1
|
Mousset E, Adnan FH, Ruffet A, Moretti P, Cédat B. Influence of interelectrode distances in electrocoagulation: is there any possibility and advantages to operate at micro-distances with low-conductivity effluents? CHEMOSPHERE 2024; 368:143794. [PMID: 39580092 DOI: 10.1016/j.chemosphere.2024.143794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
It has been proposed for the first time to investigate the possibility to implement micro-inter-electrode distances in electrocoagulation (EC) in order to improve both the treatment and energy efficiencies compared to conventional EC cells with centimetric distances. The study has been performed in a microfluidic monopolar flow-by filter-press cell for the treatment of simulated and real low-conductivity (0.5-1 mS cm-1) laundry wastewaters. The influences of interelectrode distance (delec) (100-10,000 μm), applied current density (japp) (10-200 mA cm-2), and types of anode materials (iron, aluminium and stainless steel) have been studied. The removal of representative organic pollutant (i.e., paracetamol at 15 mg L-1) as well as of total organic carbon (TOC) content (312 mg-C L-1) from actual wastewater was noticed, including at micro-distances. Optimal treatment capacities were obtained with delec of 0.5 mm (57% TOC removed), 3 mm (58% TOC removed) and 10 mm (41% TOC removed) and with japp of 70 mA cm-2, 40 mA cm-2 and 20 mA cm-2 respectively, using stainless steel anode. It led to reduced energy requirement at micro-distances (16 kWh g-TOC-1 at 500 μm) compared to millimetric gap (19 kWh g-TOC-1 at 3 mm, 40 kWh g-TOC-1 at 10 mm). Contrastingly, more sludge was generated with micrometric distance (172 g-sludge g-TOC-1 at 500 μm) compared to larger gaps (95 g-sludge g-TOC-1 at 3 mm, 87 g-sludge g-TOC-1 at 10 mm) due to higher optimal japp at low distances. The efficiency was maximal with an aluminium electrode, but this anode remained inapplicable with micro-distances using the current reactor design, given the high sludge production between the cathode and anode.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000, La Roche-sur-Yon, France.
| | | | - Aurélien Ruffet
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; Treewater, 61 Rue de la République, 62009, Lyon, France
| | - Paul Moretti
- Treewater, 61 Rue de la République, 62009, Lyon, France
| | - Bruno Cédat
- Treewater, 61 Rue de la République, 62009, Lyon, France
| |
Collapse
|
2
|
Zhu Y, Wen K, Li B, Hao Y, Zhou J. Electrocatalytic Degradation of Phenolic Wastewater Using a Zero-Gap Flow-Through Reactor Coupled with a 3D Ti/RuO 2-TiO 2@Pt Electrode. Molecules 2024; 29:1182. [PMID: 38474694 DOI: 10.3390/molecules29051182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, the performance of a zero-gap flow-through reactor with three-dimensional (3D) porous Ti/RuO2-TiO2@Pt anodes was systematically investigated for the electrocatalytic oxidation of phenolic wastewater, considering phenol and 4-nitrophenol (4-NP) as the target pollutants. The optimum parameters for the electrochemical oxidation of phenol and 4-NP were examined. For phenol degradation, at an initial concentration of 50 mg/L, initial pH of 7, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min, the degradation efficiency achieved was 95.05%, with an energy consumption of 15.39 kWh/kg; meanwhile, for 4-NP, the degradation efficiency was 98.42% and energy consumption was 19.21 kWh/kg (at an initial concentration of 40 mg/L, initial pH of 3, NaCl concentration of 10.0 g/L, current density of 10 mA/cm2, and retention time of 30 min). The electrocatalytic oxidation of phenol and 4-NP conformed to the pseudo-first-order kinetics model, and the k values were 0.2562 min-1 and 0.1736 min-1, respectively, which are 1.7 and 3.6-times higher than those of a conventional electrolyzer. Liquid chromatography-mass spectrometry (LC-MS) was used to verify the intermediates formed during the degradation of phenol or 4-NP and a possible degradation pathway was provided. The extremely narrow electrode distance and the flow-through configuration of the zero-gap flow-through reactor were thought to be essential for its lower energy consumption and higher mass transfer efficiency. The zero-gap flow-through reactor with a novel 3D porous Ti/RuO2-TiO2@Pt electrode is a superior alternative for the treatment of industrial wastewater.
