1
|
Gelen SS, Munkhbat T, Rexhepi Z, Kirbay FO, Azak H, Demirkol DO. Catalase-conjugated surfaces: H2O2 detection based on quenching of tryptophan fluorescence on conducting polymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
3
|
Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films. Anal Biochem 2016; 502:43-49. [DOI: 10.1016/j.ab.2016.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/23/2022]
|
4
|
Shahrokhian S, Naderi L, Ghalkhani M. Nanocellulose/Carbon Nanoparticles Nanocomposite Film Modified Electrode for Durable and Sensitive Electrochemical Determination of Metoclopramide. ELECTROANAL 2015. [DOI: 10.1002/elan.201500266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Chillawar RR, Tadi KK, Motghare RV. Voltammetric techniques at chemically modified electrodes. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815040152] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ezhil Vilian A, Chen SM, Lou BS. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (l-lysine) biocomposite for the detection of H2O2 and iodate. Biosens Bioelectron 2014; 61:639-47. [DOI: 10.1016/j.bios.2014.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
|
7
|
Gholivand MB, Khodadadian M. Amperometric cholesterol biosensor based on the direct electrochemistry of cholesterol oxidase and catalase on a graphene/ionic liquid-modified glassy carbon electrode. Biosens Bioelectron 2014; 53:472-8. [DOI: 10.1016/j.bios.2013.09.074] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/29/2013] [Accepted: 09/30/2013] [Indexed: 12/17/2022]
|
8
|
Nanoporous platinum–cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 2013; 780:20-7. [DOI: 10.1016/j.aca.2013.03.068] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 11/20/2022]
|
9
|
Layer by layer assembly of catalase and amine-terminated ionic liquid onto titanium nitride nanoparticles modified glassy carbon electrode: Study of direct voltammetry and bioelectrocatalytic activity. Anal Chim Acta 2012; 753:32-41. [DOI: 10.1016/j.aca.2012.09.043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/23/2012] [Accepted: 09/25/2012] [Indexed: 11/20/2022]
|
10
|
Colas H, Ewen KM, Hannemann F, Bistolas N, Wollenberger U, Bernhardt R, de Oliveira P. Direct and mediated electrochemical response of the cytochrome P450 106A2 from Bacillus megaterium ATCC 13368. Bioelectrochemistry 2012; 87:71-7. [DOI: 10.1016/j.bioelechem.2012.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 11/27/2022]
|
11
|
Tasviri M, Ghourchian H, Gholami MR, Rafiee-Pour HA. Horseradish Peroxidase Immobilization on Amine Functionalized Carbon Nano Tubes: Direct Electrochemistry and Bioelectrocatalysis. PROGRESS IN REACTION KINETICS AND MECHANISM 2012. [DOI: 10.3184/146867812x13323491552144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Horseradish peroxidase (HRP) was successfully immobilized on amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2 TiO2 CNTs) by a convenient and efficient method. Electrochemical impedance spectroscopy, cyclic voltammetry and amperometry were applied to characterize the HRP/NH2- TiO2 - CNT nano-composite. These techniques showed that the NH2 TiO2CNTs greatly enhance the electron transfer between HRP and the modified electrode. Owing to the redox reaction of the electroactive centre of HRP, the HRP/NH2-TiO2-CNTs modified electrode exhibited a pair of quasi-reversible peaks with a peak-to-peak separation (Δ Ep) of 70.6 m V and a formal potential ( E°’) of - 367.65 m V (versus Ag/AgCl) in phosphate buffer solution. The charge transfer coefficient (a) and the apparent charge transfer rate constant (ks) were found to be 0.34 and 2.08 s-1 respectively. The prepared biosensor responded to H2O2 with a linear range, detection limit, sensitivity and response time of 1.0 × 10−9 to 1.0 × 10 −7 M, 0.786nM, 28.4 μA A nM−1 and 3 s, respectively.
