1
|
Sulthana SF, Iqbal UM, Suseela SB, Anbazhagan R, Chinthaginjala R, Chitathuru D, Ahmad I, Kim TH. Electrochemical Sensors for Heavy Metal Ion Detection in Aqueous Medium: A Systematic Review. ACS OMEGA 2024; 9:25493-25512. [PMID: 38911761 PMCID: PMC11190924 DOI: 10.1021/acsomega.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Heavy metal ions (HMIs) are very harmful to the ecosystem when they are present in excess of the recommended limits. They are carcinogenic in nature and can cause serious health issues. So, it is important to detect the metal ions quickly and accurately. The metal ions arsenic (As3+), cadmium (Cd2+), chromium (Cr3+), lead (Pb2+), and mercury (Hg2+) are considered to be very toxic among other metal ions. Standard analytical methods like atomic absorption spectroscopy, atomic fluorescence spectroscopy, and X-ray fluorescence spectroscopy are used to detect HMIs. But these methods necessitate highly technical equipment and lengthy procedures with skilled personnel. So, electrochemical sensing methods are considered to be more advantageous because of their quick analysis with precision and simplicity to operate. They can detect a wide range of heavy metals providing real-time monitoring and are cost-effective and enable multiparametric detection. Various sensing applications necessitate severe regulation regarding the modification of electrode surfaces. Numerous nanomaterials such as graphene, carbon nanotubes, and metal nanoparticles have been extensively explored as interface materials in electrode modifiers. These nanoparticles offer excellent electrical conductivity, distinctive catalytic properties, and high surface area resulting in enhanced electrochemical performance. This review examines different HMI detection methods in an aqueous medium by an electrochemical sensing approach and studies the recent developments in interface materials for altering the electrodes.
Collapse
Affiliation(s)
- S. Fouziya Sulthana
- Department
of Mechatronics Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - U. Mohammed Iqbal
- Department
of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreeja Balakrishnapillai Suseela
- Department
of Electronics and Communication Engineering, Centre for Medical Electronics,
College of Engineering, Anna University, Chennai, Tamil Nadu 600025, India
| | - Rajesh Anbazhagan
- School
of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613401, India
| | - Ravikumar Chinthaginjala
- School
of Electronics Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanamjayulu Chitathuru
- School of
Electrical Engineering, Vellore Institute
of Technology, Vellore 632014, Tamil Nadu, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Tai-hoon Kim
- School
of Electrical and Computer Engineering Yeosu Campus, Chonnam National University, 50 Daehak-ro, Yeosu-si, Jeollanam-do 59626, Republic of Korea
| |
Collapse
|
2
|
Xu K, Pei R, Zhang M, Jing C. Iron oxide-supported gold nanoparticle electrode for simultaneous detection of arsenic and sulfide on-site. Anal Chim Acta 2024; 1288:342120. [PMID: 38220269 DOI: 10.1016/j.aca.2023.342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
The environmental behavior of arsenic (As) has garnered significant attention due to its hazardous nature. The fate of As often couples with sulfide, thus co-detecting arsenic and sulfide on-site is crucial for comprehending their geochemical interactions. While electrochemical methods are suitable for on-site chemical analysis, there currently exists no electrode capable of simultaneously detecting both arsenic and sulfide. To address this, we developed a dual-metal electrode consisting of iron oxide-encased carbon cloth loaded with gold nanoparticles (Au/FeOx/CC) using the electrochemical deposition method. This electrode enables square wave stripping voltammetry (SWASV) binary detection of As and sulfide. Comparison experiments reveal that the reaction sites for sulfide primarily reside on FeOx, while the interface synergy of iron oxide and gold nanoparticles enhances the response to arsenite (AsIII). Arsenate (AsV) is directly reduced to As0 on Fe0, obviating the need for an external reducing agent. The electrode achieves detection limits of 1.5 μg/L for AsV, 0.25 μg/L for AsIII, and 11.6 μg/L for sulfide at mild conditions (pH 7.8). Field validation was conducted in the Tengchong geothermal hot spring region, where the electrochemical method exhibited good correlation with the standard methods: Total As (r = 0.978 vs. ICP-MS), AsIII (r = 0.895 vs. HPLC-ICP-MS), and sulfide (r = 0.983 vs. colorimetric method). Principal component analysis and correlation analysis suggest that thioarsenic, could potentially be positive interferents for AsIII. However, this interference can be anticipated and mitigated by monitoring the abundance of sulfide. The study provides new insights and problems for the electrochemical detection of coexisted As and sulfide.
