1
|
Li L, Schultz JF, Mahapatra S, Liu D, Zhang X, Jiang N. Optical Spectroscopic Probing and Atomic Visualization of the Motion of N-Heterocyclic Carbenes on Ag(111). ACS NANO 2025; 19:15363-15370. [PMID: 40068117 DOI: 10.1021/acsnano.4c14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The application of N-heterocyclic carbenes (NHCs) as versatile anchors for planar surface modifications has been well documented over the past decade. Despite its fundamental importance to the formation of self-assembled NHC monolayers on surfaces, the microscopic mechanism behind the mobility of NHCs has primarily been explored through theoretical studies; an atomic-level experimental understanding of NHC motion on surfaces remains elusive. Here, we combine tip-enhanced Raman spectroscopy (TERS) and scanning tunneling microscopy (STM) to investigate the mobility of a model NHC on Ag(111). Two distinct molecular behaviors are observed, depending on substrate preparation. Room-temperature deposition leads to diffusing NHC-Ag adatom complexes exhibiting a ballbot-like motion, chemically identified by TERS through their spectroscopic fingerprint. By contrast, NHCs deposited at low temperature are stabilized on Ag(111) as isolated single molecules directly bound to the substrate. Significantly, a desorption/readsorption scenario is suggested for the displacement of NHCs by moving otherwise immobile single NHCs deposited at low temperature via STM manipulation, with their trajectory traced to atomic precision. This study provides chemical and atomic-level insights into the mobility of NHCs, which will advance the understanding of the fundamental properties of NHC-based surface modifications at the spatial limit.
Collapse
Affiliation(s)
- Linfei Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Jeremy F Schultz
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Sayantan Mahapatra
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Dairong Liu
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Xu Zhang
- Department of Physics and Astronomy, California State University, Northridge, Northridge, California 91330-8268, United States
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
2
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Liu L, Xu Y, Su J, Wei J, Liu X, Peng Q, Chang J, Teng B. Exploring microstructures of metal-doped oxides via simulated Raman spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124616. [PMID: 38857547 DOI: 10.1016/j.saa.2024.124616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Solid solution of metal-doped oxide has been widely used in material industry and catalysis process. Its performance is highly correlated with the distribution of doped ions. Due to the complex distribution of doped ions in solid solution and its variation with temperatures, to obtain the microstructures of metal-doped ions in solid solution remains a substantial challenge. Taken Ce1-xZrxO2 as a model, the global structure searching, structures proportion with temperature determined by Boltzmann distribution, and the weighted simulation Raman spectra were integrated to explore the microstructures of metal-doped solid solution oxides. It was further verified by application into rutile and anatase TiO2 mixture, indicating that the present method is feasible to deduce the microstructure of metal composite oxides. We anticipate that it provides a powerful solution to explore microstructures of solid solution and complex metal oxides.
Collapse
Affiliation(s)
- Le Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxing Xu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Junchao Su
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiangtao Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jie Chang
- Institute of Sustainability of Chemical, Energy and Environment, Agency for Science, Technology and Research, Singapore 627833, Singapore.
| | - Botao Teng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
4
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
5
|
Lipovka A, Fatkullin M, Averkiev A, Pavlova M, Adiraju A, Weheabby S, Al-Hamry A, Kanoun O, Pašti I, Lazarevic-Pasti T, Rodriguez RD, Sheremet E. Surface-Enhanced Raman Spectroscopy and Electrochemistry: The Ultimate Chemical Sensing and Manipulation Combination. Crit Rev Anal Chem 2024; 54:110-134. [PMID: 35435777 DOI: 10.1080/10408347.2022.2063683] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olfa Kanoun
- Technische Universität Chemnitz, Chemnitz, Germany
| | - Igor Pašti
- Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarevic-Pasti
- Department of Physical Chemistry, "VINČA" Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Vinca, Serbia
| | | | | |
Collapse
|
6
|
Fiocco A, Pavlic AA, Kanoufi F, Maisonhaute E, Noël JM, Lucas IT. Electrochemical Tip-Enhanced Raman Spectroscopy for the Elucidation of Complex Electrochemical Reactions. Anal Chem 2024. [PMID: 38340052 DOI: 10.1021/acs.analchem.3c02601] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is an emerging nanospectroscopy technique whose implementation in situ/operando, namely, in the liquid phase and under electrochemical polarization (EC-TERS), remains challenging. The investigation of electrochemical processes at the nanoscale, in real time and over wide potential windows can be of particular interest but tedious when using EC-STM-TERS. This approach was successfully applied to the investigation of a well-established but yet complex system (a thiolated nitrobenzene derivative 4-NBM) whose reduction mechanism involves various multistep reaction paths, most likely pH-dependent. In light of the EC-TERS analysis carried out under specific conditions limiting the full (6 e-/6 H+) electrochemical reduction of 4-NBM and its photocoupling, a bimolecular electrochemical reaction path, difficult to evidence from the electrochemical response only, is proposed.