Collapse
Affiliation(s)
- Mahboubeh Tasviri
- Department of Chemistry, Sharif University of Technology, Azadi Ave, Tehran, Iran
| | | | - Mohammad R. Gholami
- Department of Chemistry, Sharif University of Technology, Azadi Ave, Tehran, Iran
| | | |
Collapse
|
12
|
Shamsipur M, Asgari M, Mousavi MF, Davarkhah R. A Novel Hydrogen Peroxide Sensor Based on the Direct Electron Transfer of Catalase Immobilized on Nano-Sized NiO/MWCNTs Composite Film. ELECTROANAL 2011. [DOI: 10.1002/elan.201100453] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Chen W, Cai S, Ren QQ, Wen W, Zhao YD. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 2011; 137:49-58. [PMID: 22081036 DOI: 10.1039/c1an15738h] [Citation(s) in RCA: 537] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to the significance of hydrogen peroxide (H(2)O(2)) in biological systems and its practical applications, the development of efficient electrochemical H(2)O(2) sensors holds a special attraction for researchers. Various materials such as Prussian blue (PB), heme proteins, carbon nanotubes (CNTs) and transition metals have been applied to the construction of H(2)O(2) sensors. In this article, the electrocatalytic H(2)O(2) determinations are mainly focused on because they can provide a superior sensing performance over non-electrocatalytic ones. The synergetic effect between nanotechnology and electrochemical H(2)O(2) determination is also highlighted in various aspects. In addition, some recent progress for in vivo H(2)O(2) measurements is also presented. Finally, the future prospects for more efficient H(2)O(2) sensing are discussed.
Collapse
Affiliation(s)
- Wei Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | |
Collapse
|
14
|
Voltammetric techniques for the assay of pharmaceuticals—A review. Anal Biochem 2011; 408:179-96. [DOI: 10.1016/j.ab.2010.09.027] [Citation(s) in RCA: 283] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/17/2010] [Accepted: 09/18/2010] [Indexed: 11/20/2022]
|
15
|
Rahimi P, Rafiee-Pour HA, Ghourchian H, Norouzi P, Ganjali MR. Ionic-liquid/NH2-MWCNTs as a highly sensitive nano-composite for catalase direct electrochemistry. Biosens Bioelectron 2010; 25:1301-6. [DOI: 10.1016/j.bios.2009.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 10/08/2009] [Accepted: 10/14/2009] [Indexed: 02/07/2023]
|
16
|
Prakash PA, Yogeswaran U, Chen SM. A review on direct electrochemistry of catalase for electrochemical sensors. SENSORS 2009; 9:1821-44. [PMID: 22573989 PMCID: PMC3345822 DOI: 10.3390/s90301821] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/03/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
Abstract
Catalase (CAT) is a heme enzyme with a Fe(III/II) prosthetic group at its redox centre. CAT is present in almost all aerobic living organisms, where it catalyzes the disproportionation of H2O2 into oxygen and water without forming free radicals. In order to study this catalytic mechanism in detail, the direct electrochemistry of CAT has been investigated at various modified electrode surfaces with and without nanomaterials. The results show that CAT immobilized on nanomaterial modified electrodes shows excellent catalytic activity, high sensitivity and the lowest detection limit for H2O2 determination. In the presence of nanomaterials, the direct electron transfer between the heme group of the enzyme and the electrode surface improved significantly. Moreover, the immobilized CAT is highly biocompatible and remains extremely stable within the nanomaterial matrices. This review discusses about the versatile approaches carried out in CAT immobilization for direct electrochemistry and electrochemical sensor development aimed as efficient H2O2 determination. The benefits of immobilizing CAT in nanomaterial matrices have also been highlighted.
