1
|
Tu YH, Huang HY, Yang YH, de Smet LCPM, Hu CC. A highly stable full-polymer electrochemical deionization system: dopant engineering & mechanism study. MATERIALS HORIZONS 2024; 11:3792-3804. [PMID: 38946305 PMCID: PMC11318517 DOI: 10.1039/d4mh00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Electrochemical deionization (ECDI) has emerged as a promising technology for water treatment, with faradaic ECDI systems garnering significant attention due to their enhanced performance potential. This study focuses on the development of a highly stable and efficient, full-polymer (polypyrrole, PPy) ECDI system based on two key strategies. Firstly, dopant engineering, involving the design of dopants with a high charge/molecular weight (MW) ratio and structural complexity, facilitating their effective integration into the polymer backbone. This ensures sustained contribution of strong negative charges, enhancing system performance, while the bulky dopant structure promotes stability during extended operation cycles. Secondly, operating the system with well-balanced charges between deionization and concentration processes significantly reduces irreversible reactions on the polymer, thereby mitigating dopant leakage. Implementing these strategies, the PPy(PSS)//PPy(ClO4) (PSS: polystyrene sulfonate) system achieves a high salt removal capacity (SRC) of 48 mg g-1, an ultra-low energy consumption (EC) of 0.167 kW h kgNaCl-1, and remarkable stability, with 96% SRC retention after 104 cycles of operation. Additionally, this study provides a detailed degradation mechanism based on pre- and post-cycling analyses, offering valuable insights for the construction of highly stable ECDI systems with superior performance in water treatment applications.
Collapse
Affiliation(s)
- Yi-Heng Tu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
- Advanced Interfaces & Materials, Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands.
| | - Hung-Yi Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| | - Yu-Hsiang Yang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| | - Louis C P M de Smet
- Advanced Interfaces & Materials, Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, Wageningen 6708 WE, The Netherlands.
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
| |
Collapse
|
2
|
Tu YH, Huang HY, Yang YH, Lai CY, Tai CW, Hu CC. Comprehensive Study on the Ion-Selective Behavior of MnO x for Electrochemical Deionization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46812-46828. [PMID: 37773582 DOI: 10.1021/acsami.3c08271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Manganese oxide is an effective active material in several electrochemical systems, including batteries, supercapacitors, and electrochemical deionization (ECDI). This work conducts a comprehensive study on the ion-selective behavior of MnOx to fulfill the emptiness in the energy and environmental science field. Furthermore, it broadens the promising application of MnOx in the ion-selective ECDI system. We propose a time-dependent multimechanism ion-selective behavior with the following guidelines by utilizing a microfluidic cell and the electrochemical quartz crystal microbalance (EQCM) analysis. (1) Hydrated radius is the most critical factor for ions with the same valence, and MnOx tends to capture cations with a small hydrated radius. (2) The importance of charge density rises when comparing cations with different valences, and MnOx prefers to capture divalent cations with a strong electrostatic attraction at prolonged times. Under this circumstance, ion swapping may occur where divalent cations replace monovalent cations. (3) NH4+ triggers MnOx dissolution, leading to performance and stability decay. The EQCM evidence has directly verified the proposed mechanisms, and these data provide a novel but simple method to judge ion selectivity preference. The overall ion selectivity sequence is Ca2+ > Mg2+ > K+ > NH4+> Na+ > Li+ with the highest selectivity values of βCa//Li and βCa//Na around 3 at the deionization time = 10 min.
