring a large instrument provides a good aspect for future research.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - T S Sunil Kumar Naik
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Vishakha Chauhan
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Nabila Shehata
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India
| | - Daljeet Singh Dhanjal
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Liliana Aguilar Marcelino
- Centro Nacional de Investigación Disciplinariaen Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, C.P, 62550, Mexico
| | - Shipra Bhati
- Department of Chemistry, The Oxford College of Engineering, Bangalore, Karnataka, 560068, India
| | - S Subramanian
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Joginder Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, India.
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Yang J, Li W, Guo L, Luo F, Qiu B, Lin Z, Wang L. Highly Sensitive Photoelectrochemical Biosensor for MicroRNA-21 Based on a Dumbbell-Shaped Heterostructure AuNRs@end-TiO 2 Combined with Carbon Dots as Photosensitizers and Duplex-Specific Nuclease-Assisted Signal Amplification. Anal Chem 2022; 94:13575-13581. [PMID: 36126161 DOI: 10.1021/acs.analchem.2c03230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TiO2 was grown on both ends of gold nanorods (AuNRs) to form a dumbbell-shaped heterostructure (called AuNRs@end-TiO2) first, and then assembled on the fluorine tin oxide (FTO) electrode surface through hydrophobic interactions to construct a concise photoelectrochemical microRNA-21 (miRNA-21, model target) biosensor using carbon dots (CDs) as photosensitizers. Hairpin probes (HPs) were fixed on the AuNRs@end-TiO2-modified FTO electrode surface through the Au-S bond, and CDs-modified complementary DNA (CDs-cDNA) served as photosensitive probes. In the presence of the target, miRNA hybridized with the HP and triggered double-strand-specific nuclease to cleave the complementary part of the HP with miRNA, and miRNA was released, which can trigger another cycle to realize signal amplification. Many HPs were cleaved and the complementary sequence with cDNA was exposed, which can capture the photosensitive probes to the electrode surface and resulted in photocurrent enhancement. The photocurrent intensity system has a linear relationship with the logarithm of the miRNA concentration in the range of 0.1 fM to 100 pM with a low detection limit of 96 aM (S/N = 3). The biosensor has high sensitivity, good selectivity, and good reproducibility and shows satisfactory results in actual sample detection.
Collapse
Affiliation(s)
- Jiao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Weixin Li
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Xiamen Hospital, Fudan University, 668 Jinhu Road, Xiamen 361015, China.,Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
6
|
Zhang S, Wang C, Wu T, Fan D, Hu L, Wang H, Wei Q, Wu D. A sandwiched photoelectrochemical biosensing platform for detecting Cytokeratin-19 fragments based on Ag 2S-sensitized BiOI/Bi 2S 3 heterostructure amplified by sulfur and nitrogen co-doped carbon quantum dots. Biosens Bioelectron 2022; 196:113703. [PMID: 34656853 DOI: 10.1016/j.bios.2021.113703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
A sandwiched photoelectrochemical (PEC) immunosensor based on BiOI/Bi2S3/Ag2S was designed for the quantitative detection of cytokeratin-19 fragments (CYFRA21-1) in serum. In this work, due to the intervention of the narrow band gap Bi2S3, the absorption of the light source by the BiOI/Bi2S3 heterostructure has been significantly enhanced. Meanwhile, the matched band structure of BiOI, Bi2S3 and Ag2S promoted the rapid transfer of electrons between the conduction bands and effectively inhibited the recombination of electron-hole pairs, thus enhanced the photoelectric signals. Sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) with up-conversion luminescence properties provided more light energy for the base materials. On the other hand, S,N-CQDs were combined with Ab2 through polydopamine (PDA), as secondary antibody labels, further enhanced the sensitivity of the sensor. Herein, the linear range of the sensor was from 0.001 to 100 ng mL-1 and the detection limit was 1.72 pg mL-1. In addition, the sensor provides a feasible way for the detection of tumor markers due to its excellent selectivity, repeatability and good stability.