Collapse
Affiliation(s)
- Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Rui Pei
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Pungjunun K, Praphairaksit N, Chailapakul O. A facile and automated microfluidic electrochemical platform for the in-field speciation analysis of inorganic arsenic. Talanta 2023; 265:124906. [PMID: 37451117 DOI: 10.1016/j.talanta.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
An automated microfluidic electrochemical platform was developed for the rapid in-field analysis of arsenic speciation. Herein, we integrated an electrochemical sensing and microfluidic channel for the simultaneous determination of As(III) and total inorganic As (total iAs) within a single device. The platform was fabricated by assembling a gold nanoparticle-modified screen-printed graphene electrode (AuNP/SPGE) on a hydrophilic polyethylene terephthalate (PET) sheet that was specially designed to enclose a microfluidic channel with dual flow channels for separate determination of the two species. While As(III) can be promptly detected with the AuNP/SPGE on one end, thioglycolic acid stored in glass fiber is employed on the other end to reduce As(V) before being electrochemically analyzed on the AuNP/SPGE as total iAs; the difference represents the amount of As(V). With a wireless potentiostat and a smartphone equipped with Bluetooth technology, the overall procedure can be fully automated and accomplished merely within 9 min. The linear ranges for the determination of As(III) and total iAs were found to be 50-1000 and 100-1500 ng/mL with detection limits of 3.7 and 17 ng/mL, respectively. The proposed method was validated and applied for the inorganic As speciation of various food samples with satisfactory results compared to those obtained with the standard HPLC-ICP‒MS protocol. This novel microfluidic electrochemical platform offers numerous advantages, notably for its simplicity, speed, low cost, and portability for on-site analysis, which conclusively makes it a highly promising analytical device for the speciation of inorganic arsenic.
Collapse
Affiliation(s)
- Kingkan Pungjunun
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Narong Praphairaksit
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Eikelboom M, Wang Y, Portlock G, Gourain A, Gardner J, Bullen J, Lewtas P, Carriere M, Alvarez A, Kumar A, O'Prey S, Tölgyes T, Omanović D, Bhowmick S, Weiss D, Salaun P. Voltammetric determination of inorganic arsenic in mildly acidified (pH 4.7) groundwaters from Mexico and India. Anal Chim Acta 2023; 1276:341589. [PMID: 37573093 DOI: 10.1016/j.aca.2023.341589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
Routine monitoring of inorganic arsenic in groundwater using sensitive, reliable, easy-to-use and affordable analytical methods is integral to identifying sources, and delivering appropriate remediation solutions, to the widespread global issue of arsenic pollution. Voltammetry has many advantages over other analytical techniques, but the low electroactivity of arsenic(V) requires the use of either reducing agents or relatively strong acidic conditions, which both complicate the analytical procedures, and require more complex material handling by skilled operators. Here, we present the voltammetric determination of total inorganic arsenic in conditions of near-neutral pH using a new commercially available 25 μm diameter gold microwire (called the Gold Wirebond), which is described here for the first time. The method is based on the addition of low concentrations of permanganate (10 μM MnO4-) which fulfils two roles: (1) to ensure that all inorganic arsenic is present as arsenate by chemically oxidising arsenite to arsenate and, (2) to provide a source of manganese allowing the sensitive detection of arsenate by anodic stripping voltammetry at a gold electrode. Tests were carried out in synthetic solutions of various pH (ranging from 4.7 to 9) in presence/absence of chloride. The best response was obtained in 0.25 M chloride-containing acetate buffer resulting in analytical parameters (limit of detection of 0.28 μg L-1 for 10 s deposition time, linear range up to 20 μg L-1 and a sensitivity of 63.5 nA ppb-1. s-1) better than those obtained in acidic conditions. We used this new method to measure arsenic concentrations in contrasting groundwaters: the reducing, arsenite-rich groundwaters of India (West Bengal and Bihar regions) and the oxidising, arsenate-rich groundwaters of Mexico (Guanajuato region). Very good agreement was obtained in all groundwaters with arsenic concentrations measured by inductively coupled plasma-mass spectrometry (slope = +1.029, R2 = 0.99). The voltammetric method is sensitive, faster than other voltammetric techniques for detection of arsenic (typically 10 min per sample including triplicate measurements and 2 standard additions), easier to implement than previous methods (no acidic conditions, no chemical reduction required, reproducible sensor, can be used by non-voltammetric experts) and could enable cheaper groundwater surveying campaigns with in-the-field analysis for quick data reporting, even in remote communities.