Collapse
Affiliation(s)
- Periasamy Arun Prakash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (ROC); E-Mails: (P.A.P.); (U.Y.)
| | | | | |
Collapse
|
17
|
Arun Prakash P, Yogeswaran U, Chen SM. Direct electrochemistry of catalase at multiwalled carbon nanotubes-nafion in presence of needle shaped DDAB for H2O2 sensor. Talanta 2009; 78:1414-21. [PMID: 19362210 DOI: 10.1016/j.talanta.2009.02.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 11/13/2022]
Abstract
The direct electrochemistry of catalase (CAT) at didodecyldimethylammonium bromide (DDAB) present on nafion dispersed multiwalled carbon nanotubes (MWCNTs-NF) modified glassy carbon electrode (GCE) has been reported. The presence of DDAB in MWCNTs-NF-CAT film enhances the surface coverage concentration of CAT (Fe(III/II)) to 48%. Similarly, in presence of DDAB, there is a 57% enhancement in electron transfer rate (ks) with 66% increase in CAT stability. (Fe(III/II)) redox couple exhibits linear dependence with the pH variation (-51 mV pH(-1)). The UV-vis absorption spectroscopy study reveals the entrapped CAT in DDAB film retains its native structure at MWCNTs-NF modified electrodes. Similarly, electrochemical impedance spectroscopy results confirm the co-existence of CAT and DDAB in the modified film. Further, scanning electron microscopy results reveal the structural morphological difference between various components in MWCNTs-NF-(DDAB/CAT) film. The cyclic voltammetry (CV) and amperometry (i-t curve) have been used for the measurement of electroanalytical properties of H2O2 by means of various film modified GCEs. The sensitivity values of MWCNTs-NF-(DDAB/CAT) film for H2O2 using CV (35.62 microA mM(-1)cm2) are higher than the values which are obtained for MWCNTs-NF-CAT film (2.74 mmicroA mM(-1)cm2). Similarly, the sensitivity values using i-t curve are 101.74 microA mM(-1)cm2 for MWCNTs-NF-(DDAB/CAT) and 74.69 microA mM(-1)cm2 for MWCNTs-NF-CAT film. Finally, the diffusion coefficient of H2O2 at MWCNTs-NF-(DDAB/CAT) film (3.4 x 10(-10) cm2 s(-1)) has been calculated using rotating disc electrode studies.
Collapse
Affiliation(s)
- Periasamy Arun Prakash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | | | |
Collapse
|
18
|
Jiang HJ, Yang H, Akins D. Direct electrochemistry and electrocatalysis of catalase immobilized on a SWNT-nanocomposite film. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2008.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis. Biosens Bioelectron 2008; 24:198-203. [DOI: 10.1016/j.bios.2008.03.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 03/02/2008] [Accepted: 03/25/2008] [Indexed: 11/23/2022]
|
20
|
Feng L, Wang L, Hu Z, Tian Y, Xian Y, Jin L. Encapsulation of horseradish peroxidase into hydrogel, and its bioelectrochemistry. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0030-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
de Oliveira P, Ranjbari A, Baciou L, Bizouarn T, Ollesch G, Ermler U, Sebban P, Keita B, Nadjo L. Preliminary electrochemical studies of the flavohaemoprotein from Ralstonia eutropha entrapped in a film of methyl cellulose: Activation of the reduction of dioxygen. Bioelectrochemistry 2007; 70:185-91. [PMID: 16750432 DOI: 10.1016/j.bioelechem.2006.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Indexed: 11/19/2022]
Abstract
A flavohaemoprotein (FHP) from Ralstonia eutropha, obtained in a pure and active form, has been entrapped in a film of methyl cellulose on the electrode surface and gives a stable and reproducible electrochemical response at pH 7.00 when subject to cyclic voltammetry using a glassy carbon electrode. To our knowledge, no previous direct electrochemistry had been achieved with a bacterial flavohaemoglobin, which possess both a FAD and a haem. A single couple is observed which is assigned to the haem moiety of the protein, since the same result is obtained with a semi-apo form of the protein deprived of FAD (semi-apo FHP). The data collected were further confirmed by potentiometry with a platinum electrode, and the homogeneous electron transfer rate estimated by double potential step chronocoulometry at a bare glassy carbon electrode in the presence of methyl viologen (MV). The presence of FAD in the holoprotein is easily confirmed by UV-Vis spectrophotometry, but its expected electron relay role remains elusive. The protein activates the reduction of dioxygen by about 400 mV, the reduction current being proportional to the concentration of dioxygen up to 10% in volume in the gas mixture.