Collapse
Affiliation(s)
- Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
7
|
Bharti K, Sadhu KK. Syntheses of metal oxide-gold nanocomposites for biological applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Nascimento Botelho C, Pavão e Pavão D, Santos Damos F, Cássia Silva Luz R. Photoelectrochemical Sensor for Isoniazid: Application in Drugs Used in the Treatment of Tuberculosis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Flávio Santos Damos
- Department of Chemistry Federal University of Maranhão 65080-805 São Luís MA Brazil
| | | |
Collapse
|
9
|
Mokhtar B, Kandiel TA, Ahmed AY, Komy ZR. New application for TiO 2 P25 photocatalyst: A case study of photoelectrochemical sensing of nitrite ions. CHEMOSPHERE 2021; 268:128847. [PMID: 33190913 DOI: 10.1016/j.chemosphere.2020.128847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Developing photoelectrochemical (PEC) sensors based on photocatalytic materials has recently attracted great interest as an emerging technology for environmental monitoring. TiO2 P25 is a well-known highly active photocatalyst, cheap, and produced commercially on a large scale. In the current work, a practical and durable TiO2-based PEC sensor has been fabricated by immobilizing TiO2 P25 nanoparticles at disposable screen-printed carbon substrates using drop-casting method. The fabricated PEC sensor has been applied for the anodic-detection and determination of nitrite (NO2-) ions under UV(A) light (LED, 365 nm) using chronoamperometry (CA) and differential pulse voltammetry (DPV). Linear calibration curves were obtained between the photocurrent responses and the concentrations of NO2- ions in the ranges of 0.1-5.0 and 0.5-10 mg L-1 for CA and DPV, respectively. Surprisingly, the detection limits (sensitivities) of the fabricated sensor towards NO2- ions under light were enhanced by a factor of 4.75 (4.1) and 8.3 (37.4) for CA and DPV, respectively, in comparsion with those measured in the dark. It is found that the photo-excitation of TiO2 facilitates the photooxidation of NO2- ions via the photo-generated holes whereas the photogenerated electrons contribute to the enhanced photocurrent and consequently the enhanced detection limit and sensitivity. The fabricated TiO2-based PEC sensor exhibits a good stability, durability, and satisfying selectivity for NO2- ions determination. These results indicate that the TiO2-based PEC sensor fabricated by utilizing cheap and commercially available components has great potential for being transferred from lab-to-factory.
Collapse
Affiliation(s)
- Bassam Mokhtar
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Tarek A Kandiel
- Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Amira Y Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Zanaty R Komy
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
10
|
Aouina A, Oloyede HO, Akong RA, Abdelhak J, Görls H, Plass W, Eseola AO. Molecular variation and fluorescent turn-on detection of chromium(III) by three ESIPT-reactive 2,2'-(1,4-phenylenebis(5-phenyl-1H-imidazole-4,2-diyl))diphenols. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Aralekallu S, Palanna M, Hadimani S, Prabhu C P K, Sajjan VA, Thotiyl MO, Sannegowda LK. Biologically inspired catalyst for electrochemical reduction of hazardous hexavalent chromium. Dalton Trans 2020; 49:15061-15071. [PMID: 33104145 DOI: 10.1039/d0dt02752a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indirect electrochemical detoxification and detection platform has been demonstrated for toxic hexavalent chromium (Cr(vi)) based on the biologically important N-4 macrocycle. The research work describes a simple, green, low-cost and potential way for the synthesis of a new N-4 macrocyclic molecule and the molecule is characterized by various analytical and spectroscopic techniques like elemental analysis, TGA, FT-IR, UV-visible, mass spectrometry and NMR spectroscopies, and cyclic voltammetry. The synthesized molecule was explored for the electrochemical reduction of Cr(vi) using both voltammetric and amperometric methods. Amperometric studies exhibited 50 to 2500 nM linear range and the detection limit and quantification limit are 18 and 50 nM, respectively. The common coexisting metal ions did not interfere with Cr(vi) even in the presence of 40-fold excess interfering ions. The real sample analysis was carried out with the fabricated sensor and successfully quantified a recovery result (98-104%) of Cr(vi) in water. This proposed sensor is helpful in the detection of chromium ions in drinking water and is capable of detecting Cr(vi) in the limits set by the World Health Organization (WHO). In addition, this sensor satisfactorily demonstrated considerable stability and reproducibility.