Collapse
Affiliation(s)
- Martijn Eikelboom
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK.
| | - Yaxuan Wang
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Gemma Portlock
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Arthur Gourain
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Joseph Gardner
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK
| | - Jay Bullen
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Paul Lewtas
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, Western Australia, 6027, Australia
| | - Matthieu Carriere
- Caminos de Agua, José María Correa 23A, Colonia Santa Cecilia, 37727, San Miguel de Allende, Gto, Mexico
| | - Alexandra Alvarez
- Caminos de Agua, José María Correa 23A, Colonia Santa Cecilia, 37727, San Miguel de Allende, Gto, Mexico
| | - Arun Kumar
- Mahavir Cancer Sansthan and Research Centre, Phulwarisharif, Patna, 801505, Bihar, India
| | | | | | - Dario Omanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Subhamoy Bhowmick
- Kolkata Zonal Center CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal, 700107, India
| | - Dominik Weiss
- Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Pascal Salaun
- School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, L69 3GP, Liverpool, UK.
| |
Collapse
|
5
|
Piña S, Sandoval MA, Jara-Ulloa P, Contreras D, Hassan N, Coreño O, Salazar R. Nanostructured electrochemical sensor applied to the electrocoagulation of arsenite in WWTP effluent. CHEMOSPHERE 2022; 306:135530. [PMID: 35792212 DOI: 10.1016/j.chemosphere.2022.135530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 μg L-1 with a detection limit of 0.39 μg L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 μg L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm-2 in less than 3 min of treatment.
Collapse
Affiliation(s)
- Samuel Piña
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile; Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Miguel A Sandoval
- Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile; Departamento de Ingenieria Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paola Jara-Ulloa
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Santiago, 7941169, Chile
| | - David Contreras
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Natalia Hassan
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile; Millenium Nucleous in NanoBioPhysics, Chile
| | - Oscar Coreño
- Universidad de Guanajuato, Departamento de Ingeniería Civil, Av. Juárez 77, Zona Centro, 36000, Guanajuato, Guanajuato, Mexico
| | - Ricardo Salazar
- Laboratorio de Electroquímica del Medio Ambiente, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
6
|
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Arsenic is a ubiquitously found metalloid in our ecosystem because of natural and anthropogenic activities. People exposed to a higher level of arsenic become susceptible to several disorders, including cancer. According to current statistics, the population chronically exposed to arsenic has surpassed 200 million. Therefore, its detection in our environment is of great importance. There are many analytical techniques for the assessment of arsenic in different kinds of environmental samples. Among these techniques, the biosensor is considered a convenient platform and a widely applied analytical device for rapid qualitative and quantitative analysis in the field of environmental monitoring, food safety, and disease diagnosis. Today, there is a trend of including nanomaterials in sensors and biosensors because it empowers researchers to explore new arsenic detection methods and to enhance their analytical capabilities. In this review article, we summarized the latest developments in arsenic biosensors in particular with emphasis on the works based on cell-free approaches that are protein/enzyme-based, DNA-based, and aptamer-based utilizing various transduction platforms. In the meantime, we compared the capabilities that were related to these cell-free arsenic biosensors. This review article also highlights the development and application of novel nanomaterials for arsenic detection.