Collapse
Affiliation(s)
- Alice Fiocco
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Aja A Pavlic
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | | | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Ivan T Lucas
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
- Nantes Université, CNRS, IMN, F-44322 Nantes, France
| |
Collapse
|
7
|
Meng B, Xie Y, Chen L, Wang H, Li M, Dong Z. Apex-Confined Plasmonic Tip for High Resolution Tip-Enhanced Raman Spectroscopic Imaging of Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16984-16990. [PMID: 36946568 DOI: 10.1021/acsami.2c22624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a handy technical scheme to decorate atomic force microscopy (AFM) tips toward tip-enhanced Raman spectroscopy (TERS) applications. The major attraction of these homemade tips lies in that silver decoration can be confined at the apex of commercial tips by the means of an AFM-controlled electrochemical reaction. The reduction of Ag+ occurs in a highly sealed environment to secure the metal coating efficiency. Key factors include silver nitrate solution to provide Ag+, ambient relative humidity and temperature in a humidity cell, electric potential bias, and tip-surface distance. Subsequently, these silver-coated tips are evaluated for TERS measurement of carbon nanotubes (CNTs) so that both morphological and chemical characteristics of CNTs are concurrently obtained. The Raman spectra reveal that our plasmonic tip competently possesses an ∼30-fold local field signal increase and the corresponding TERS image laterally resolves at the single-pixel level.
Collapse
Affiliation(s)
- Bin Meng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yong Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Le Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
El-Khoury PZ. Tip-Enhanced Raman Chemical and Chemical Reaction Imaging in H 2O with Sub-3-nm Spatial Resolution. J Am Chem Soc 2023; 145:6639-6642. [PMID: 36919918 DOI: 10.1021/jacs.3c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Reproducible chemical and chemical reaction nanoimaging at solid-liquid interfaces remains challenging, particularly when resolutions on the order of a few nanometers are sought. In this work, we demonstrate the latter through liquid-tip-enhanced Raman (TER) measurements that target gold nanoplates functionalized with 4-mercaptobenzonitrile (MBN). In addition to chemical imaging and local optical field nanovisualization with high spatial resolution, we observe the signatures of 4-mercaptobenzoic acid, which forms as a result of plasmon-induced hydrolysis of MBN. Evidently, the solvent leads to distinct plasmon-induced/enhanced chemical reaction pathways that have not been documented. This work shows that such reactions that take place at solid-liquid interfaces can be tracked with a record sub-3-nm spatial resolution via TER spectral nanoimaging in liquids.
Collapse
Affiliation(s)
- Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
10
|
Hatfield KO, Putnam ST, Rodríguez-López J. Inducing SERS activity at graphitic carbon using graphene-covered Ag nanoparticle substrates: Spectroelectrochemical analysis of a redox-active adsorbed anthraquinone. J Chem Phys 2023; 158:014701. [PMID: 36610978 DOI: 10.1063/5.0130876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphitic carbon electrodes are central to many electrochemical energy storage and conversion technologies. Probing the behavior of molecular species at the electrochemical interfaces they form is paramount to understanding redox reaction mechanisms. Combining surface-enhanced Raman scattering (SERS) with electrochemical methods offers a powerful way to explore such mechanisms, but carbon itself is not a SERS activating substrate. Here, we report on a hybrid substrate consisting of single- or few-layer graphene sheets deposited over immobilized silver nanoparticles, which allows for simultaneous SERS and electrochemical investigation. To demonstrate the viability of our substrate, we adsorbed anthraquinone-2,6-disulfonate to graphene and studied its redox response simultaneously using SERS and cyclic voltammetry in acidic solutions. We identified spectral changes consistent with the reversible redox of the quinone/hydroquinone pair. The SERS intensities on bare silver and hybrid substrates were of the same order of magnitude, while no discernible signals were observed over bare graphene, confirming the SERS effect on adsorbed molecules. This work provides new prospects for exploring and understanding electrochemical processes in situ at graphitic carbon electrodes.