Collapse
Affiliation(s)
- Shambhulinga Aralekallu
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Cantonment, Vinayakanagara, Ballari-583105, India.
| | | | | | | | | | | | | |
Collapse
|
12
|
Hilali N, Mohammadi H, Amine A, Zine N, Errachid A. Recent Advances in Electrochemical Monitoring of Chromium. SENSORS 2020; 20:s20185153. [PMID: 32917045 PMCID: PMC7570498 DOI: 10.3390/s20185153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
The extensive use of chromium by several industries conducts to the discharge of an immense quantity of its various forms in the environment which affects drastically the ecological and biological lives especially in the case of hexavalent chromium. Electrochemical sensors and biosensors are useful devices for chromium determination. In the last five years, several sensors based on the modification of electrode surface by different nanomaterials (fluorine tin oxide, titanium dioxide, carbon nanomaterials, metallic nanoparticles and nanocomposite) and biosensors with different biorecognition elements (microbial fuel cell, bacteria, enzyme, DNA) were employed for chromium monitoring. Herein, recent advances related to the use of electrochemical approaches for measurement of trivalent and hexavalent chromium from 2015 to 2020 are reported. A discussion of both chromium species detections and speciation studies is provided.
Collapse
Affiliation(s)
- Nazha Hilali
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Hasna Mohammadi
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
| | - Aziz Amine
- Laboratory of Process Engineering & Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, Mohammedia B.P.146, Morocco; (N.H.); (H.M.)
- Correspondence: or ; Tel.: +212-661454198
| | - Nadia Zine
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| | - Abdelhamid Errachid
- Institute of Analytical Sciences, University of Claude Bernard Lyon-1, UMR 5280, CNRS, 5 Street of Doua, F-69100 Villeurbanne, France; (N.Z.); (A.E.)
| |
Collapse
|
13
|
Siavash Moakhar R, AbdelFatah T, Sanati A, Jalali M, Flynn SE, Mahshid SS, Mahshid S. A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23298-23310. [PMID: 32302093 DOI: 10.1021/acsami.0c02654] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical 3D gold nano-/microislands (NMIs) are favorably structured for direct and probe-free capture of bacteria in optical and electrochemical sensors. Moreover, their unique plasmonic properties make them a suitable candidate for plasmonic-assisted electrochemical sensors, yet the charge transfer needs to be improved. In the present study, we propose a novel plasmonic-assisted electrochemical impedimetric detection platform based on hybrid structures of 3D gold NMIs and graphene (Gr) nanosheets for probe-free capture and label-free detection of bacteria. The inclusion of Gr nanosheets significantly improves the charge transfer, addressing the central issue of using 3D gold NMIs. Notably, the 3D gold NMIs/Gr detection platform successfully distinguishes between various types of bacteria including Escherichia coli (E. coli) K12, Pseudomonas putida (P. putida), and Staphylococcus epidermidis (S. epidermidis) when electrochemical impedance spectroscopy is applied under visible light. We show that distinguishable and label-free impedimetric detection is due to dissimilar electron charge transfer caused by various sizes, morphologies, and compositions of the cells. In addition, the finite-difference time-domain (FDTD) simulation of the electric field indicates the intensity of charge distribution at the edge of the NMI structures. Furthermore, the wettability studies demonstrated that contact angle is a characteristic feature of each type of captured bacteria on the 3D gold NMIs, which strongly depends on the shape, morphology, and size of the cells. Ultimately, exposing the platform to various dilutions of the three bacteria strains revealed the ability to detect dilutions as low as ∼20 CFU/mL in a wide linear range of detection of 2 × 101-105, 2 × 101-104, and 1 × 102-1 × 105 CFU/mL for E. coli, P. putida, and S. epidermidis, respectively. The proposed hybrid structure of 3D gold NMIs and Gr, combined by novel plasmonic and conventional impedance spectroscopy techniques, opens interesting avenues in ultrasensitive label-free detection of bacteria with low cost and high stability.
