1
|
Chen W, Zhang Q, Zhang Y, Han C, Wu J, Gao J, Zhu XD, Zhang YC. Construction of amorphous/crystalline Fe doped CoSe for effective electrocatalytic oxygen evolution. Chem Commun (Camb) 2024; 60:4930-4933. [PMID: 38629222 DOI: 10.1039/d4cc00866a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Herein, amorphous/crystalline Fe-doped CoSe was synthesized (Fe-CoSe/NF), and it exhibited high oxygen evolution reaction (OER) performance. The synergistic effect of the Fe dopant and the amorphous/crystalline structure is conducive to the formation of high valence Co3+ and Fe3+ active sites. Fe-CoSe/NF shows low overpotentials of 269 mV@50 mA cm-2 and 280 mV@100 mA cm-2.
Collapse
Affiliation(s)
- Wenjuan Chen
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Qian Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Youzheng Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Caidi Han
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Xiao-Dong Zhu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| | - Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, China.
| |
Collapse
|
2
|
Pradeep CP, Kar A, Sharma L, Kumar A, Halder A. A Facile Synthetic Strategy for Decavanadate and Transition Metal based All‐inorganic Coordination Polymers and Insights on their Electrocatalytic OER Activity. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chullikkattil P. Pradeep
- Indian Institute of Technology Mandi School of Basic Sciences IIT Kamand CampusKamand 175 005 Mandi INDIA
| | - Aranya Kar
- Indian Institute of Technology Mandi School of Basic Sciences INDIA
| | - Lalita Sharma
- Indian Institute of Technology Mandi School of Basic Sciences INDIA
| | - Akash Kumar
- Indian Institute of Technology Mandi School of Basic Sciences INDIA
| | - Aditi Halder
- Indian Institute of Technology Mandi School of Basic Sciences INDIA
| |
Collapse
|
3
|
Kumari S, Junqueira JRC, Schuhmann W, Ludwig A. High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M-V-O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties. ACS COMBINATORIAL SCIENCE 2020; 22:844-857. [PMID: 33103893 DOI: 10.1021/acscombsci.0c00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Combinatorial synthesis and high-throughput characterization of thin-film materials libraries enable to efficiently identify both photoelectrochemically active and inactive, as well as stable and instable systems for solar water splitting. This is shown on six ternary metal vanadate (M-V-O, M = Cu, Ag, W, Cr, Co, Fe) thin-film materials libraries, fabricated using combinatorial reactive magnetron cosputtering with subsequent annealing in air. By means of high-throughput characterization of these libraries correlations between composition, crystal structure, photocurrent density, and stability of the M-V-O systems in different electrolytes such as acidic, neutral and alkaline media were identified. The systems Cu-V-O and Ag-V-O are stable in alkaline electrolyte and exhibited photocurrents of 170 and 554 μA/cm2, respectively, whereas the systems W-V-O, Cr-V-O, and Co-V-O are not stable in alkaline electrolyte. However, the Cr-V-O and Co-V-O systems showed an enlarged photoactive region in acidic electrolyte, albeit with very low photocurrents (<10 μA/cm2). Complete data sets obtained from these different screening sets, including information on nonpromising systems, lays groundwork for their use to predict new systems for solar water splitting, for example, by machine learning.
Collapse
Affiliation(s)
- Swati Kumari
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - João R. C. Junqueira
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
4
|
Ghosh S, Tudu G, Mondal A, Ganguli S, Inta HR, Mahalingam V. Inception of Co3O4 as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co0.85Se/Co9Se8 Network. Inorg Chem 2020; 59:17326-17339. [PMID: 33213153 DOI: 10.1021/acs.inorgchem.0c02618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sourav Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Gouri Tudu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ayan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Sagar Ganguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Harish Reddy Inta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
5
|
Tao BX, Li XL, Ye C, Zhang Q, Deng YH, Han L, Li LJ, Luo HQ, Li NB. One-step hydrothermal synthesis of cobalt-vanadium based nanocomposites as bifunctional catalysts for overall water splitting. NANOSCALE 2019; 11:18238-18245. [PMID: 31565714 DOI: 10.1039/c9nr03628h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing low-cost and high-active bifunctional catalysts for overall water splitting has attracted increasing research interest. Herein, the brilliant overall water splitting performance of cobalt-vanadium bimetal-based nanocomposites is explored. Co-V based nanocomposites are synthesized through a one-step hydrothermal method, in which the cobalt species is introduced into the lepidocrocite VOOH and further cobalt vanadium oxide is formed. The additive level of cobalt is optimized and the corresponding effect on electrocatalytic activity is also investigated in this work, systematically. The targeted catalyst (denoted as Co0.2-VOOH) exhibits a unique sheet-like morphology, resulting in the high exposure of catalytically active sites. When used as the bifunctional catalyst, Co0.2-VOOH can achieve a current density of 10 mA cm-2 at the overpotentials of 210 mV for water oxidation and 130 mV for hydrogen generation, respectively. Notably, it only requires low cell voltages of 1.57 and 1.74 V to drive the catalytic current densities of 10 and 100 mA cm-2 during the water splitting process. This work significantly indicates that cobalt-vanadium based materials are promising alternatives for overall water splitting.