Collapse
Affiliation(s)
- Kendrich O Hatfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Seth T Putnam
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
11
|
Pienpinijtham P, Kitahama Y, Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years. NANOSCALE 2022; 14:5265-5288. [PMID: 35332899 DOI: 10.1039/d2nr00274d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has recently attracted remarkable attention as a novel nano-spectroscopy technique. TERS, which provides site-specific information, can be performed on any material surface regardless of morphology. Moreover, it can be applied in various environments, such as ambient air, ultrahigh vacuum (UHV), solutions, and electrochemical environments. This review reports on one hand progress of TERS for the last two decades, and on the other hand, its challenges in very recent years. Part of the progress of TERS starts with the prehistory and history of TERS, and then, the characteristics and advantages of TERS are described. Significant emphasis is put on the development of TERS instrumentation and equipment such as ultrahigh vacuum TERS, liquid TERS, electrochemical-TERS, and tip-preparations. Applications of TERS, particularly those with nanocarbons, biological materials, and surface and interface analysis, are mentioned in some detail. In the part on challenges, we focus on the very recent advances in TERS; progress in spatial resolution to the angstrom scale is the hottest topic. Recent TERS studies performed under UHV, for example chemical imaging at the angstrom scale and Raman detection of bond breaking and making of a chemisorbed up-standing single molecules at single-bond level, are reviewed. Of course, there is no clear border between the two parts. In the last part the perspective of TERS is discussed.
Collapse
Affiliation(s)
- Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yasutaka Kitahama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan.
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
12
|
Caux M, Achit A, Var K, Boitel-Aullen G, Rose D, Aubouy A, Argentieri S, Campagnolo R, Maisonhaute E. PassStat, a simple but fast, precise and versatile open source potentiostat. HARDWAREX 2022; 11:e00290. [PMID: 35509918 PMCID: PMC9058825 DOI: 10.1016/j.ohx.2022.e00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 05/26/2023]
Abstract
This work presents 4 open source potentiostat solutions for performing accurate measurements in cyclic voltammetry and square wave voltammetry at a low price. A very simple and easy to reproduce analogic board (c.a. 10 €) was driven either by a Teensy card from the company PJRC under an Arduino/Python software solution (39 €) or by an Analog Discovery 2 device from Digilent (less than 300 €). A smartphone Bluetooth Android interface was also created to circumvent the use of a computer. We demonstrated that our scheme is suitable for measurements in classical electrochemical conditions but also to carry out experiments with ultramicroelectrodes. We could thus reach a noise resolution of less than 1 pA. Scan rates of 8000 Vs-1 with ohmic drop compensation were also achieved. The device is suitable for teaching purposes but also for experiments in a participative science context on the ground, or countries with lower financial possibilities.
Collapse
Affiliation(s)
- Mélicia Caux
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Anis Achit
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Kethsovann Var
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Gabriel Boitel-Aullen
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Daniel Rose
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Agnès Aubouy
- UMR152 PHARMADEV, Université de Toulouse, IRD, UPS, France
| | - Sylvain Argentieri
- Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, 4 place Jussieu, 75005 Paris, France
| | - Raymond Campagnolo
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, 4 place Jussieu, 75005 Paris, France
| |
Collapse
|
13
|
Qiu X, Cheng Y, Sun M. Molecular and plasmonic resonances on tip-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120360. [PMID: 34509891 DOI: 10.1016/j.saa.2021.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Plasmon has been widely investigated and applied, because it can greatly enhance molecular Raman spectral intensity. In this study, the resonance Raman effect of the tetra-tert-butylnaphthalocyanine (TTBN) is analyzed, including the Raman wave number shift and enhancement factor, resulting from light of different incident wavelengths. Furthermore, the optical properties of TTBN are obtained, such as charge transfer, the electronic circular dichroism (ECD) spectrum, etc. Lastly, we study the tip-enhanced Raman spectroscopy (TERS) by adjusting the parameters of the metal tip to achieve the highest electromagnetic enhancement at different incident wavelengths. Combining the resonance excitation effect and the tip enhanced Raman effect, the enhancement factor of TERS can reach up to 108-109. This study provides significant help for a profound understanding of the TERS mechanism.