Collapse
Affiliation(s)
- Yi-Heng Tu
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| | - Hung-Yi Huang
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| | - Yu-Hsiang Yang
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| | - Chi-Yu Lai
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| | - Chen-Wei Tai
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| | - Chi-Chang Hu
- Laboratory of Electrochemistry and Advanced Materials Department of Chemical Engineering, National Tsing Hua University Hsin-Chu 30013, Taiwan
| |
Collapse
|
3
|
Li Y, Yin Y, Xie F, Zhao G, Han L, Zhang L, Lu T, Amin MA, Yamauchi Y, Xu X, Zhu G, Pan L. Polyaniline coated MOF-derived Mn 2O 3 nanorods for efficient hybrid capacitive deionization. ENVIRONMENTAL RESEARCH 2022; 212:113331. [PMID: 35472462 DOI: 10.1016/j.envres.2022.113331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Mn-based oxides are efficient pseudocapacitive electrode materials and have been investigated for capacitive deionization (CDI). However, their poor conductivity seriously affects their desalination performance. In this work, polyaniline coated Mn2O3 nanorods (PANI/Mn2O3) are synthesized by oxidizing a Mn-based metal organic framework (MOF) and subsequent in-situ chemical polymerization. The polyaniline not only acts as a conductive network for faradaic reactions of Mn2O3, but also enhances the desalination rate. PANI/Mn2O3 has a specific capacitance of 87 F g-1 (at 1 A g-1), superior to that of Mn2O3 nanorod (52 F g-1 at 1 A g-1). The hybrid CDI cell constructed with a PANI/Mn2O3 cathode and an active carbon anode shows a high desalination capacity of 21.6 mg g-1, superior recyclability with only 11.3% desalination capacity decay after 30 desalination cycles and fast desalination rate of 2.2 mg g-1 min-1. PANI/Mn2O3 is a potential candidate for high performance CDI applications.
Collapse
Affiliation(s)
- Yanjiang Li
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Yufeng Yin
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Fengting Xie
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Guangzhen Zhao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Lu Han
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Li Zhang
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Ting Lu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan; Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
4
|
Datar SD, Mane R, Jha N. Recent progress in materials and architectures for capacitive deionization: A comprehensive review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10696. [PMID: 35289462 DOI: 10.1002/wer.10696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Capacitive deionization is an emerging and rapidly developing electrochemical technique for water desalination across the globe with exponential growth in publications. There are various architectures and materials being explored to obtain utmost electrosorption performance. The symmetric architectures consist of the same material on both electrodes, while asymmetric architectures have electrodes loaded with different materials. Asymmetric architectures possess higher electrosorption performance as compared with that of symmetric architectures owing to the inclusion of either faradaic materials, redox-active electrolytes, or ion specific pre-intercalation material. With the materials perspective, faradaic materials have higher electrosorption performance than carbon-based materials owing to the occurrence of faradaic reactions for electrosorption. Moreover, the architecture and material may be tailored in order to obtain desired selectivity of the target component and heavy metal present in feed water. In this review, we describe recent developments in architectures and materials for capacitive deionization and summarize the characteristics and salt removal performances. Further, we discuss recently reported architectures and materials for the removal of heavy metals and radioactive materials. The factors that affect the electrosorption performance including the synthesis procedure for electrode materials, incorporation of additives, operational modes, and organic foulants are further illustrated. This review concludes with several perspectives to provide directions for further development in the subject of capacitive deionization. PRACTITIONER POINTS: Capacitive deionization (CDI) is a rapidly developing electrochemical water desalination technique with exponential growth in publications. Faradaic materials have higher salt removal capacity (SAC) because of reversible redox reactions or ion-intercalation processes. Combination of CDI with other techniques exhibits improved selectivity and removal of heavy metals. Operational parameters and materials properties affect SAC. In future, comprehensive experimentation is needed to have better understanding of the performance of CDI architectures and materials.
Collapse
Affiliation(s)
- Shreerang D Datar
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Rupali Mane
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| | - Neetu Jha
- Department of Physics, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
5
|
Cai Y, Wang Y, Zhao Y, Wang S, Wang J. Synergetic effects of different ion-doped polypyrrole layer coupled with β-cyclodextrin-derived hollow bottle-like carbon supporting framework for enhanced capacitive deionization performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
7
|
Angeles AT, Lee J. Carbon-Based Capacitive Deionization Electrodes: Development Techniques and its Influence on Electrode Properties. CHEM REC 2021; 21:820-840. [PMID: 33645913 DOI: 10.1002/tcr.202000182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/26/2021] [Indexed: 12/22/2022]
Abstract
Capacitive deionization (CDI) is a potential technology to provide cost efficient desalinated and/or softened water. Several efforts have been invested in the fabrication of CDI electrodes that not only has outstanding performance but also high chance of large scalability. In this personal account, the different techniques in developing carbon-based materials are presented together with its actual effect on the surface and electrochemical properties of carbon. The categories presented are based on the studies done by the Electrochemical Reaction and Technology Laboratory, the Ertl Center, different research groups in South Korea, and selected papers from the past three years. Our perspective about research gaps and prospects are also included with the aim to increase interest for CDI research.