Collapse
Affiliation(s)
- Bai Xiang Tao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shin KH, Park J, Park SK, Nakhanivej P, Hwang SM, Kim Y, Park HS. Cobalt vanadate nanoparticles as bifunctional oxygen electrocatalysts for rechargeable seawater batteries. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Lu X, Li M, Wang H, Wang C. Advanced electrospun nanomaterials for highly efficient electrocatalysis. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00799g] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We highlight the recent developments of electrospun nanomaterials with controlled morphology, composition and architecture for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Meixuan Li
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Huiyuan Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering
- Nanling Campus
- Jilin University
- Changchun 130025
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
8
|
CuO nanowire@Co 3 O 4 ultrathin nanosheet core-shell arrays: An effective catalyst for oxygen evolution reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.063] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
He Y, Zhang J, He G, Han X, Zheng X, Zhong C, Hu W, Deng Y. Ultrathin Co 3O 4 nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc-air batteries. NANOSCALE 2017; 9:8623-8630. [PMID: 28608902 DOI: 10.1039/c7nr02385e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) nanocatalysts with a large specific surface area and efficient charge conductivity are promising candidates for catalyzing the sluggish oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), which are at the heart of various electrochemical energy conversion and storage technologies. Here, we report the synthesis of an ultrathin Co3O4 nanofilm with a thickness of nearly 1.8 nm via a surfactant- and template-free facile hydrothermal route. The proposed synthesis strategy can be extended to the preparation of 2D NixCo3-xO4 and FexCo3-xO4 nanostructures. The synthesized Co3O4 nanofilm exhibited bifunctional activity that was superior to that of the counterpart Co3O4 nanoparticles, including a lower overpotential and higher reduction and evolution current densities, and demonstrated faster catalytic kinetics over the 2D nanofilm surface. In comparison with precious metal-based catalysts, to achieve an OER current density of 40 mA cm-2 the overpotential of the nanofilm (461 mV) was lower than that of RuO2 (526 mV), whereas the ORR on the nanofilm proceeded via a dominant 4e- transfer mechanism, which is similar to that of commercial carbon-supported Pt (Pt/C). The Co3O4 nanofilm enabled the assembly of rechargeable Zn-air batteries with a lower overpotential (0.72 V), higher round-trip efficiency (62.7%), and a longer cycle lifetime (175 cycles). The remarkable bifunctional activity contributes to an increase in the number of electrochemically active sites, a large interfacial contact area with the electrolyte, and the enrichment of Co3+ ions on the surface, which facilitates the adsorption and activation of oxygen-containing species. This study should shed light on the future development of new electroactive materials with optimized 2D nanostructures to enhance the overall bifunctional ORR/OER performance of rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Yu He
- Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Size controllable synthesis of cobalt vanadate nanostructures with enhanced photocatalytic activity for the degradation of organic dyes. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.09.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Wang Z, Li M, Liang C, Fan L, Han J, Xiong Y. Effect of morphology on the oxygen evolution reaction for La0.8Sr0.2Co0.2Fe0.8O3−δelectrochemical catalyst in alkaline media. RSC Adv 2016. [DOI: 10.1039/c6ra14770d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of perovskite oxides La0.8Sr0.2Co0.2Fe0.8O3−δwith different morphologies have been synthesized as oxygen evolution reaction electrocatalysts by an electrospinning technique.
Collapse
Affiliation(s)
- Zhuang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Mian Li
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Chenghao Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Liquan Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Jianan Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Yueping Xiong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| |
Collapse
|