1
|
Khaksarinejad R, Arabpour Z, RezaKhani L, Parvizpour F, Rasmi Y. Biomarker based biosensors: An opportunity for diagnosis of COVID-19. Rev Med Virol 2022; 32:e2356. [PMID: 35478470 PMCID: PMC9111147 DOI: 10.1002/rmv.2356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
Early diagnosis and treatment of diseases are crucial research areas of human health. For early diagnosis, one method that has proven efficient is the detection of biomarkers which can provide real-time and accurate biological information. Most biomarker detection is currently carried out at localised dedicated laboratories using large and automated analysers, increasing waiting time and costs. Smaller, faster, and cheaper devices could potentially replace these time-consuming laboratory analyses and make analytical results available as point-of-care diagnostics. Innovative biosensor-based strategies could allow biomarkers to be tested reliably in a decentralised setting. Early diagnosis of COVID-19 patients has a key role in order to use quarantine and treatment strategies in a timely manner. Raised levels of several biomarkers in COVID-19 patients are associated with respiratory infections or dysfunction of various organs. Through clinical studies of COVID-19 patient biomarkers such as ferritin, Interleukins, albumin and …are found to reveals significant differences in their excretion ranges from healthy patients and patients with SARS-CoV-2, in addition to the development of biomarkers based biosensor such as stated biomarkers can be used and to investigate more specific biomarkers further proteomic analysis can be performed. This review presents several biomarker alterations in COVID-19 patients such as salivary, circulatory, coagulation, cardiovascular, renal, liver, C-reactive protein (CRP), immunological and inflammatory biomarkers. Also, biomarker sensors based on electrochemical, optical, and lateral flow characteristics which have potential applications for SARS-COV-2 in the recent COVID-19 pandemic, will be discussed.
Collapse
Affiliation(s)
- Reza Khaksarinejad
- Department of ToxicologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Zohreh Arabpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Leila RezaKhani
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
- Department of Tissue EngineeringSchool of MedicineKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research CenterTehran University of Medical SciencesTehranIran
| | - Yousef Rasmi
- Department of BiochemistryFaculty of MedicineUrmia University of Medical SciencesUrmiaIran
- Cellular and Molecular Research CenterUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
2
|
Li G, Niu P, Ge S, Cao D, Sun A. SERS Based Lateral Flow Assay for Rapid and Ultrasensitive Quantification of Dual Laryngeal Squamous Cell Carcinoma-Related miRNA Biomarkers in Human Serum Using Pd-Au Core-Shell Nanorods and Catalytic Hairpin Assembly. Front Mol Biosci 2022; 8:813007. [PMID: 35223986 PMCID: PMC8878268 DOI: 10.3389/fmolb.2021.813007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Non-invasive early diagnosis is of great significant in disease pathologic development and subsequent medical treatments, and microRNA (miRNA) detection has attracted critical attention in early cancer screening and diagnosis. However, it was still a challenge to report an accurate and sensitive method for the detection of miRNA during cancer development, especially in the presence of its analogs that produce intense background noise. Herein, we developed a surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) biosensor, assisted with catalytic hairpin assembly (CHA) amplification strategy, for the dynamic monitoring of miR-106b and miR-196b, associated with laryngeal squamous cell carcinoma (LSCC). In the presence of target miRNAs, two hairpin DNAs could self-assemble into double-stranded DNA, exposing the biotin molecules modified on the surface of palladium (Pd)-gold (Au) core-shell nanorods (Pd-AuNRs). Then, the biotin molecules could be captured by the streptavidin (SA), which was fixed on the test lines (T1 line and T2 line) beforehand. The core-shell spatial structures and aggregation Pd-AuNRs generated abundant active "hot spots" on the T line, significantly amplifying the SERS signals. Using this strategy, the limits of detections were low to aM level, and the selectivity, reproducibility, and uniformity of the proposed SERS-LFA biosensor were satisfactory. Finally, this rapid analysis strategy was successfully applied to quantitatively detect the target miRNAs in clinical serum obtained from healthy subjects and patients with LSCC at different stages. The results were consistent with the quantitative real-time PCR (qRT-PCR). Thus, the CHA-assisted SERS-LFA biosensor would become a promising alternative tool for miRNAs detection, which showed a tremendous clinical application prospect in diagnosing LSCC.
Collapse
Affiliation(s)
- Guang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ping Niu
- Departments of Otolaryngology, The Affiliated Hospital of Shandong First Medical University, Qingzhou People’s Hospital, Qingzhou, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dawei Cao
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Aidong Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
4
|
Park H, Masud MK, Na J, Lim H, Phan HP, Kaneti YV, Alothman AA, Salomon C, Nguyen NT, Hossain MSA, Yamauchi Y. Mesoporous gold-silver alloy films towards amplification-free ultra-sensitive microRNA detection. J Mater Chem B 2021; 8:9512-9523. [PMID: 32996976 DOI: 10.1039/d0tb02003f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Herein, we report the preparation of mesoporous gold (Au)-silver (Ag) alloy films through the electrochemical micelle assembly process and their applications as microRNA (miRNA) sensors. Following electrochemical deposition and subsequent removal of the templates, the polymeric micelles can create uniformly sized mesoporous architectures with high surface areas. The resulting mesoporous Au-Ag alloy films show high current densities (electrocatalytic activities) towards the redox reaction between potassium ferrocyanide and potassium ferricyanide. Following magnetic isolation and purification, the target miRNA is adsorbed directly on the mesoporous Au-Ag film. Electrochemical detection is then enabled by differential pulse voltammetry (DPV) using the [Fe(CN)6]3-/4- redox system (the faradaic current for the miRNA-adsorbed Au-Ag film decreases compared to the bare film). The films demonstrate great advantages towards miRNA sensing platforms to enhance the detection limit down to attomolar levels of miR-21 (limit of detection (LOD) = 100 aM, s/n = 3). The developed enzymatic amplification-free miniaturized analytical sensor has promising potential for RNA-based diagnosis of diseases.