Collapse
Affiliation(s)
- Yunqing Zhu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kaiyue Wen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingqing Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yirong Hao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianjun Zhou
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Hakizimana I, Zhao X, Wang C, Zhang C. Efficient multi-stage electrochemical flow-through system for refractory organic pollutant treatment: Kinetics, mass transfer, and thermodynamic analysis. CHEMOSPHERE 2023; 344:140405. [PMID: 37827465 DOI: 10.1016/j.chemosphere.2023.140405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Improving the kinetics rate and mass transfer is essential for expanding the potential of electrochemical technologies in wastewater treatment. The electrochemical flow-through configuration promises a high oxidation efficiency and low energy consumption. We aimed to provide a thorough understanding of the enhanced kinetics, mass transfer, and thermodynamic parameters during the degradation of amoxicillin (AMX) in a multi-stage flow-through (MSFT) system using porous Ti-ENTA/SnO2-Sb anodes. All operating conditions strongly influenced the kinetics of AMX degradation and followed pseudo-first-order rate kinetic model (R2 > 0.85), with the highest kobs of 0.228 min-1 at high temperature (318 K). In comparison to the flow-by mode, the AMX removal rate in the three-stage flow-through mode was greatly enhanced by 70%, exhibiting the superior capacity of a porous anode. This system exhibited outstanding performance regarding the high kinetics rate and mass transfer rate (km), which increased by factors of 3.46 and 10.74, respectively, obtained in the flow-by mode. It also revealed that •OH generation was 5.64 times higher, and the EE/O was 19.89-fold lower than those in flow-by mode. Temperature plays a vital role in the reaction process, and thermodynamic features found the positive enthalpy (ΔHo) of +27.06 kJ mol-1, signifying the process was endothermic. A Hatta number (Ha) of >0.02 at all temperatures proved this finding, confirming an undeniable role in mass transfer. Finally, these findings reveal the system's performance and offer the possibility of establishing a multi-stage flow-through for wastewater treatment.
Collapse
Affiliation(s)
- Israel Hakizimana
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China.
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| | - Cong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, PR China
| |
Collapse
|
4
|
Microfluidic Flow-By Reactors Minimize Energy Requirements of Electrochemical Water Treatment Without Adding Supporting Electrolytes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Adnan FH, Pons M, Mousset E. Thin film microfluidic reactors in electrochemical advanced oxidation processes for wastewater treatment: A review on influencing parameters, scaling issues, and engineering considerations. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Marie‐Noëlle Pons
- CNRS LRGP Université de Lorraine Nancy France
- LTSER‐LRGP CNRS Université de Lorraine Nancy France
| | | |
Collapse
|
6
|
Dong G, Chen B, Liu B, Hounjet LJ, Cao Y, Stoyanov SR, Yang M, Zhang B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. WATER RESEARCH 2022; 211:118047. [PMID: 35033742 DOI: 10.1016/j.watres.2022.118047] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The miniaturization of reaction processes by microreactors offers many significant advantages over the use of larger, conventional reactors. Microreactors' interior structures exhibit comparatively higher surface area-to-volume ratios, which reduce reactant diffusion distances, enable faster and more efficient heat and mass transfer, and better control over process conditions. These advantages can be exploited to significantly enhance the performance of advanced oxidation processes (AOPs) commonly used for the removal of water pollutants. This comprehensive review of the rapidly emerging area of environmental microfluidics describes recent advances in the development and application of microreactors to AOPs for water and wastewater treatment. Consideration is given to the hydrodynamic properties, construction materials, fabrication techniques, designs, process features, and upscaling of microreactors used for AOPs. The use of microreactors for various AOP types, including photocatalytic, electrochemical, Fenton, ozonation, and plasma-phase processes, showcases how microfluidic technology enhances mass transfer, improves treatment efficiency, and decreases the consumption of energy and chemicals. Despite significant advancements of microreactor technology, organic pollutant degradation mechanisms that operate during microscale AOPs remain poorly understood. Moreover, limited throughput capacity of microreactor systems significantly restrains their industrial-scale applicability. Since large microreactor-inspired AOP systems are needed to meet the high-throughput requirements of the water treatment sector, scale-up strategies and recommendations are suggested as priority research opportunities. While microstructured reactor technology remains in an early stage of development, this work offers valuable insight for future research and development of AOPs in microreactors for environmental purposes.