Collapse
Affiliation(s)
- Xinmiao Qiu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China; School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, PR China
| | - Yuqing Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
14
|
Su HS, Feng HS, Wu X, Sun JJ, Ren B. Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures. NANOSCALE 2021; 13:13962-13975. [PMID: 34477677 DOI: 10.1039/d1nr04009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Metallic nanostructures exhibit superior catalytic performance for diverse chemical reactions and the in-depth understanding of reaction mechanisms requires versatile characterization methods. Plasmon-enhanced Raman spectroscopy (PERS), including surface-enhanced Raman spectroscopy (SERS), shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), and tip-enhanced Raman spectroscopy (TERS), appears as a powerful technique to characterize the Raman fingerprint information of surface species with high chemical sensitivity and spatial resolution. To expand the range of catalytic reactions studied by PERS, catalytically active metals are integrated with plasmonic metals to produce bifunctional metallic nanostructures. In this minireview, we discuss the recent advances in PERS techniques to probe the chemical reactions catalysed by bifunctional metallic nanostructures. First, we introduce different architectures of these dual-functionality nanostructures. We then highlight the recent works using PERS to investigate important catalytic reactions as well as the electronic and catalytic properties of these nanostructures. Finally, we provide some perspectives for future PERS studies in this field.
Collapse
Affiliation(s)
- Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | |
Collapse
|
15
|
Li Z, Kurouski D. Probing the plasmon-driven Suzuki-Miyaura coupling reactions with cargo-TERS towards tailored catalysis. NANOSCALE 2021; 13:11793-11799. [PMID: 34190293 DOI: 10.1039/d1nr02478g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present a label-free approach that is based on tip-enhanced Raman spectroscopy (TERS) for a direct in situ assessment of the molecular reactivity in plasmon-driven reactions. Using this analytical approach, named cargo-TERS, we investigate the relationship between the chemical structure of aromatic halides and the catalytic probability of the Suzuki-Miyaura coupling reaction on gold-palladium bimetallic nanoplates (Au@PdNPs). We demonstrate that cargo-TERS can be used to quantify the yield of biphenyl-4,4'-dithiol (BPDT), the product of the coupling reaction. Our results also show that the halide reactivity decreases from bromo through chloro to fluorohalides. Finally, we employ this novel imaging technique to unravel the nanoscale reactivity and selectivity of Au@PdNPs. We find that the edges and corners of these nanostructures exhibit the highest catalytic reactivity, while the flat terraces of Au@PdNPs remain catalytically inactive.
Collapse
Affiliation(s)
- Zhandong Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA.
| | | |
Collapse
|
16
|
Iakab S, Ràfols P, Correig-Blanchar X, García-Altares M. Perspective on Multimodal Imaging Techniques Coupling Mass Spectrometry and Vibrational Spectroscopy: Picturing the Best of Both Worlds. Anal Chem 2021; 93:6301-6310. [PMID: 33856207 PMCID: PMC8491157 DOI: 10.1021/acs.analchem.0c04986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/07/2021] [Indexed: 01/19/2023]
Abstract
Studies on complex biological phenomena often combine two or more imaging techniques to collect high-quality comprehensive data directly in situ, preserving the biological context. Mass spectrometry imaging (MSI) and vibrational spectroscopy imaging (VSI) complement each other in terms of spatial resolution and molecular information. In the past decade, several combinations of such multimodal strategies arose in research fields as diverse as microbiology, cancer, and forensics, overcoming many challenges toward the unification of these techniques. Here we focus on presenting the advantages and challenges of multimodal imaging from the point of view of studying biological samples as well as giving a perspective on the upcoming trends regarding this topic. The latest efforts in the field are discussed, highlighting the purpose of the technique for clinical applications.