Collapse
Affiliation(s)
| | - Tamer AbdelFatah
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Alireza Sanati
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| | | | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec H3A 0E9, Canada
| |
Collapse
|
14
|
Jalali M, Moakhar RS, Abdelfattah T, Filine E, Mahshid SS, Mahshid S. Nanopattern-Assisted Direct Growth of Peony-like 3D MoS 2/Au Composite for Nonenzymatic Photoelectrochemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7411-7422. [PMID: 31922713 DOI: 10.1021/acsami.9b17449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The chalcogenide material MoS2 has been recognized as a promising candidate for photoelectrochemical (PEC) applications due to its enhanced photocatalytic and electrocatalytic activities. However, few reports have been focused on the designated catalytic MoS2 for the nonenzymatic PEC sensing of small molecules. Here, we report on a novel in situ and fab-free method for the direct growth of three-dimensional (3D) porous Peony-like MoS2 nanosheets supported by nanohole-patterned TiO2 and composited with gold deposits. The direct growth resulted in enhanced electrical conductivity between the substrate and 3D-standing MoS2 nanosheets and thus the uniform distribution of gold electrodeposits from the MoS2 lattice. The hybrid 3D MoS2/gold nanocomposite demonstrated enhanced abundance of exposed catalytic edge sites and improved optic and electrical coupling, which ultimately led to excellent photoelectrochemical activities. We performed full characterization of the morphology, crystallinity, lattice configuration, and optical properties of hybrid MoS2 nanosheets via field emission scanning microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray, Raman, and UV-vis spectroscopies. The 3D COMSOL simulation also confirmed enhanced electric field distribution at the interface of the proposed 3D MoS2/gold nanocomposite electrode in comparison with other morphologies. We acquired the Peony-like 3D MoS2/Au composite for photoelectrochemical sensing of glucose in buffer and diluted plasma solutions with a very low limit of detection of 1.3 nM and superb sensitivity in plasma. Overall, we have successfully synergized both electrical and optical merits from individual components to form a novel composite, which offered an effective scaffold for the development of PEC sensors.
Collapse
Affiliation(s)
- Mahsa Jalali
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | | | - Tamer Abdelfattah
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | - Elizabeth Filine
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| | - Sahar Sadat Mahshid
- Biological Sciences, Sunnybrook Research Institute , Sunnybrook Health Sciences Centre , Toronto , ON M4N 3M5 , Canada
| | - Sara Mahshid
- Department of Bioengineering , McGill University , Montreal , QC H3A 0E9 , Canada
| |
Collapse
|
15
|
Wang X, Zhao H, Chen Z, Luo F, Guo L, Qiu B, Lin Z, Wang J. A homogeneous photoelectrochemical hydrogen sulfide sensor based on the electronic transfer mediated by tetrasulfophthalocyanine. Analyst 2020; 145:3543-3548. [DOI: 10.1039/d0an00302f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A homogeneous photoelectrochemical sensor for H2S detection based on the electronic transfer mediated by [Fe(iii)PcS4]+was developed with an un-modified photoelectrode.