Collapse
Affiliation(s)
- Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
7
|
Vasconcelos VM, Santos GOS, Eguiluz KIB, Salazar-Banda GR, de Fatima Gimenez I. Recent advances on modified reticulated vitreous carbon for water and wastewater treatment - A mini-review. CHEMOSPHERE 2022; 286:131573. [PMID: 34303050 DOI: 10.1016/j.chemosphere.2021.131573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Recently, modifications on reticulated vitreous carbon (RVC) have attracted attention as a promising strategy to produce low-cost, stable, and highly active electrodes leading to significant advances in the water/wastewater treatment field compared with raw RVC. Modified RVC materials have been used as cathode, anode, and membrane. Improvements on physical and electrocatalytic properties are achieved by RVC modification via diverse strategies, including the deposition of metal oxides, the introduction of surface functional groups, and the formation of composites, which were used to remove organic contaminants and pathogens from water matrices, as summarized in this mini-review. This mini-review mainly focused on papers published from 2015 to 2020 that reported modified RVC electrodes to eliminate pollutants and pathogens from water matrices by electrochemical advanced oxidation processes. Likewise, news challenges and opportunities are discussed, and perspectives for the ongoing and future studies in this research field are also given.
Collapse
Affiliation(s)
- Vanessa M Vasconcelos
- Programa de Pós-Graduação em Química, Universidade Federal de Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Géssica O S Santos
- Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49032-490, Aracaju, Sergipe, Brazil
| | - Katlin I B Eguiluz
- Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49032-490, Aracaju, Sergipe, Brazil; Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49032-490, Aracaju, Sergipe, Brazil.
| | - Giancarlo R Salazar-Banda
- Laboratório de Eletroquímica e Nanotecnologia - LEN, Instituto de Tecnologia e Pesquisa - ITP, 49032-490, Aracaju, Sergipe, Brazil; Programa de Pós-graduação em Engenharia de Processos, Universidade Tiradentes - UNIT, 49032-490, Aracaju, Sergipe, Brazil
| | - Iara de Fatima Gimenez
- Programa de Pós-Graduação em Química, Universidade Federal de Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
8
|
Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of OH in metal-free EAOPs to degrade organic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Poza-Nogueiras V, Moratalla Á, Pazos M, Sanromán Á, Sáez C, Rodrigo MA. Towards a more realistic heterogeneous electro-Fenton. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Yang M, Gao Y, Liu Y, Yang G, Zhao CX, Wu KJ. Integration of microfluidic systems with external fields for multiphase process intensification. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Puga A, Moreira MM, Figueiredo SA, Delerue-Matos C, Pazos M, Rosales E, Sanromán MÁ. Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Feng D, Soric A, Boutin O. Treatment technologies and degradation pathways of glyphosate: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140559. [PMID: 32629265 DOI: 10.1016/j.scitotenv.2020.140559] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Glyphosate is one of the most widely used post-emergence broad-spectrum herbicides in the world. This molecule has been frequently detected in aqueous environment and can cause adverse effects to plants, animals, microorganisms, and humans. This review offers a comparative assessment of current treatment methods (physical, biological, and advanced oxidation process) for glyphosate wastewaters, considering their advantages and drawbacks. As for other molecules, adsorption does not destroy glyphosate. It can be used before other processes, if glyphosate concentrations are very high, or after, to decrease the final concentration of glyphosate and its by-products. Most of biological and oxidation processes can destroy glyphosate molecules, leading to by-products (the main ones being AMAP and sarcosine) that can be or not affected by these processes. This point is of major importance to control process efficiency. That is the reason why a specific focus on glyphosate degradation pathways by biological treatment or different advanced oxidation processes is proposed. However, one process is usually not efficient enough to reach the required standards. Therefore, the combination of processes (for instance biological and oxidation ones) seems to be high-performance technologies for the treatment of glyphosate-containing wastewater, due to their potential to overcome some drawbacks of each individual process. Finally, this review provides indications for future work for different treatment processes to increase their performances and gives some insights into the treatment of glyphosate or other organic contaminants in wastewater.