Collapse
Affiliation(s)
- Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Tannu Kharewal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Neelam Verma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
7
|
Banik D, Manna SK, Mahapatra AK. Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: Environmental and biological applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119047. [PMID: 33070013 DOI: 10.1016/j.saa.2020.119047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Due to biological and environmental significance of highly toxic arsenic species, the design, synthesis and development of chemosensors for arsenic species has been a very active research field in recent times. In this review, we summarize recent works on the sensing mechanisms employed by fluorometric/colorimetric chemosensors and their applications in arsenic detection. Various types of sensing strategies can be categorized into six types including (i) chemosensors based on hydrogen bonding interactions; (ii) aggregation induced emission (AIE) based chemosensors; (iii) chemodosimetric approach (reaction-based chemosensors); (iv) metal coordination-based sensing strategy; (v) chemosensors based on metal complex displacement approach and (vi) metal complex as chemosensor. All these sensing strategies are very much simple and sensitive for use in the design of arsenic selective chromogenic and fluorogenic probes.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Debhog, Purba Medinipur, Haldia 721657, West Bengal, India.
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India.
| |
Collapse
|
8
|
Lalmalsawmi J, Tiwari D, Kim DJ. Role of nanocomposite materials in the development of electrochemical sensors for arsenic: Past, present and future. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Baghayeri M, Ghanei-Motlagh M, Tayebee R, Fayazi M, Narenji F. Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal Chim Acta 2020; 1099:60-67. [DOI: 10.1016/j.aca.2019.11.045] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 11/17/2019] [Indexed: 11/30/2022]
|
10
|
Yáñez-Sedeño P, Agüí L, Campuzano S, Pingarrón JM. What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications. BIOSENSORS-BASEL 2019; 9:bios9040127. [PMID: 31671772 PMCID: PMC6956127 DOI: 10.3390/bios9040127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Lourdes Agüí
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Susana Campuzano
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - José Manuel Pingarrón
- Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| |
Collapse
|
11
|
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron 2019; 148:111785. [PMID: 31689596 DOI: 10.1016/j.bios.2019.111785] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
Abstract
Arsenic (As) is a highly toxic contaminant in the environment and a serious carcinogen for the human being. The toxicity of arsenic significantly threatens environmental and human health. The effective removing technology for arsenic remains challenging, and one of the reasons is due to the lack of powerful detection method in the complex environmental matrix. There is thus an urgent need to develop novel analytical methods for arsenic, preferably with the potential for the field-testing. To combat arsenic pollution and maintain a healthy environment and eco-system, many analytical methods have been developed for arsenic detection in various samples. Among these strategies, biosensors hold great promise for rapid detection of arsenic, in particular, nanomaterials-based aptamer sensors have attracted significant attention due to their simplicity, high sensitivity and rapidness. In this paper, we reviewed the recent development and applications of aptamer sensors (aptasensors) based-on nanomaterial for arsenic detection, in particular with emphasis on the works using optical and electrochemical technologies. We also discussed the recent novel technology in aptasensors development for arsenic detection, including nucleic acid amplification for signal enhancement and device integration for the portability of arsenic sensors. We are hoping this review could inspire further researches in developing novel nanotechnologies based aptasensors for possible on-site detection of arsenic.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhenglu Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
12
|
Postek WB, Rutkowska IA, Cox JA, Kulesza PJ. Electrocatalytic effects during redox reactions of arsenic at platinum nanoparticles in acid medium: Possibility of preconcentration, electroactive film formation, and detection of As(III) and As(V). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Li T, Berberich J, Sahle-Demessie E, Varughese E. A disposable acetylcholine esterase sensor for As(III) determination in groundwater matrix based on 4-acetoxyphenol hydrolysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:5203-5213. [PMID: 32021658 PMCID: PMC6997941 DOI: 10.1039/c9ay01199d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a lack of field compatible analytical method for the speciation of As(III) to characterize groundwater pollution at anthropogenic sites. To address this issue, an inhibition-based acetylcholine esterase (AchE) sensor was developed to determine As(III) in groundwater. 4-Acetoxyphenol was employed to develop an amperometric assay for AchE activity. This assay was used to guide the fabrication of an AchE sensor with screen-printed carbon electrode. An As(III) determination protocol was developed based on the pseudo-irreversible inhibition mechanism. The analysis has a dynamic range of 2-500 μM (150 - 37,500 μg L-1) for As(III). The sensor exhibited the same dynamic range and sensitivity in a synthetic groundwater matrix. The electrode was stable for at least 150 days at 22 ± 2 °C.