Collapse
Affiliation(s)
- Anne Therese Angeles
- Electrochemical Reaction and Technology Laboratory (ERTL), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
| | - Jaeyoung Lee
- Electrochemical Reaction and Technology Laboratory (ERTL), School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, South Korea
- Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju, 61005, South Korea
| |
Collapse
|
8
|
Ashrafizadeh SN, Ganjizade A, Navapour A. A brief review on the recent achievements in flow-electrode capacitive deionization. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Ren L, Zhou J, Xiong S, Wang Y. N-Doping Carbon-Nanotube Membrane Electrodes Derived from Covalent Organic Frameworks for Efficient Capacitive Deionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12030-12037. [PMID: 32957785 DOI: 10.1021/acs.langmuir.0c02405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capacitive deionization (CDI) is an energy-efficient and environmentally friendly electrochemical desalination technology which has attracted increasing attention in recent years. Electrodes are crucial to the performance of CDI processes, and utilizing a carbon-nanotubes (CNTs) membrane to fabricate electrodes is an attractive solution for advanced CDI processes. However, the strong hydrophobicity and low electrosorption capacity limit applications of CNTs membranes in CDI. To solve this problem, we introduce crystalline porous covalent organic frameworks (COFs) into CNTs membranes to fabricate N-doping carbon-nanotubes membrane electrodes (NCMEs). After solvothermal growth and carbonization, CNTs membranes are successfully coated with imine-based COFs and turned into integrated NCMEs. Comparing with the CNTs membranes, the NCMEs exhibit an ∼2.3 times higher electrosorption capacity and superior reusability. This study not only confirms that COFs can be used as high-quality carbon sources but also provides a new strategy to fabricate high-performance CDI electrodes.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Sen Xiong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
10
|
Tan G, Lu S, Xu N, Gao D, Zhu X. Pseudocapacitive Behaviors of Polypyrrole Grafted Activated Carbon and MnO 2 Electrodes to Enable Fast and Efficient Membrane-Free Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5843-5852. [PMID: 32243751 DOI: 10.1021/acs.est.9b07182] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capacitive deionization (CDI) has emerged as a promising technique for brackish water desalination. Here, composites of polypyrrole grafted activated carbon (Ppy/AC) were prepared via in situ chemical oxidative polymerization of pyrrole on AC particles. The Ppy/AC cathode was then coupled with a MnO2 anode for desalination in a membrane-free CDI cell. Both the Ppy/AC and MnO2 electrodes exhibited pseudocapacitive behaviors, which can selectively and reversibly intercalate Cl- (Ppy/AC) and Na+ (MnO2) ions. Compared to AC electrodes, the specific capacitances of Ppy/AC electrodes increased concurrently with the pyrrole ratios from 0 to 10%, while the charge transfer and ionic diffusion resistances decreased. As a result, the 10%Ppy/AC-MnO2 cell showed a maximum salt removal capacity of 52.93 mg g-1 (total mass of active materials) and 34.15 mg g-1 (total mass of electrodes), which was higher than those of conventional, membrane, and hybrid CDI cells. More notably, the salt removal rate of the 10%Ppy/AC-MnO2 cell (max 0.46 mg g-1 s-1 to the total mass of active materials and 0.30 mg g-1 s-1 to the total mass of electrodes) was nearly 1 order of magnitude higher than those in most previous CDI studies, and this fast and efficient desalination performance was stabilized over 50 cycles.
Collapse
Affiliation(s)
- Guangcai Tan
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sidan Lu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nan Xu
- Shenzhen Engineering Research Center for Nanoporous Water Treatment Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dingxue Gao
- Shenzhen Engineering Research Center for Nanoporous Water Treatment Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|