Collapse
Affiliation(s)
- Dan Feng
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | - Audrey Soric
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| | - Olivier Boutin
- Aix Marseille University, CNRS, Centrale Marseille, M2P2, Marseille, France.
| |
Collapse
|
13
|
Yu F, Chen Y, Pan Y, Yang Y, Ma H. A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116695] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Magro C, Mateus EP, Paz-Garcia JM, Ribeiro AB. Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. CHEMOSPHERE 2020; 247:125758. [PMID: 31931309 DOI: 10.1016/j.chemosphere.2019.125758] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 05/06/2023]
Abstract
Degradation technologies applied to emerging organic contaminants from human activities are one of the major water challenges in the contamination legacy. Triclosan is an emerging contaminant, commonly used as antibacterial agent in personal care products. Triclosan is stable, lipophilic and it is proved to have ecotoxicologic effects in organics. This induces great concern since its elimination in wastewater treatment plants is not efficient and its by-products (e.g. methyl-triclosan, 2,4-dichlorophenol or 2,4,6-trichlorophenol) are even more hazardous to several environmental compartments. This work provides understanding of two different electrochemical reactors for the degradation of triclosan and its derivative by-products in effluent. A batch reactor and a flow reactor (mimicking a secondary settling tank in a wastewater treatment plant) were tested with two different working anodes: Ti/MMO and Nb/BDD. The degradation efficiency and kinetics were evaluated to find the best combination of current density, electrodes and set-up design. For both reactors the best electrode combination was achieved with Ti/MMO as anode. The batch reactor at 7 mA/cm2 during 4 h attained degradation rates below the detection limit for triclosan and 2,4,6-trichlorophenol and, 94% and 43% for 2,4-dichlorophenol and methyl triclosan, respectively. The flow reactor obtained, in approximately 1 h, degradation efficiencies between 41% and 87% for the four contaminants. This study suggests an alternative technology for emerging organic contaminants degradation, since the combination of a low current density with the flow and matrix induced disturbance increases and speeds up the compounds' elimination in a real environmental matrix.
Collapse
Affiliation(s)
- Cátia Magro
- CENSE, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516, Caparica, Portugal.
| | - Eduardo P Mateus
- CENSE, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516, Caparica, Portugal
| | - Juan M Paz-Garcia
- Department of Chemical Engineering, Faculty of Sciences, University of Malaga, Teatinos Campus, 29010, Málaga, Spain
| | - Alexandra B Ribeiro
- CENSE, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology, NOVA University Lisbon, Caparica Campus, 2829-516, Caparica, Portugal.
| |
Collapse
|
15
|
Review on microfluidic device applications for fluids separation and water treatment processes. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2176-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
16
|
Wang C, Gu Y, Wu S, Yu H, Chen S, Su Y, Guo Y, Wang X, Chen H, Kang W, Quan X. Construction of a Microchannel Electrochemical Reactor with a Monolithic Porous-Carbon Cathode for Adsorption and Degradation of Organic Pollutants in Several Minutes of Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1920-1928. [PMID: 31917552 DOI: 10.1021/acs.est.9b06266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A monolithic porous-carbon (MPC) electrode was fabricated to simultaneously intensify mass transfer and enhance reaction activity. The MPC involved channel arrays (about 50 μm of diameter for each channel) with mesopores and micropores in channel walls. The abundant surface pores may improve the reaction efficiency of the reduction of O2 to produce H2O2 and •OH. The function of channel arrays was to shorten the mass-transfer distance not only from O2 to the electrode surface but also from pollutants to the electrode surface and •OH. A microchannel electrochemical reactor was assembled to evaluate the performance of the MPC cathode. For 20 mg/L of phenol, sulfamethoxazole or atrazine, effluent concentration and total organic carbon (TOC) decreased down to 1.5 and 3 mg/L, respectively, in a retention time of only 100-300 s. Phenol removal was dominated by the MPC cathode, and the contribution of cathodic adsorption, cathodic degradation, and anodic reaction was 46, 33, and 8%, respectively. The proper working potential for the MPC cathode was +0.26 to +0.6 V versus reversible hydrogen electrode; in this potential range, no scaling was observed. For the real surface water (the initial TOC was 41.5 mg/L), TOC in effluent (the retention time was 335 s) was stable at 31.0 mg/L.