Collapse
Affiliation(s)
- Xinyang Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Huanan Zhao
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhonghui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Fang Luo
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Longhua Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
16
|
Aguirre MDC. Nucleation and growth mechanisms of palladium, nanoflower-shaped, and its performance as electrocatalyst in the reduction of Cr(VI). J APPL ELECTROCHEM 2019. [DOI: 10.1007/s10800-019-01323-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review. Mikrochim Acta 2019; 186:405. [DOI: 10.1007/s00604-019-3514-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
18
|
A sensitive Potentiometric resolved ratiometric Photoelectrochemical aptasensor for Escherichia coli detection fabricated with non-metallic nanomaterials. Biosens Bioelectron 2018; 106:57-63. [PMID: 29414089 DOI: 10.1016/j.bios.2018.01.053] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 11/21/2022]
Abstract
In this work, a sensitive potentiometric resolved ratiometric photoelectrochemical aptasensor for Escherichia coli (E. coli) detection was successfully fabricated with non-metallic nanomaterials. To avoid the use of precious metals or heavy metals, three-dimensional graphene hydrogel-loaded carbon quantum dots (C-dots/3DGH) and graphene-like carbon nitride (g-C3N4) with excellent PEC activity and matched potential were prepared. These two materials were modified onto two adjacent areas on the ITO electrode. By applying different bias voltage, the cathodic current generated by C-dots/3DGH and the anodic current generated by g-C3N4 can be clearly distinguished and would not interfere with one another. Then E. coli aptamer was modified onto the surface of C-dots/3DGH. In the presence of targets, the binding of E. coli with aptamer lead to the steric hindrance greatly increased and the cathodic current decreased significantly. Meanwhile, the anodic current generated by g-C3N4 was not influenced and it can serve as a stable reference to evaluate the environmental factors. Therefore, the concentration of E. coli can be quantified by the ratio of cathodic current to anodic current, which can effectively eliminate these analyte-independent factors and provide a more precise analysis. In addition, this ratiometric PEC biosensor also showed a good sensitivity and a wide linear range (2.9 cfu/mL to 2.9 × 106 cfu/mL).
Collapse
|
19
|
AuPd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1231-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
|
21
|
Nosuhi M, Nezamzadeh-Ejhieh A. High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Siavash Moakhar R, Masudy-Panah S, Jalali M, Goh GKL, Dolati A, Ghorbani M, Riahi-Noori N. Sunlight driven photoelectrochemical light-to-electricity conversion of screen-printed surface nanostructured TiO 2 decorated with plasmonic Au nanoparticles. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Jin W, Du H, Yan K, Zheng S, Zhang Y. Improved electrochemical Cr(VI) detoxification by integrating the direct and indirect pathways. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Wang H, Wang Y, Zhang Y, Wang Q, Ren X, Wu D, Wei Q. Photoelectrochemical Immunosensor for Detection of Carcinoembryonic Antigen Based on 2D TiO2 Nanosheets and Carboxylated Graphitic Carbon Nitride. Sci Rep 2016; 6:27385. [PMID: 27263659 PMCID: PMC4893710 DOI: 10.1038/srep27385] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/16/2016] [Indexed: 01/02/2023] Open
Abstract
Carcinoembryonic antigen (CEA) was used as the model, an ultrasensitive label-free photoelectrochemical immunosensor was developed using 2D TiO2 nanosheets and carboxylated graphitic carbon nitride (g-C3N4) as photoactive materials and ascorbic acid as an efficient electron donor. 2D TiO2 nanosheets was sythsized by surfactant self-assembly method and proved to have higher photoelectrochemical signals than TiO2 nanoparticles. Firstly, carboxylated g-C3N4 could be attached to 2D TiO2 nanosheets through the bond formed between carboxyl group of carboxylated g-C3N4 and TiO2. And the photocurrent of g-C3N4/TiO2 drastically enhances compared to carboxylated g-C3N4 and TiO2. Then, antibody of CEA was bonded to TiO2 through the dentate bond formed between carboxyl group of anti-CEA and TiO2, leading to the decrease of the photocurrents. As proven by PEC experiments and electrochemical impedance spectroscopy (EIS) analysis, the fabrication process of the immunosensor is successful. Under the optimal conditions, the intensity decreased linearly with CEA concentration in the range of 0.01~10 ng/mL. The detection limit is 2.1 pg/mL. The work provides an effective method for the detection of tumor markers and can be extended for the application in food safety and environmental monitoring analysis.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yaoguang Wang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yong Zhang
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qi Wang
- School of Material Science and Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Xiang Ren
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dan Wu
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Qin Wei
- Key Laboratory of Chemical Sensing &Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|