Collapse
Affiliation(s)
- Stefania
Alexandra Iakab
- Rovira
i Virgili University, Department of Electronic
Engineering, IISPV, 43007 Tarragona, Spain
- Spanish
Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
(CIBERDEM), 28029 Madrid, Spain
| | - Pere Ràfols
- Rovira
i Virgili University, Department of Electronic
Engineering, IISPV, 43007 Tarragona, Spain
- Spanish
Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
(CIBERDEM), 28029 Madrid, Spain
| | - Xavier Correig-Blanchar
- Rovira
i Virgili University, Department of Electronic
Engineering, IISPV, 43007 Tarragona, Spain
- Spanish
Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
(CIBERDEM), 28029 Madrid, Spain
| | - María García-Altares
- Rovira
i Virgili University, Department of Electronic
Engineering, IISPV, 43007 Tarragona, Spain
- Spanish
Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
(CIBERDEM), 28029 Madrid, Spain
| |
Collapse
|
17
|
Huang SC, Bao YF, Wu SS, Huang TX, Sartin MM, Wang X, Ren B. Electrochemical Tip-Enhanced Raman Spectroscopy: An In Situ Nanospectroscopy for Electrochemistry. Annu Rev Phys Chem 2021; 72:213-234. [PMID: 33400554 DOI: 10.1146/annurev-physchem-061020-053442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Revealing the intrinsic relationships between the structure, properties, and performance of the electrochemical interface is a long-term goal in the electrochemistry and surface science communities because it could facilitate the rational design of electrochemical devices. Achieving this goal requires in situ characterization techniques that provide rich chemical information and high spatial resolution. Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique for achieving this goal. Since the first demonstration of this technique in 2015, EC-TERS has been developed for characterizing various electrochemical processes at the nanoscale and molecular level. Here, we review the development of EC-TERS over the past 5 years. We discuss progress in addressing the technical challenges, including optimizing the EC-TERS setup and solving tip-related issues, and provide experimental guidelines. We also survey the important applications of EC-TERS for probing molecular protonation, molecular adsorption, electrochemical reactions, and photoelectrochemical reactions. Finally, we discuss the opportunities and challenges in the future development of this young technique.
Collapse
Affiliation(s)
- Sheng-Chao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; ,
| |
Collapse
|
18
|
Yokota Y, Kim Y. Molecular Scale Assessments of Electrochemical Interfaces: In Situ and Ex Situ Approaches. CHEM LETT 2021. [DOI: 10.1246/cl.200735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuyuki Yokota
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Abstract
Abstract
Scanning tunneling microscopy (STM) has gained increasing attention in the field of electrocatalysis due to its ability to reveal electrocatalyst surface structures down to the atomic level in either ultra-high-vacuum (UHV) or harsh electrochemical conditions. The detailed knowledge of surface structures, surface electronic structures, surface active sites as well as the interaction between surface adsorbates and electrocatalysts is highly beneficial in the study of electrocatalytic mechanisms and for the rational design of electrocatalysts. Based on this, this review will discuss the application of STM in the characterization of electrocatalyst surfaces and the investigation of electrochemical interfaces between electrocatalyst surfaces and reactants. Based on different operating conditions, UHV-STM and STM in electrochemical environments (EC-STM) are discussed separately. This review will also present emerging techniques including high-speed EC-STM, scanning noise microscopy and tip-enhanced Raman spectroscopy.
Graphic Abstract
Collapse
|
20
|
Sartin MM, Su HS, Wang X, Ren B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J Chem Phys 2020; 153:170901. [PMID: 33167627 DOI: 10.1063/5.0027917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamics are fundamental to all aspects of chemistry and play a central role in the mechanism and product distribution of a chemical reaction. All dynamic processes are influenced by the local environment, so it is of fundamental and practical value to understand the structure of the environment and the dynamics with nanoscale resolution. Most techniques for measuring dynamic processes have microscopic spatial resolution and can only measure the average behavior of a large ensemble of sites within their sampling volumes. Tip-enhanced Raman spectroscopy (TERS) is a powerful tool for overcoming this limitation due to its combination of high chemical specificity and spatial resolution that is on the nanometer scale. Adapting it for the study of dynamic systems remains a work in progress, but the increasing sophistication of TERS is making such studies more routine, and there are now growing efforts to use TERS to examine more complex processes. This Perspective aims to promote development in this area of research by highlighting recent progress in using TERS to understand reacting and dynamic systems, ranging from simple model reactions to complex processes with practical applications. We discuss the unique challenges and opportunities that TERS presents for future studies.
Collapse
Affiliation(s)
- Matthew M Sartin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hai-Sheng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Bao YF, Cao MF, Wu SS, Huang TX, Zeng ZC, Li MH, Wang X, Ren B. Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy. Anal Chem 2020; 92:12548-12555. [PMID: 32804479 DOI: 10.1021/acs.analchem.0c02466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip-sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)electrocatalysis.
Collapse
Affiliation(s)
- Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Si Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Teng-Xiang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi-Cong Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mao-Hua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Groni S, Fave C, Schöllhorn B, Chapus L, Aubertin P, Touzalin T, Lucas IT, Joiret S, Courty A, Maisonhaute E. Long range self-organisations of small metallic nanocrystals for SERS detection of electrochemical reactions. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|