Collapse
Affiliation(s)
- Chunna Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yuwei Gu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuai Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yan Su
- Faculty of Chemical, Environmental and Biological Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Yunfei Guo
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xiaoting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hui Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Wenda Kang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
17
|
Cotillas S, Lacasa E, Herraiz-Carboné M, Sáez C, Cañizares P, Rodrigo MA. Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Moraleda I, Oturan N, Saez C, Llanos J, Rodrigo MA, Oturan MA. A comparison between flow-through cathode and mixed tank cells for the electro-Fenton process with conductive diamond anode. CHEMOSPHERE 2020; 238:124854. [PMID: 31549676 DOI: 10.1016/j.chemosphere.2019.124854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
This work focusses on the production of hydrogen peroxide and in the removal of bromacil by the electro-Fenton process using two different electrochemical cells: mixed tank cell (MTC) and flow-through cell (FTC). Both cells use boron doped diamond (BDD) as anode and carbon felt as cathode to promote the formation of hydrogen peroxide. In the case of the MTC, two surface area ratios, Acathode/Aanode, have been used. Results show that the H2O2 produced by MTC and FTCPSC increases with the time until a stabilization state. For the FTCPSC, the average hydrogen peroxide concentration produced increases progressively with the current, while for MTC the maximum values are found in applying very low current densities. In addition, the FTCPSC provides higher concentrations of hydrogen peroxide for the same current density applied. Regarding the MTC, it can be stated that the higher the area of the cathode, the higher is the amount of H2O2 produced and the lower is the cell voltage (because of a more efficient current lines distribution). The initial oxidation of bromacil is very efficiently attained being rapidly depleted from wastewater. However, the higher production of hydrogen peroxide obtained by the FTCPSC cell does not reflect on a better performance of the electro-Fenton process. Thus, bromacil is better mineralized using the MTC cell with the lowest cathode area. This observation has been explained because larger concentrations of produced hydrogen peroxide seems to benefit the oxidation of intermediates and not the mineralization.
Collapse
Affiliation(s)
- I Moraleda
- University of Castilla-La Mancha, Chemical Engineering Department, Edificio Enrique Costa Novella. Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - N Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), UPEM, 77454, Marne-la-Vallée Cedex 2, France
| | - C Saez
- University of Castilla-La Mancha, Chemical Engineering Department, Edificio Enrique Costa Novella. Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - J Llanos
- University of Castilla-La Mancha, Chemical Engineering Department, Edificio Enrique Costa Novella. Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - M A Rodrigo
- University of Castilla-La Mancha, Chemical Engineering Department, Edificio Enrique Costa Novella. Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | - M A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (LGE), UPEM, 77454, Marne-la-Vallée Cedex 2, France.