Collapse
Affiliation(s)
- Tao Li
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, 45268, USA
| | - Jason Berberich
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056, USA
| | - Endalkachew Sahle-Demessie
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, 45268, USA
| | - Eunice Varughese
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, 45268, USA
| |
Collapse
|
14
|
Abollino O, Malandrino M, Berto S, La Gioia C, Maruccia V, Conca E, Ruo Redda A, Giacomino A. Stripping voltammetry for field determination of traces of copper in soil extracts and natural waters. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wen SH, Zhong XL, Wu YD, Liang RP, Zhang L, Qiu JD. Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Anal Chem 2019; 91:6487-6497. [PMID: 31037939 DOI: 10.1021/acs.analchem.8b05121] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study reports a novel and convenient bimodal method for label-free and signal-off detection of arsenate in environmental samples. Cobalt oxyhydroxide (CoOOH) nanoflakes with facile preparation and intrinsic peroxidase-like activity as nanozyme can efficiently catalyze the conversion of chromogenic substrate such as 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with the presence of H2O2 into green-colored oxidation products. CoOOH nanoflakes can specifically bind with arsenate via electrostatic attraction and As-O bond interaction, which gives rise to inhibition of the peroxidase-like activity of CoOOH. Thus, through arsenate specific inhibition of CoOOH nanozyme toward ABTS catalysis, a simple colorimetric method was developed for arsenate detection with a detection limit of 3.72 ppb. Based on the system of CoOOH nanozyme and ABTS substrate, this colorimetric method can be converted into an electrochemical sensor for arsenate assay by the utilization of CoOOH nanoflake-modified electrode. The electrochemical measurement can be realized by chronoamperometry, which showed more sensitive and a lower limit of detection as low as 56.1 ppt. The applicability of this bimodal method was demonstrated by measuring arsenate and total arsenic in different real samples such as natural waters and soil extracted solutions, and the results are of satisfactory accuracy as confirmed by inductively coupled plasma mass spectrometry analysis. The bimodal strategy offers obvious advantages including a label-free step, convenient operation, on-site assay, low cost, and high sensitivity, which is promising for reliable detection of arsenate and total arsenic in environmental samples.