Collapse
Affiliation(s)
- Pedro de Oliveira
- Laboratoire de Chimie Physique, UMR 8000 CNRS, Faculté des Sciences d'Orsay Université Paris-Sud XI, Bât 350, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zong S, Cao Y, Zhou Y, Ju H. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8915-9. [PMID: 17014135 DOI: 10.1021/la060930h] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A novel, biocompatible, thermally steady, and nontoxic zirconia enhanced grafted collagen tri-helix scaffold was prepared on a graphite electrode. This scaffold provided a microenvironment for loading biomolecules and helped to retain their natural structure. UV-vis spectroscopy and scanning electron microscopy were used to characterize the scaffold and the structure of immobilized biomolecules. Using horseradish peroxidase (HRP) as an example, this scaffold accelerated its electron transfer and led to its direct electrochemical behavior with a good thermal stability up to 80 degrees C. The surface electron-transfer rate constant of the immobilized HRP was (5.55 +/- 0.43) s(-)(1) in 0.1 M pH 7.0 PBS at 18 degrees C. The immobilized HRP showed an electrocatalytic activity to the reduction of hydrogen peroxide (H(2)O(2)) without aid of an electron mediator. The linear response range of the biosensor for H(2)O(2) was from 1.0 to 73.0 microM with a correlation coefficient of 0.999 (n = 14), a limit of detection down to 0.25 microM and an apparent Michaelis-Menten constant of (0.28 +/- 0.02) mM. The biosensor exhibited high sensitivity, acceptable stability, and reproducibility. The ZrO(2) grafted collagen provided an excellent matrix for protein immobilization and biosensor preparation.
Collapse
Affiliation(s)
- Shuizhen Zong
- MOE Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | |
Collapse
|
23
|
Liao CW, Chou JC, Sun TP, Hsiung SK, Hsieh JH. Preliminary Investigations on a New Disposable Potentiometric Biosensor for Uric Acid. IEEE Trans Biomed Eng 2006; 53:1401-8. [PMID: 16830944 DOI: 10.1109/tbme.2006.875720] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this paper, uricase, catalase, and electron mediator were coimmobilized on the surface of the tin oxide (SnO2)/indium tin oxide (ITO) glass, to develop a disposable potentiometric uric acid biosensor. The SnO2/ITO glass was employed as a pH sensor, fabricated by sputtering SnO2 thin films on the ITO glass. 3-Glycidyloxypropyltrimethoxysilane (GPTS) was utilized to immobilize uricase, catalase and the electron mediator (ferrocenecarboxylic acid, FcA) on the sensing window. The experimental results reveal that the optimal weight ratio of uricase, FcA to catalase (CAT) is 4:1:2. The sensor responds linearly between 2 mg/dl and 7 mg/dl at pH 7.5, in 20 mM of test solution, with a correlation coefficient of 0.99213. Accordingly, no significant interference was observed when interfering substances, glucose, urea and ascorbic acid, were added to the uric acid solution. Moreover, the recorded voltage was relatively constant during the first 28 days of measurement. Consequently, a potentiometric uric acid biosensor was realized with the advantages of low cost and simple fabrication.
Collapse
Affiliation(s)
- Cheng Wei Liao
- Institute of Biomedical Engineering, Chung Yuan Christian University, Taiwan 320, ROC.
| | | | | | | | | |
Collapse
|
24
|
Zheng W, Li Q, Su L, Yan Y, Zhang J, Mao L. Direct Electrochemistry of Multi-Copper Oxidases at Carbon Nanotubes Noncovalently Functionalized with Cellulose Derivatives. ELECTROANAL 2006. [DOI: 10.1002/elan.200503444] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|