| |
Collapse
|
19
|
Mousset E, Puce M, Pons M. Advanced Electro‐Oxidation with Boron‐Doped Diamond for Acetaminophen Removal from Real Wastewater in a Microfluidic Reactor: Kinetics and Mass‐Transfer Studies. ChemElectroChem 2019. [DOI: 10.1002/celc.201900182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emmanuel Mousset
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| | - Marta Puce
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| | - Marie‐Noëlle Pons
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| |
Collapse
|
20
|
Clematis D, Abidi J, Cerisola G, Panizza M. Coupling a Boron Doped Diamond Anode with a Solid Polymer Electrolyte to Avoid the Addition of Supporting Electrolyte in Electrochemical Advanced Oxidation Processes. ChemElectroChem 2019. [DOI: 10.1002/celc.201801700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Davide Clematis
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| | - Jihen Abidi
- Unité de recherche Toxicologie Microbiologie Environnementale et Santé Department Institution Faculté des SciencesUniversité de Sfax B.P. 1173 3038 Sfax Tunisie
| | - Giacomo Cerisola
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| | - Marco Panizza
- Department of Civil, Chemical and Environmental EngineeringUniversity of Genoa Via Opera Pia 15 16145 Genoa I
| |
Collapse
|
21
|
On the design of a jet-aerated microfluidic flow-through reactor for wastewater treatment by electro-Fenton. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Maity S, Chaudhuri J, Mitra S, Rarotra S, Bandyopadhyay D. Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Electrophoresis 2018; 40:401-409. [PMID: 30511476 DOI: 10.1002/elps.201800377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 11/11/2022]
Abstract
We explore the improvements in yield and conversion of a chemical reaction inside a two-phase microfluidic reactor when subjected to an externally applied alternating current (AC) electric field. A computational fluid dynamic (CFD) framework has been developed to incorporate the descriptions of the two-phase flow, multicomponent transport and reaction, and the Maxwell's stresses generated at oil-water interface owing to the presence of the externally applied electric field. The CFD model ensures that the reactants are flown into a microchannel together with the oil and water phases before the reaction takes place at the interface and products diffuse back to the bulk phases. The study unveils that the variation in the intensity of the AC field helps in converting a two-phase stratified flow into an oil-in-water microemulsion composed of oil slugs, plugs, or droplets. Importantly, the results also suggest that harnessing the vortices inside or outside these flow patterns helps in the improvement in mass transfer across the interface, which can be employed to improve the yield and conversion of a reaction. We have shown an example case of a pseudo-first order reaction for which the variation in frequency and intensity of AC field is found to form higher surface-to-volume-ratio flow patterns having a higher throughput. The convective recirculation in and around these miniaturized flow morphologies increase the rate of mass transfer, mixing of reactant and products, conversion of reactant, and yield of products. The results reported can be of significance in the design and development of future advanced-flow rector technologies.
Collapse
Affiliation(s)
- Surjendu Maity
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India
| | - Joydip Chaudhuri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Shirsendu Mitra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Saptak Rarotra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, India.,Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
23
|
Rodríguez M, Muñoz-Morales M, Perez JF, Saez C, Cañizares P, Barrera-Díaz CE, Rodrigo MA. Toward the Development of Efficient Electro-Fenton Reactors for Soil Washing Wastes through Microfluidic Cells. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Rodríguez
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón
intersección Paseo Tollocan S/N, C.P. Toluca, Estado de México 50120, México
| | - M. Muñoz-Morales
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, Ciudad Real, 13005, Spain
| | - J. F. Perez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, Ciudad Real, 13005, Spain
| | - C. Saez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, Ciudad Real, 13005, Spain
| | - P. Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, Ciudad Real, 13005, Spain
| | - C. E. Barrera-Díaz
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón
intersección Paseo Tollocan S/N, C.P. Toluca, Estado de México 50120, México
| | - M. A. Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, Ciudad Real, 13005, Spain
| |
Collapse
|
24
|
Pérez J, Llanos J, Sáez C, López C, Cañizares P, Rodrigo M. The pressurized jet aerator: A new aeration system for high-performance H2O2 electrolyzers. Electrochem commun 2018. [DOI: 10.1016/j.elecom.2018.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
25
|
Zhao X, Jiao T, Xing R, Huang H, Hu J, Qu Y, Zhou J, Zhang L, Peng Q. Preparation of diamond-based AuNP-modified nanocomposites with elevated catalytic performances. RSC Adv 2017. [DOI: 10.1039/c7ra10770f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diamond@graphene oxide@gold nanoparticle (D@GO@AuNP) nanocomposite materials with excellent catalytic activity and high recyclability were prepared, demonstrating potential applications as a composite catalytic material.
Collapse
Affiliation(s)
- Xinna Zhao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- China
- Hebei Key Laboratory of Applied Chemistry
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- China
- Hebei Key Laboratory of Applied Chemistry
| | - Ruirui Xing
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- China
| | - Jie Hu
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Yuan Qu
- Qinhuangdao Taiji-ring Nano Products Co. Ltd
- Qinhuangdao 066002
- China
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry
- School of Environmental and Chemical Engineering
- Yanshan University
- Qinhuangdao 066004
- China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology
- Yanshan University
- Qinhuangdao 066004
- China
| |
Collapse
|