Collapse
Affiliation(s)
- Hyeongyu Park
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and Department of Biochemistry and Molecular Biology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia and Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Md Shahriar A Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia. and School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Khan MZH, Hasan MR, Hossain SI, Ahommed MS, Daizy M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens Bioelectron 2020; 166:112431. [PMID: 32862842 PMCID: PMC7363606 DOI: 10.1016/j.bios.2020.112431] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Last few decades, viruses are a real menace to human safety. Therefore, the rapid identification of viruses should be one of the best ways to prevent an outbreak and important implications for medical healthcare. The recent outbreak of coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus which belongs to the single-stranded, positive-strand RNA viruses. The pandemic dimension spread of COVID-19 poses a severe threat to the health and lives of seven billion people worldwide. There is a growing urgency worldwide to establish a point-of-care device for the rapid detection of COVID-19 to prevent subsequent secondary spread. Therefore, the need for sensitive, selective, and rapid diagnostic devices plays a vital role in selecting appropriate treatments and to prevent the epidemics. During the last decade, electrochemical biosensors have emerged as reliable analytical devices and represent a new promising tool for the detection of different pathogenic viruses. This review summarizes the state of the art of different virus detection with currently available electrochemical detection methods. Moreover, this review discusses different fabrication techniques, detection principles, and applications of various virus biosensors. Future research also looks at the use of electrochemical biosensors regarding a potential detection kit for the rapid identification of the COVID-19.
Collapse
Affiliation(s)
- M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - M R Hasan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Institute of Nanoscience of Aragon, Department of Chemical Engineering and Environmental Technology, University of Zaragoza, Aragon, Spain
| | - S I Hossain
- Chemistry Department, University of Bari "Aldo Moro", Via E. Orabona 4 - 70126 Bari, Italy
| | - M S Ahommed
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - M Daizy
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
6
|
de Eguilaz MR, Cumba LR, Forster RJ. Electrochemical detection of viruses and antibodies: A mini review. Electrochem commun 2020; 116:106762. [PMID: 32501391 PMCID: PMC7247998 DOI: 10.1016/j.elecom.2020.106762] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/26/2022] Open
Abstract
Near patient detection of viral infection represents a powerful approach for the control of emerging threats to global health. Moreover, the ability to identify individuals who have contracted the disease and developed antibodies that confer immunity is central to a return to normal daily activities. This review presents some of the recent advances in electrochemical sensors for the detection of viruses and their associated antibody profiles. Given the speed, portability, sensitivity and selectivity achieved using electrochemical detection, these sensor systems hold the promise of transformative change in clinical practice.
Collapse
Affiliation(s)
- Miren Ruiz de Eguilaz
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| | - Loanda R. Cumba
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| | - Robert J. Forster
- National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Ireland
| |
Collapse
|
7
|
Bao J, Hou C, Zhao Y, Geng X, Samalo M, Yang H, Bian M, Huo D. An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate. Talanta 2018; 196:329-336. [PMID: 30683372 DOI: 10.1016/j.talanta.2018.12.082] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023]
Abstract
In present study, a sensitive and effective electrochemical microRNA (miRNA) sensing platform is successfully developed by integrating gold nanoparticles/polypyrrole-reduced graphene oxide (Au/PPy-rGO), catalyzed hairpin assembly (CHA) and hybridization chain reaction (HCR) multiple signal amplification strategy. Firstly, Au/PPy-rGO was employed onto a bare GCE by electrodeposition that can greatly enhanced conductivity and effectively immobilize probes. Then, the thiolated capture probes (SH-CP) were self-assembled on the Au/PPy-rGO modified GCE via Au-S bond. The target miRNA triggered the dynamic assembly of the two hairpin substrates (H1 and H2), leading to the cyclicality of the target miRNA and the formation of H1-H2 complexes without the assistance of enzyme. Subsequently, the newly emerging DNA fragment of H2 triggered the HCR when a mixture solution (hairpins H3 and H4) and produced dsDNA polymers. Finally, a substantial amount of methylene blue (MB) as signal indicator was intercalated into the minor groove of the long dsDNA polymers to achieve detected electrochemical signal. The fabricated sensor is able to detect miRNA-16 (model target) with concentration range from 10 fM to 5 nM with a low detection limit (LOD) of 1.57 fM (S/N = 3). Current research suggests that the developed multiple signal amplification platform has a great potential for the applications in the field of biomedical research and clinical analysis.
Collapse
Affiliation(s)
- Jing Bao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yanan Zhao
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xintong Geng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Mickey Samalo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Huisi Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Minghong Bian
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Danqun Huo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| |
Collapse
|
8
|
Lee J, Ha JW. Elucidating the contribution of dipole resonance mode to polarization-dependent optical properties in single triangular gold nanoplates. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.10.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Xu N, Xu N, Liu L, Zhu P, Liang J. Minireview: Recent Advances in Surface-Enhanced Raman Scattering-Based Nucleic Acid Detection with Application to Pathogen Diagnosis. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1392971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nannan Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Ning Xu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Liu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Panpan Zhu
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| | - Jing Liang
- Institute of Drug Development & Chemical Biology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|