Collapse
Affiliation(s)
- Shao-Hua Wen
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Xiao-Li Zhong
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Yi-Di Wu
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Ru-Ping Liang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Li Zhang
- College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Jian-Ding Qiu
- College of Chemistry , Nanchang University , Nanchang 330031 , China.,Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province , Pingxiang University , Pingxiang 337055 , China
| |
Collapse
|
16
|
|
17
|
Jaramillo DXO, Sukeri A, Saravia LP, Espinoza-Montero PJ, Bertotti M. Nanoporous Gold Microelectrode: A Novel Sensing Platform for Highly Sensitive and Selective Determination of Arsenic (III) using Anodic Stripping Voltammetry. ELECTROANAL 2017. [DOI: 10.1002/elan.201700301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Darío Xavier Orellana Jaramillo
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo, Av Prof. Lineu Prestes, 748; São Paulo, SP Brazil
- Centro de Investigación y Control Ambiental, Departamento de Ingeniería Civil y Ambiental; Escuela Politécnica Nacional, Ladrón de Guevara E11-253, P.O.Box 17-01-2759; Quito-Ecuador
| | - Anandhakumar Sukeri
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo, Av Prof. Lineu Prestes, 748; São Paulo, SP Brazil
| | - Lucas P.H. Saravia
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo, Av Prof. Lineu Prestes, 748; São Paulo, SP Brazil
| | - Patricio Javier Espinoza-Montero
- Centro de Investigación y Control Ambiental, Departamento de Ingeniería Civil y Ambiental; Escuela Politécnica Nacional, Ladrón de Guevara E11-253, P.O.Box 17-01-2759; Quito-Ecuador
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry; University of São Paulo, Av Prof. Lineu Prestes, 748; São Paulo, SP Brazil
| |
Collapse
|
18
|
|
19
|
Nunez-Bajo E, Blanco-López MC, Costa-García A, Fernández-Abedul MT. Electrogeneration of Gold Nanoparticles on Porous-Carbon Paper-Based Electrodes and Application to Inorganic Arsenic Analysis in White Wines by Chronoamperometric Stripping. Anal Chem 2017; 89:6415-6423. [DOI: 10.1021/acs.analchem.7b00144] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Estefanía Nunez-Bajo
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | - M. Carmen Blanco-López
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | - Agustín Costa-García
- Departamento de Química
Física y Analítica, Universidad de Oviedo, Asturias, Spain 33006
| | | |
Collapse
|
20
|
Carrera P, Espinoza-Montero PJ, Fernández L, Romero H, Alvarado J. Electrochemical determination of arsenic in natural waters using carbon fiber ultra-microelectrodes modified with gold nanoparticles. Talanta 2017; 166:198-206. [PMID: 28213223 DOI: 10.1016/j.talanta.2017.01.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023]
Abstract
We have developed an anodic stripping voltammetry method that employs carbon fiber ultra-microelectrodes modified with gold nanoparticles to determine arsenic in natural waters. Gold nanoparticles were potentiostatically deposited on carbon fiber ultra-microelectrodes at -0.90V (vs SCE) for a time of 15s, to form the carbon fiber ultra-microelectrodes modified with gold nanoparticles. Cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy coupled to an X-ray microanalysis system were used to check and confirm the presence of gold nanoparticles on the carbon fiber ultra-microelectrodes. Arsenic detection parameters such as deposition potential and deposition time were optimized allowing a detection range between 5 to 60µgL-1. The developed modified electrodes allowed rapid As determination with improved analytical characteristics including better repeatability, higher selectivity, lower detection limit (0.9μgL-1) and higher sensitivity (0.0176nAμgL-1) as compared to the standard carbon electrodes. The analytical capability of the optimized method was demonstrated by determination of arsenic in certified reference materials (trace elements in water (NIST SRM 1643d)) and by comparison of results with those obtained by hydride generation atomic absorption spectrometry (HG-AAS) in the determination of the analyte in tap and well waters.
Collapse
Affiliation(s)
| | | | - Lenys Fernández
- Universidad Simón Bolívar, Departamento de Química, Apartado 89000, Caracas, Venezuela.
| | - Hugo Romero
- Universidad Técnica de Machala, Facultad de Ciencias Químicas y de la Salud, Apartado 070151, Machala, Ecuador
| | - José Alvarado
- Universidad Simón Bolívar, Departamento de Química, Apartado 89000, Caracas, Venezuela
| |
Collapse
|
21
|
Tiwari D, Zirlianngura, Lee SM. Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2016.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|